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ABSTRACT
Monitoring system behaviors using formal speci�cations ap-
pears to be an e�ective technique in analyzing cyber-physical
systems. However, to achieve intended results in monitoring,
speci�cation languages need to be intuitive, elegant, and ex-
pressive at the �rst place. In this paper, we propose a metric
extension of well-known Halpern-Shoham (hs) logic, called
Metric Compass Logic (mcl), for monitoring purposes. Orig-
inally proposed for high-level temporal reasoning, the logic
hs is very expressive and enables users to specify many tem-
poral patterns in an intuitive and elegant way. As our main
contribution, we present an o�ine monitoring technique for
timed patterns speci�ed inmcl. Our solution is built upon the
framework developed for timed regular expressions (tre)
matching but explores a di�erent (logical) direction. We
�nally study several practical features concerning atomic
formulas and discuss a combined timed pattern speci�cation
language with tre.
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1 INTRODUCTION
The analysis of complex systems is concerned with behav-
iors that systems exhibit in response to the environment as
well as their properties that cause these behaviors. System
behaviors are inherently related to time and can be expressed
in a sequential form on the time axis under di�erent names
such as signals, waveforms, time series, or event sequences.
Observing and evaluating such temporal behaviors triggered
by certain external inputs is an essential task for understand-
ing and assessing such systems. We use the term monitoring

to denote the process of observing and evaluating temporal
behaviors of systems.

Monitoring has been always prior to more sophisticated
techniques that involve modeling a system mathematically.
However, the lack of a systematic and rigorous approach
prevents its adoption as a reliable tool when reasoning about
systems. Following the success of formal methods, especially
of (formal) veri�cation of hardware and software systems,
there is a growing trend in academia and industry to mon-
itor system behaviors against formal speci�cations. This
approach combines the simplicity of monitoring with the
rigor of the formalism without necessitating a mathematical
model of the system as in veri�cation. Therefore, monitor-
ing using formal speci�cations is especially attractive for
cyber-physical systems where no model, if exists, is small
and accurate enough to be formally veri�ed.

There are several considerations when choosing or de-
signing a formal speci�cation language for monitoring [12,
15, 16]. The historical direction has been to use the same
speci�cation language used in veri�cation for monitoring
purposes since monitoring using formal speci�cations was
initially considered to be a lightweight veri�cation technique.
Therefore, temporal logics with their mostly intuitive (tem-
poral) operators are used for monitoring purposes. Secondly,
a highly expressive language is desired for speci�cation. Un-
fortunately, the complexity of veri�cation (validity) problem
poses a signi�cant limit on the expressiveness that a language
can reach. It is common that an intuitive and expressive lan-
guage is intractable for veri�cation purposes. On the other
hand, monitoring is a simpler problem complexity-wise and
therefore allows the use of much more expressive languages.
At this point, we can convince ourselves that speci�cation
languages for monitoring can go beyond languages proposed
for veri�cation.
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Figure 1: An example.

In this paper, we propose the modal logic of time periods
known as Halpern-Shoham (hs) logic [11] and its metric
extension named as Metric Compass Logic (mcl) for moni-
toring purposes. The hs logic is very expressive and enables
users to specify some complex temporal patterns such as
a pattern that either precedes, meets, begins, ends, overlaps,
or occurs during another pattern. Then, we extend timed
pattern matching [26] for temporal logic patterns speci�ed
in the logic hs and mcl. Timed pattern matching is a moni-
toring task de�ned to be an act of identifying the segments
of discrete-valued continuous-time behaviors (called timed
behaviors) that satisfy a timed pattern. As a speci�cation
language, it has initially employed timed regular expressions
(tre) [2, 3], which augments regular expressions with timing
(duration) constraints. Further related works include timed
automata patterns [30], online procedures [27, 31], and a soft-
ware implementation [25]. We now illustrate timed pattern
matching using mcl with an example.

Suppose that we collect data from acceleration and proxim-
ity sensors attached to some automobiles during the driving.
In Figure 1, we depict an example timed behavior obtained
from such a car. In this example, the car is getting closer
to another vehicle and the (human or automatic) controller
reacts to maintain the safe trailing distance. For the anal-
ysis of such temporal behaviors, it is usually the case that
we want to �nd all instances of a temporal pattern such as
all falling behind periods begun by a deceleration period and

followed by a period of safe and keeping distance at least 30

seconds. However, it is not possible to express this pattern
using tre . Instead we can use mcl to specify and match
the pattern from the driving log. The output would be a
set of time periods and indicates instances of the pattern
such as a match at (t , t ′) shown in Figure 1. Clearly these
matches can be subject to further analyses and higher-level
reasoning tasks. Such a formalization may also help address
some legal and liability issues that appear in the context of
autonomous driving. For the rest of paper, however, we treat
all these concepts in an abstract manner without referring
to any particular application.

The paper is structured as follows. Section 2 and 3 give
precise de�nitions of time periods, their representations, and

timed behaviors. Our design choices and setup are also ex-
plained in detail since all these concepts are �oating around
with small but important variations. In Section 4, we �rst
review temporal logics based on time periods and focus on
hs logic in particular. Then, we introduce metric compass
logic and present the syntax and (relational) semantics of
mcl. In Section 5, we are interested in the problem of timed
pattern matching for mcl over timed behaviors. For that,
we formulate an alternative (algebraic) semantics for mcl
that allows the evaluation of a formula inductively and show
that relational and algebraic semantics of mcl agree. We
then describe our implementation and present our experi-
mental results. In Section 6 we give more details on atomic
formulas where we have a great deal of freedom that can
be tailored for speci�c applications. Finally we discuss a
possible integration with tre and our future insights in the
conclusion.

2 TIME PERIODS & REPRESENTATIONS
For our monitoring purposes, we are interested in dense,
linear, and bounded time models. We �x our time domain
T = (0,d) to be an interval of reals throughout the paper
without loss of generality. We then de�ne time periods over
T as follows.

De�nition 2.1 (Time period). A time period (t , t ′) is a pair
of begin and end boundaries on a time domain T such that
t < t ′ with a (non-zero) duration of t ′ − t . By Ω(T ), we
denote the set {(t , t ′) | t ≥ 0, t ′ ≤ d, t ′ − t > 0} of all time
periods over T .

We say that a time period (t1, t ′1)meets another period (t2, t ′2)
if the end of the �rst equals to the begin of the second such
that t ′1 = t2. A sequence S = (t0, t1), (t1, t2), . . . , (tn−1, tn) of
meeting time periods is called a time period sequence. It
begins at t0, ends at tn and has a duration of tn − t0 and
a length of n.

t

t ′ − t

t ′

x = y

x

y
d

x

y

Figure 2: Geometric representations of a time period
(t , t ′) and the set Ω(T ) of all time periods where T =
(0,d).
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Geometrically speaking, a time period (t , t ′) can be viewed
as a line segment on the time axis, or alternatively, as a point
on a two-dimensional xy-plane under standard conventions.
In Figure 2-(left), we illustrate attributes of a time period
(t , t ′), its begin t , its end t ′, and its duration t ′ − t on such a
plane. Then we are interested in a very speci�c set of linear
inequalities that corresponds to constraints on beginnings,
endings, and durations of time periods, often called vertical,
horizontal, and diagonal half-planes. In particular, the set
Ω(T ) of all time periods forms a triangular set of points on
the plane as depicted in Figure 2-(right).

In the following we closely relate sets of time periods
to Boolean functions. Boolean (set-theoretic) operations of
union (∪), intersection (∩), and complementation ( ) as well
as the inclusion relation (⊆) over sets of time periods are
de�ned as usual with the empty set ∅ and the universal set
Ω(T ). We call a set of time periods a timed relation if and
only if it can be expressed as a �nite boolean formula over
vertical, horizontal, and diagonal half-planes as follows.

De�nition 2.2 (Timed Relation). A timed relationZ ⊆ Ω(T )
is a (possibly uncountable) set of time periods that can be
represented on the xy-plane by a boolean combination of
�nitely many half-planes having one of six forms (1) x ≺ c ,
(2) y ≺ c , (3) y − x ≺ c , (4) c ≺ y − x , (5) c ≺ y, and (6) c ≺ x
where ≺ ∈ {<, ≤} and c ∈ R.

It is clear that the empty set, Ω(T ), and all �nite sets of
time periods are timed relations. Next we say that a con-
vex timed relation is a timed relation that can be formed
only by intersections. We denote by Z and Z∩ the set of
all timed relations and the set of all convex timed relations
over Ω(T ), respectively. We distinguish six types of half-
planes in the de�nition by superscripted numbers (1 − 6)
such as h1. The complement of an open [closed] half-plane
hk is a closed [open] half-plane h7−k with the same con-
stant c . Intersections or unions of n half-planes hk1 , . . . ,h

k
n

of the same type would be implied by one of the half-planes
hki , i ∈ 1, . . . ,n. Therefore, every convex timed relation
z ∈ Z∩ can be formed by an intersection of six half-planes
h1,h2,h3,h4,h5,h6 of each type such that⋂

k=1...6
hk =

{
(x ,y) |

c6 ≺ x ≺ c1,
c5 ≺ y ≺ c2,

c4 ≺ y − x ≺ c3

}
where c1, . . . , c6 ∈ R∪{−∞,+∞}. Consequently we can rep-
resent a convex timed relation as a tuple (h1,h2,h3,h4,h5,h6)
of half-spaces. Notice that these half-planes are not totally
independent of each other and an arithmetic combination
of two other may imply a tighter half-plane. Clearly every
non-empty convex timed relation z ∈ Z∩ has a unique nor-
mal representation such that all half-planes are tight. More
precisely, given a representation (h1,h2,h3,h4,h5,h6) of z

that the tight representation of z can be found as follows:

tighten(z) =
(
h1 ∩ (h2 + h4),

h2 ∩ (h1 + h3),
h3 ∩ (h2 + h6),
h4 ∩ (h1 + h5),

h5 ∩ (h4 + h6),

h6 ∩ (h3 + h5)
)

where + denotes arithmetic addition of inequalities. In Fig-
ure 3 we illustrate the most general (hexagon) case for a
convex timed relation where you can see that two bounds
h1 : x < c1 and h3 : y − x ≤ c3 imply a bound h1 + h3 : y <
c1 + c3, which can absorb or be absorbed by h2. Importantly,
an inclusion test between two convex timed relations z1 and
z2 can be performed over their tight representations such
that

z1 ⊆ z2 ←→
∧

i=1, ...,6
hi1 ⊆ hi2

From now on, we consider all representations of convex
timed relations to be tightened according to the de�nition
above and we use the term zone both for a convex timed
relation and its tight representation. And we say a zone z1 is
implied by another zone z2 if z1 ⊆ z2.

We represent a timed relation as a �nite union of zones
similar to disjunctive normal forms of Boolean functions.
By de�nition and by DeMorgan’s laws, every timed relation
Z can be representable by a union over a �nite set of non-
empty zones RZ = {z1, z2, . . . , zn} such that Z = z1 ∪ z2 ∪
· · · ∪ zn . Colloquially we say a timed relation when we want
to emphasize semantic aspects whereas a union of zones to
emphasize syntactic aspects.

We say that a union of zones RZ is absorptive if and only
if no zone in RZ is implied by any other zone in RZ . For any
union of zones RZ , we can obtain an equivalent absorptive
union of zones, denoted by absorb(RZ ), by removing all

c6 ≺ x

x ≺ c1

c4 ≺ y − x

y − x ≺ c3

c5 ≺ y

y ≺ c2

(c5 − c3, c5)

(c6, c2 + c3)

(c1, c1 + c3)

(c2 − c4, c2)

Figure 3: Dependencies between half-planes of a con-
vex timed relation.
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absorbed zones from the representation. Obviously, there
may be di�erent representations of a timed relation Z but
an absorptive representation absorb(RZ ) for a given RZ is
unique. Unless speci�ed otherwise, we consider all unions
of zones to be absorptive for the rest.

Finally, we review Boolean operations on such representa-
tions. The union RZ1 ∪RZ2 is simply the union of zones from
both representation. The intersection RZ1 ∩ RZ2 is computed
as a pairwise intersection between member zones. These
operations are typically followed by an absorb operation,
which also has a quadratic worst-case complexity. For com-
plementation, since both DeMorgan’s laws hold for timed
relations, we can complement a zone z as follows.

Rz = {h1z , h2z , h3z , h4z , h5z , h6z }

And then, a complement union of zones RZ can be developed
into a union of zones in an incremental and e�cient manner
such that

RiZ = absorb
(
Ri−1Z ∩ Rzi

)
where RiZ is the complement of the subset {z1, z2, . . . , zi } of a
union of zones with n elements for 1 ≤ i ≤ n and R0

Z = Ω(T ).
The current upper bound for the worst-case complexity of
complementation is O(n4), which is quite pessimistic.

Note that zones (possibly in higher dimensions) are com-
monly employed for timed systems research and admit e�-
cient data structures called di�erence bound matrices [6, 9].
Here we use many two-dimensional zones to represent time
periods as proposed in [26] rather than one or a few high-
dimensional zones to represent clock valuations.

3 TIMED BEHAVIORS
Let P = {p1, . . . ,pm} be a �nite set of (atomic) propositional
variables over a time domain T that correspond to some
states or activities of some real-time systems and the en-
vironment. Examples include the proposition turning left

denoting an activity of a car and the engine temperature is

higher than 110 degrees which denotes a qualitative state
over a physical quantity. We consider such propositions to
be observed continuously for a �nite amount of time and
model the evolution of corresponding activities and states as
timed behaviors. For that we �rst de�ne an alphabet Σ = Bm
of observations expressed as Boolean vectors of dimension
m where B = {0, 1} and a(i) is the value of pi for i = 1 . . .m.
Then a timed behavior is a �nite sequence of time periods
such that each period (tk−1, tk ) is associated with a Boolean
vector ak ∈ Σ such that ak (i) = 1 if the proposition pi holds
on the time period (tk−1, tk ) and ak (i) = 0 if it does not.

De�nition 3.1 (Timed Behavior). A timed behavior w over
a set of atomic propositions P on a time period (t0, tn) is

a non-empty �nite sequence such that

w = (t0, t1,a1), (t1, t2,a2), . . . , (tn−1, tn ,an)
where ak ∈ Σ and tk−1 < tk for k ∈ 1 . . .n. We say w begins
at t0, ends at tn , has a duration of tn − t0 and a length of n.

We use wp (t , t ′) to denote the restriction of w to an atomic
proposition p and a time period (t , t ′). The concatenation
w1 · w2 is de�ned only if w1 meets w2, that is, w1 ends at
the point where w2 begins. Alternatively, a timed behavior
can be given as a sequence of pairs of duration values and
symbols from the alphabet Σ such that

w = (t1 − t0,a1), (t2 − t1,a2), . . . , (tn − tn−1,an)
In this notation, we assume the beginning time t0 = 0 unless
otherwise stated. As an example, we depict in Figure 4 an
evolution of two atomic propositions P = {p1,p2} over time
where the alphabet is Σ = {(0,0), (0,1), (1,0), (1,1)}. Then a
timed behavior w can represent this evolution as

w = (0, 2, (1,1)), (2, 4, (1,0)), (4, 6, (0,0)), (6, 7, (0,1)), (7, 8, (1,1)),
(8, 9, (0,1)), (9, 10, (1,1)), (10, 11, (1,0)), (11, 12, (0,0))

or, using duration-symbol notation,

w = (2, (1,1)), (2, (1,0)), (2, (0,0)), (1, (0,1)), (1, (1,1)),
(1, (0,1)), (1, (1,1)), (1, (1,0)), (1, (0,0))

Clearly such representations are not unique; any time pe-
riod associated with a letter (observation) can be divided
into shorter periods of the same letter and the resulting be-
haviors would be equivalent. Sometimes these successive
periods of the same letter are called stuttering periods [3].
Stuttering periods are often avoidable and it is more e�cient
to work with stutter-free behaviors after merging periods.
For example, if we restrict w above to the proposition p2, we
can directly write wp2 as

wp2 = (0, 2, (1)), (2, 4, (0)), (4, 6, (0)), (6, 7, (1)), (7, 8, (1)),
(8, 9, (1)), (9, 10, (1)), (10, 11, (0)), (11, 12, (0))

which, after elimination of stuttering, becomes

wp2 = (0, 2, (1)), (2, 6, (0)), (6, 10, (1)), (10, 12, (0))
However, there are some applications such as online mon-
itoring where you do not know what will be observed in
the next period but want to act immediately; for such cases,
stuttering in behaviors may arise naturally. Therefore, we

p1

0 2 4 6 8 10 12
Time

p2

Figure 4: A behavior of atomic propositions p1 and p2.
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Figure 5: Valuations of atomic propositions.

(have to) allow stuttering in our de�nitions and procedures,
and the correctness of our results should not depend on
stutter-freeness.

Next we de�ne our period-based temporal structures that
we use to evaluate propositions over timed behaviors. Given
a timed behavior w over a set P of propositions on a time
domain T , we de�ne a temporal structure W = (Ω(T ),V )
induced by w such that Ω(T ) is the set of all time periods
overT andV : P → 2Ω(T ) is a valuation function that assigns
every proposition to a set of time periods on which it holds
with respect to w .

It is an important point that atomic propositions are ho-
mogeneous, that is to say, an atomic proposition p ∈ P holds
on a time period if and only if it holds on its all sub-periods,
which is captured by the formula

(t , t ′) ∈ V (p) ←→ ∀r , r ′. (t < r < r ′ < t ′) → (r , r ′) ∈ V (p)

Since a timed behavior w is a �nite sequence, a valuation
V (p) of an atomic proposition p in W is a �nite union of
triangular zones that reside along the diagonal, thus a timed
relation. We illustrate V (p1) and V (p2) in Figure 5 for the
timed behavior in Figure 4.

4 LOGICS OF TIME PERIODS
In this section, we study temporal logics based on time peri-
ods (rather than time points) for monitoring purposes. By
temporal logic, we mean the modal approach introduced by
Prior in [21, 22] under the name of tense logic with two tem-
poral modalities, namely some time in the past (P ) and some

time in the future (F ). These modalities are based on time
points and easily seen that they implicitly refer to time points
less than the current time point and time points greater than
the current time point, respectively. Later Pnueli imported
the concept into the computer science and proposed the use
of temporal logic to specify in�nite-duration temporal prop-
erties [20]. Afterwards, temporal logic quickly was adopted
by the community as a major speci�cation formalism in
modern veri�cation technology.

However, point-based temporal logics are not naturally
suitable to express local patterns with �nite durations. For
these speci�cations, temporal logics based on time periods
are argued to be a better formalism. Then, considering time
periods as primitive entities, Allen introduced 13 basic re-
lations between two time periods to represent high-level
temporal knowledge in [1]. The set of so-called Allen’s re-
lations consists of relations met-by (A), begins (B), ends (E),
during (D), overlaps (O), and later (L) as well as their inverses
and the equality (=). In Figure 6 we illustrate these relations
in a way that a depicted time period (horizontal lines) and
the time period (t , t ′) is in the speci�ed relation given at the
right. In [11], Halpern and Shoham applied Prior’s modal
approach over time periods and proposed a temporal logic
that features a modality for each Allen’s relation.

It is shown that six certain temporal modalities of the hs
logic can express others under strict semantics. Here we use
the compass notation introduced by Venema in [28] (with
our slight extension) since it has nice geometric connota-
tions on the two-dimensional plane. The basic set consists
of six modalities (diamonds) denoted by , , , , , ,
respectively corresponding to relations A,A−1,B,B−1,E,E−1
between time periods. These (diamond) modalities have the
following intuitive meanings over a formula φ over time
periods.

φ φ holds at a period met by the current one.
φ φ holds at a period that meets the current one.
φ φ holds at a period that begins the current one.
φ φ holds at a period begun by the current one.
φ φ holds at a period that ends the current one.
φ φ holds at a period ended by the current one.

As shown, using these basic set of modalities, we can derive
more modalities for the remaining relations. For example,
φ ≡ φ corresponds to the relation L, φ ≡ φ ≡
φ to the relation D, and φ ≡ φ to the relation O .

Moreover, the dual (box) modalities are de�ned as usual
such that φ = φ where ∈ { , , , , , } and

t t ′

(L)
(A)
(O )
(E)
(D)
(B)
(=)
(B−1)
(D−1)
(E−1)
(O−1)
(A−1)
(L−1)

Figure 6: 13 basic relations between time periods.
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the modality matches the decoration of . From another
point of view, each modality accesses a di�erent region on
the two-dimensional plane with respect to the current period
and quanti�es φ over the accessed region. In Figure 7, we
illustrate accessed regions for each Allen’s relation with
respect to a period (t , t ′).

Finally, we mention the chop modality, which corresponds
to the concatenation operator of regular expressions and can
be added on the top of temporal logics [19, 24, 29]. It is
known that the expressiveness of hs logic can be increased
further by the addition of the chop modality [29]. We discuss
the chop in more detail in the conclusion.

We now introduce metric compass logic (mcl) as a metric
extension of the hs logic. Metric compass logic augments
temporal modalities of the hs logic with temporal constraints
similar to the way that metric temporal logic (mtl) [14]
extends linear temporal logic [10, 20]. Note that we slightly
di�er from the original de�nitions by excluding degenerate
(zero-duration) time periods and employing irre�exive (strict)
versions of modalities.

Among fragments of hs logic, propositional neighborhood
logic (pnl) [18], which only includes modalities for meets
(A−1) and met-by (A) relations of Allen, is studied with met-
ric constraints [7]. We are not aware of a more expressive
metric extension in the literature. It is perhaps the case that
undecidability results (of the validity problem) prevented any
further proposal on metric extensions. However, since we
propose metric compass logic for monitoring purposes, we
are only interested in evaluating a mcl formula for a given
timed behavior in this paper. Therefore, we do not have any
reason to restrict ourselves to a fragment and we extend the
hs system in its full generality in the following.

t

t ′

A−1

E−1 E

O−1

D−1 O

B
B
−1 A

L−1

D

L

x

y

Figure 7: Accessed regions for eachAllen relationwith
respect to a time period (t , t ′).

t t ′t ′′t + a t + b

� [a,b] p

� p

p

Figure 8: One dimensional illustration of [a,b].

The syntax of metric compass logic that admits usual
Boolean connectives and metric compass modalities is given
by the following grammar:

φ := p | φ | φ1 ∪ φ2 | φ1 ∩ φ2 | I φ

wherep ∈ P is a propositional variable, ∈ { , , , , , }
is a metric (time-bounded) compass modality, and I ⊆ R>0
is an interval of non-zero duration values. We omit the inter-
val I if I = (0,∞). Given a timed behavior w , the satisfaction
of a metric compass logic formula for a time period (t , t ′) is
de�ned inductively.

De�nition 4.1 (Relational Semantics). The satisfaction �
of a metric compass logic formula φ in a temporal structure
W = (Ω(T ),V ) induced by a timed behavior w with a time
domain T , relative to a time period (t , t ′) ∈ Ω(T ) is de�ned
as follows:
(W, t , t ′) � p ↔ (t , t ′) ∈ V (p)
(W, t , t ′) � φ ↔ (W, t , t ′) 2 φ
(W, t , t ′) � φ1 ∪ φ2 ↔ (W, t , t ′) � φ1

or (W, t , t ′) � φ2
(W, t , t ′) � I φ ↔ ∃t ′′ ∈ (t , t ′). t ′ − t ′′ ∈ I

and (W, t , t ′′) � φ
(W, t , t ′) � I φ ↔ ∃t ′′ ∈ (t ′,∞). t ′′ − t ′ ∈ I

and (W, t , t ′′) � φ
(W, t , t ′) � I φ ↔ ∃t ′′ ∈ (t , t ′). t ′′ − t ∈ I

and (W, t ′′, t ′) � φ
(W, t , t ′) � I φ ↔ ∃t ′′ ∈ (−∞, t). t − t ′′ ∈ I

and (W, t ′′, t ′) � φ
(W, t , t ′) � I φ ↔ ∃t ′′ ∈ (t ′,∞). t ′′ − t ′ ∈ I

and (W, t ′, t ′′) � φ
(W, t , t ′) � I φ ↔ ∃t ′′ ∈ (−∞, t). t − t ′′ ∈ I

and (W, t ′′, t) � φ

Each mcl modality I above �xes one dimension (either t
or t ′) in their semantics, and the metric constraint I restricts
the range of quanti�cation over the other (free) dimension.
For example, the modality [a,b] �xes the endpoint t ′ and
quanti�es over a restricted range [t + a, t + b] as illustrated
in Figure 8. Note that can be seen as a two-dimensional
analog of Prior’s sometime in the future (F ) if you consider
endpoints of periods to be �xed at the in�nity and the rea-
soning is essentially performed over (begin) points.
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5 OFFLINE MATCHING
In this section, we show how to match timed patterns speci-
�ed in metric compass logic. Pattern matching is considered
to be a computation for �nding and reporting all satisfying
segments, called matches, of an input sequence that satisfy
a prede�ned pattern. The set of all satisfying segments is
called the match set of the pattern over a timed behavior.
Assuming the input behavior w and valuations of proposi-
tions is completely available before matching, computing
the match set is equivalent to evaluating φ inductively in the
temporal structure induced by w .

It is known that there is a very close connection between
modal logics and boolean algebras with operators [13] as
studied in several monographs [4, 5]. Such algebras provide
alternative (algebraic) semantics for various modal logics
and can be used to evaluate a formula. For that, Boolean
connectives and modalities are interpreted as operations on
valuations of propositions. In the following, we follow a sim-
ilar route for mcl and start by de�ning algebraic semantics
of mcl before presenting metric compass operators on timed
relations.

De�nition 5.1 (Algebraic Semantics). For a temporal struc-
tureW = (Ω(T ),V ), we extend the valuation functionV for
arbitrary mcl formulas as follows:

V (p) = V (p) for p ∈ P
V (φ) = Ω(T ) \V (φ)

V (φ1 ∪ φ2) = V (φ1) ∪V (φ2)
V (φ1 ∩ φ2) = V (φ1) ∩V (φ2)

V ( I φ) = I V (φ)

From Section 2 and 3, we know that valuations of atomic
propositions are timed relations as well as timed relations
are closed under Boolean operations. We now de�ne metric
compass operations on timed relations and show that timed
relations are closed under these operations. A metric com-
pass modality I is interpreted as an operator on a timed
relation Z as follows.

I Z = {(x ,y) | ∃r . x < r < y, y − r ∈ I , and (x , r ) ∈ Z }
I Z = {(x ,y) | ∃r . x < y < r , r − y ∈ I , and (x , r ) ∈ Z }
I Z = {(x ,y) | ∃r . x < r < y, r − x ∈ I , and (r ,y) ∈ Z }
I Z = {(x ,y) | ∃r . r < x < y, x − r ∈ I , and (r ,y) ∈ Z }
I Z = {(x ,y) | ∃r . x < y < r , r − y ∈ I , and (y, r ) ∈ Z }
I Z = {(x ,y) | ∃r . r < x < y, x − r ∈ I , and (r ,x) ∈ Z }

In Figure 9, we illustrate each metric compass (diamond) op-
erator over a timed relation that contains a single time period
(1, 2). Intuitively speaking, a diamond operator shifts a time
period in the speci�c direction on the plane by an allowed
amount. This technique, called back-shifting (of time points),
is used to evaluate the timed eventually modality of metric
temporal logic [17]. Notice that the shift of time points can
be viewed as a degenerate case of that of timed periods and

1 2

1

2
Z

I Z I Z

I Z

x

y

1 2

1

2 Z

I Z

I Z I Z

x

y

Figure 9: Metric compass operations I on a timed
relation Z = {(1, 2)} for a temporal constraint I =
[0.2, 0, 7].

there are more directions to move on the two dimensional
plane. This also explains why we need more temporal modal-
ities than point-based temporal logics to cover all possible
situations. Next we note that metric compass operators pos-
sess two important algebraic properties of normality and
additivity such that

I ∅ = ∅
I (Z1 ∪ Z2) = I Z1 ∪ I Z2

Therefore, the algebra of timed relations with (metric) com-
pass operators forms a boolean algebra with operators in the
sense of [13].

In Proposition 5.2, we �nally show that algebraic and
relational semantics of metric compass logic agree.

Proposition 5.2 (Semantic Agreement). For every tem-

poral structureW = (Ω(T ),V ) and every mcl formula, the

statement (W, t , t ′) � φ ↔ (t , t ′) ∈ V (φ) holds.

Proof. By induction on the structure. Cases for proposi-
tions and Boolean operations are straightforward. Then we
only show the case as cases for other compass operators
are symmetric. We directly show

(W, t , t ′) � I φ ↔ (t , t ′) ∈ V ( I φ)
↔ ∃t ′′. t < t ′′ < t ′, t ′′ − t ∈ I ,

and (t ′′, t ′) ∈ V (φ)
↔ ∃t ′′. t < t ′′ < t ′, t ′′ − t ∈ I ,

and (W, t ′′, t ′) � φ
�

In the following we show the class of zones is also closed
under metric compass operators. Consequently, we have
that applying a metric compass operation on a zone results
in a zone whose bounds are shifted according to the type of
compass operation and the metric constraint.
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Proposition 5.3. Given a zone z, the timed relation I z
is a zone.

Proof. We only show the case of [m,n] as other cases
are symmetric. Following the semantics of [m,n], we have

(x ,y) ∈ [m,n] i� ∃r ∈ (x ,y). r − x ∈ [m,n], and (r ,y) ∈ z
which translates to ∃r ∈ (x ,y) such that

b ≺ r ≺ b
e ≺ y ≺ e

d ≺ y − r ≺ d


By eliminating the quanti�er, we obtain that [m,n] equals
to a zone 

b − n ≺ x ≺ b −m
e ≺ y ≺ e

d +m ≺ y − x ≺ d + n


�

For example, consider the zone z = {(x ,y) | 3 ≤ x ≤ 5 ∩ 5 ≤
y ≤ 7 ∩ 3 ≤ y−x ≤ 5} on the left of Figure 10. Then we have
[1,2] z = {(x ,y) | 1 ≤ x ≤ 4 ∩ 5 ≤ y ≤ 7 ∩ 4 ≤ y − x ≤ 7}

at right of the same �gure obtained by shifting z towards the
left accordingly. Equivalently, this operation can be viewed
as a Minkowski sum z ⊕Slef t of the zone z and a left-shifting
set Slef t = {(−t , 0) | t ∈ [1, 2]} with respect to Ω(T ).

Following the proof above, we apply metric compass op-
erations over zones directly and extend it towards unions of
zones RZ as I RZ = { I z | z ∈ RZ } followed by an absorb
operation.

In Algorithm 1, we present an o�ine matching (evaluation)
algorithm evalW (φ), suggested by the algebraic semantics
of metric compass logic. For implementation, we extend the
zone library of the open-source tool montre [25] with our
metric compass operators and complementation on zones.
We perform our experiments on a single-core 3.3GHz ma-
chine for a set of test patterns that are speci�ed by metric
compass logic. Input behaviors are generated by repeating

3 5

5

7

x

y

1 4

5

7

x

y

Figure 10: A zone z (left) and its left-shift as speci�ed
by the formula [1,2] z (right).

Algorithm 1 evalW (φ) with respect toW = (Ω(T ),V )
select (φ)
case p:
Z := V (p)

caseψ :
Z := complement(evalW (ψ ))

caseψ1 ∪ψ2:
Z := union(evalW (ψ2), evalW (ψ2))

caseψ1 ∩ψ2:
Z := intersect(evalW (ψ2), evalW (ψ2))

case I ψ :
Z := -shift(evalW (ψ ), I )

end select
return Z

Input Size

Test Patterns 100K 500K 1M

p 0.06/17 0.27/24 0.51/33
p 0.18/12 0.95/45 1.88/92
I p 0.07/16 0.29/65 0.66/163
I p 0.49/23 1.98/100 3.92/163

I J p 0.08/20 0.32/37 0.96/60
( φ) 0.40/31 1.98/143 3.93/268

( φ) ∩ I q 0.43/38 2.17/179 4.30/304

Table 1: Execution time/Memory usage (seconds/MBs)

instances of corresponding patterns; thus the number of in-
stances (zones) matched is linear in the size of the behavior.
This number in practice is expected to be much smaller than
our generated examples as typical in pattern matching. We
depict performance results in Table 1 over timed behaviors
of length 100K, 500K, and 1M. We use the gnu time -v facil-
ity to measure execution times (user cpu time) and memory
usage (maximum resident set size). For typical cases, exper-
iments suggest a linear time performance with respect to
the number of segments in the input behaviors. Notice that
complementation is a more costly operation than diamond
operators as expected.

6 MORE ON ATOMIC PROPOSITIONS
For our system, we indeed have a great deal of freedom for
atomic formulas and their valuations since a valuation func-
tion can be any function that returns a timed relation over
a timed behavior. In this section, we study some additional
features for atomic formulas that enhance the usefulness of
timed pattern matching. First, we mention the usual predi-
cate extension as we implicitly used in the motivation of this
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paper. Then we consider two features regarding atomic for-
mulas, namely Boolean layer and anchors, that are practically
implemented by the tool montre [25]. We here formalize
these features in our system and show that they are easily
expressible in metric compass logic.

Predicates over Real-Valued Behaviors. Atomic proposi-
tions can be easily extended towards predicates over real-
valued behaviors in the usual sense. Although simple, it is
a very useful extension in practice when reasoning about
physical observations and hybrid systems in general. The
simplest and most common type of predicates are threshold
comparisons such as p(x) : x < c and p(x) : x > c where x
is a real-valued variable and c is a constant. Consequently
we can apply timed pattern matching over real-valued sig-
nals via such a symbolic abstraction for the value domain,
sometimes called quantization or categorization.

Boolean Layer. Given a set P = {p1, . . . ,pm} of propo-
sitions, atomic expressions are extended towards Boolean
expressions over propositions. The syntax of Boolean ex-
pressions over P , called the Boolean layer, are de�ned as

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2
where p ∈ P and ¬, ∧ are negation and conjunction opera-
tors. We derive the disjunction ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2) as
usual. Intuitively speaking, such a Boolean expression ϕ can
be viewed as a new atomic proposition in the system and its
truth value, denoted byϕ(a), for a ∈ Σ at each time period are
obtained by applying a substitution {p1 7→ a(i), . . . ,pm 7→

p1

0 2 4 6 8 10 12
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x

y

V (p2)
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V (p1 ∨ p2)

Figure 11: Valuations of Boolean formulas.
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Figure 12: Valuations of anchored formulas.

a(m)}. More precisely, we characterize Boolean operations
on atomic propositions via the valuation function V as fol-
lows. Provided thatV (ϕ),V (ϕ1),V (ϕ2) satisfy the homogene-
ity property, we have V (ϕ1 ∧ ϕ2) = V (ϕ1 ∩ ϕ2) and

V (¬ϕ) = {(t , t ′) ∈ Ω(T ) | ∀r , r ′.
(t < r < r ′ < t ′) → (r , r ′) < V (ϕ)}

= V ( ϕ)

Hence, Boolean layer over atomic formulas is expressible
in mcl. In Figure 11, we illustrate valuations of such Boolean
expressions over two example propositions p1 and p2.

Anchors. We consider rise (J ϕ) and fall (ϕ I) anchor
operations over an atomic proposition ϕ and then the rise-
fall anchor is derived as J ϕ I = J ϕ ∩ ϕ I. These
operators are motivated by a practical need to �x begin [end,
begin-end] points of matches to rise [fall, rise-fall] points of
atomic propositions in timed behaviors. Intuitively speaking,
a time period (t , t ′) of ϕ that begins with a rise point means
that there is no meeting period (r , t) that satis�es ϕ. The
case for fall point is symmetric. Then, provided that V (ϕ)
satis�es the homogeneity property, we have

V (J ϕ) = {(t , t ′) ∈ V (ϕ) | ∀t ′′. (t ′′, t) < V (ϕ)}
= V ( ϕ ∩ ϕ)

V (ϕ I) = {(t , t ′) ∈ V (ϕ) | ∀t ′′. (t ′, t ′′) < V (ϕ)}
= V ( ϕ ∩ ϕ)

Hence, anchor operations over atomic formulas are express-
ible in mcl. In Figure 12, we illustrate valuations of anchored
expressions over an atomic proposition p.

7 CONCLUSIONS
In this paper, we considered the most well-known modal
logic of time periods, hs logic and introduced its metric
extension mcl. We proposed mcl to be a new timed pattern
speci�cation language next to previous proposals of timed
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regular expressions and timed automata. We provided an
o�ine matching algorithm for mcl patterns and presented
our experimental results that suggest promising performance
to be explored further.

To our knowledge, this is the �rst study for pattern match-
ing using a period-based temporal logic speci�cation but
also among a few studies for its monitoring in general. The
notable work in this context is Interval Temporal Logic
(itl) [19] and its real-time extension Duration Calculus (dc) [8,
23]. The itl provides the chop (concatenation) and chop-
star (Kleene star) modalities over a discrete time axis and is
closely related to regular expressions. The hs logic and itl
are incomparable in expressiveness since some hs modalities
such as are not de�nable using the chop and the chop is
not de�nable using hs modalities.

The previous work [26] on timed pattern matching pro-
vides a framework and algorithms for timed regular expres-
sions (tre). We have used the same framework to implement
our metric compass operators and complementation, which
are missing in tre. Therefore, it is straightforward to com-
bine and even freely mix operators from mcl and tre for
o�ine matching. Such a combination would result in even
more expressive pattern speci�cation language. This also
opens several theoretical and practical problems.

We are also interested in the online matching problem for
mcl. For that, the �rst issue is that mcl is not a causal speci-
�cation language like tre. Since causality is an important
consideration for online monitoring, it may be better to con-
sider in the future a causal fragment of hs, which excludes

and .
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