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Abstract. This work is concerned with regular languages defined over large al-
phabets, either infinite or just too large to be expressed enumeratively. We define
a generic model where transitions are labeled by elements of a finite partition of
the alphabet. We then extend Angluin’s L™ algorithm for learning regular lan-
guages from examples for such automata. We have implemented this algorithm
and we demonstrate its behavior where the alphabet is the set of natural numbers.

1 Introduction

The main contribution of this paper is a generic algorithm for learning regular languages
defined over a large alphabet 2. Such an alphabet can be infinite, like N or R or just
so large, like B™ for very large n, that it is impossible or impractical to treat it in an
enumerative way, that is, to write down (g, a) for every a € X. The obvious solution
is to use a symbolic representation where transitions are labeled by predicates which are
applicable to the alphabet in question. Learning algorithms infer an automaton from a
finite set of words (the sample) for which membership is known. Over small alphabets,
the sample should include the set S all the shortest words that lead to each state and,
in addition, the set S - X of all their X'-continuations. Over large alphabets this is not
a practical option and as an alternative we develop a symbolic learning algorithm over
symbolic words which are only partially backed up by the sample. In a sense, our algo-
rithm is a combination of automaton learning and learning of non-temporal functions.
Before getting technical, let us discuss briefly some motivation.

Finite automata are among the corner stones of Computer Science. From a practical
point of view they are used daily in various domains ranging from syntactic analy-
sis, design of user interfaces or administrative procedures to implementation of digital
hardware and verification of software and hardware protocols. Regular languages ad-
mit a very nice, clean and comprehensive theory where different formalisms such as
automata, logic, regular expressions, semigroups and grammars are shown to be equiv-
alent. As for learning from examples, a problem introduced by Moore [M0056], the
Nerode right-congruence relation [Ner58] which declares two input histories as equiv-
alent if they lead to the same future continuations, provides a crisp characterization of
what a state in a dynamical system is in terms of observable input-output behavior.
All algorithms for learning automata from examples, starting with the seminal work of
Gold [Gol72] and culminating in the well-known L* algorithm of Angluin [Ang87] are
based on this concept [DIH10].



One weakness, however, of the classical theory of regular languages is that it is
rather “thin” and “flat”. In other words, the alphabet is often considered as a small set
devoid of any additional structure. On such alphabets, classical automata are good for
expressing and exploring the temporal (sequential, monoidal) dimension embodied by
the concatenation operations, but less good in expressing “horizontal” relationships. To
make this statement more concrete, consider the verification of a system consisting of n
automata running in parallel, making independent as well as synchronized transitions.
To express the set of joint behaviors of this product of automata as a formal language,
classical theory will force you to use the exponential alphabet of global states and in-
deed, a large part of verification is concerned with fighting this explosion using con-
structs such as BDDs and other logical forms that exploit the sparse interaction among
components. This is done, however, without a real interaction with classical formal lan-
guage theory (one exception is the theory of traces [DR95] which attempts to treat this
issue but in a very restricted context).!

These and other considerations led us to use symbolic automata as a generic frame-
work for recognizing languages over large alphabets where transitions outgoing from a
state are labeled, semantically speaking, by subsets of the alphabet. These subsets are
expressed syntactically according to the specific alphabet used: Boolean formulae when
2] = B" or by some classes of inequalities when 2’ = N. Determinism and complete-
ness of the transition relation, which are crucial for learning and minimization, can be
enforced by requiring that the subsets of X' that label the transitions outgoing from a
given state form a partition of the alphabet.

Readers working on program verification or hybrid automata are, of course, aware
of automata with symbolic transition guards but it should be noted that in our model no
auxiliary variables are added to the automaton. Let us stress this point by looking at a
popular extension of automata to infinite alphabets, initiated by Kaminski and Francez
[KF94] using register automata to accept data languages (see [BLP10] for theoretical
properties and [HSJC12] for learning algorithms). In that framework, the automaton
is augmented with additional registers that can store some input letters. The registers
can then be compared with newly-read letters and influence transitions. With register
automata one can express, for example, the requirement that your password at login is
the same as the password at sign-up. This very restricted use of memory makes register
automata much simpler than more notorious automata with variables whose emptiness
problem is typically undecidable. The downside is that beyond equality they do not
really exploit the potential richness of the alphabets/theories.

Our approach is different: we do allow the values of the input symbols to influence
transitions via predicates, possibly of a restricted complexity. These predicates involve
domain constants and they partition the alphabet into finitely many classes. For exam-
ple, over the integers a state may have transitions labeled by conditions of the form
c1 < x < co which give real (but of limited resolution) access to the input domain. On
the other hand, we insist on a finite (and small) memory so that the exact value of x
cannot be registered and has no future influence beyond the transition it has triggered.
The symbolic transducers, recently introduced by [VHL™12], are based on the same

! This might also be the reason that Temporal Logic is more popular in verification than regular
expressions because the nature of until is less global and less synchronous than concatenation.



principle. Many control systems, artificial (sequential machines working on quantized
numerical inputs) as well as natural (central nervous system, the cell), are believed to
operate in this manner.

We then develop a symbolic version of Angluin’s L* algorithm for learning regular
sets from queries and counter-examples whose output is a symbolic automaton. The
main difference relative to the concrete algorithm is that in the latter, every transition
0(g,a) in a conjectured automaton has at least one word in the sample that exercises
it. In the symbolic case, a transition §(g, a) where a is a set of concrete symbols, will
be backed up in the sample only by a subset of a. Thus, unlike concrete algorithms
where a counter-example always leads to a discovery of one or more new states, in
our algorithm it may sometimes only modify the boundaries between partition blocks
without creating new states.

The rest of the paper is organized as follows. In Section 2 we provide a quick sum-
mary of learning algorithms over small alphabets. In Section 3 we define symbolic
automata and then extend the structure which underlies all automaton learning algo-
rithms, namely the observation table, to be symbolic, where symbolic letters represent
sets, and where entries in the table are supported only by partial evidence. In Section 4
we write down a symbolic learning algorithm and illustrate the behavior of a prototype
implementation on learning subsets of N*. We conclude by a discussion of past and
future work.

2 Learning Concrete Automata

We briefly survey Angluin’s L* algorithm [Ang87] for learning regular sets from mem-
bership queries and counter-examples, with slightly modified definitions to accommo-
date for its symbolic extension. Let X' be a finite alphabet and let X* be the set of
sequences (words) over Y. Any order relation < over X' can be naturally lifted to a
lexicographic order over X*. With a language L. C Y™ we associate a characteristic
function f : X* — {0,1}.

A deterministic finite automaton over X' is a tuple A = (X, Q, 0, qo, F'), where Q
is a non-empty finite set of states, o € @ is the initial state, 6 : Q x X — (@ is the
transition function, and F' C @ is the set of final or accepting states. The transition
function ¢ can be extended to § : Q X X* — @, where 6(q,¢) = g and 6(q,u-a) =
0(6(q,u),a) forg € Q,a € ¥ and u € X*. A word w € X* is accepted by A if
0(qo,w) € F, otherwise w is rejected. The language recognized by A is the set of all
accepted words and is denoted by L(.A).

Learning algorithms, represented by the learner, are designed to infer an unknown
regular language L (the target language). The learner aims to construct a finite automa-
ton that recognizes the target language by gathering information from the reacher. The
teacher knows the target language and can provide information about it. It can answer
two types of queries: membership queries, i.e., whether a word belongs to the target
language, and equivalence queries, i.e., whether a conjectured automaton suggested by
the learner is the right one. If this automaton fails to accept L the teacher responds to
the equivalence query by a counter-example, a word misclassified by the conjectured
automaton.



In the L* algorithm, the learner starts by asking membership queries. All informa-
tion provided is suitably gathered in a table structure, the observation table. Then, when
the information is sufficient, the learner constructs a hypothesis automaton and poses an
equivalence query to the teacher. If the answer is positive then the algorithm terminates
and returns the conjectured automaton. Otherwise the learner accommodates the in-
formation provided by the counter-example into the table, asks additional membership
queries until it can suggest a new hypothesis and so on, until termination.

A prefix-closed set SW R C X* is a balanced X-tree if Va € X: 1) Forevery s € S
s-a € SUR,and 2) Forevery r € R, r-a ¢ SU R. Elements of R are called boundary
elements or leaves.

Definition 1 (Observation Table). An observation table is a tuple T = (X, S, R, E, f)
such that X is an alphabet, S U R is a finite balanced X.-tree, E is a subset of X* and
f:(SUR)-E — {0,1} is the classification function, a restriction of the characteristic
function of the target language L.

The set (S U R) - E is the sample associated with the table, that is, the set of words
whose membership is known. The elements of .S admit a tree structure isomorphic to a
spanning tree of the transition graph rooted in the initial state. Each s € S corresponds
to a state g of the automaton for which s is an access sequence, one of the shortest words
that lead from the initial state to q. The elements of R should tell us about the back- and
cross-edges in the automaton and the elements of F are “experiments” that should be
sufficient to distinguish between states. This works by associating with every s € SUR
a specialized classification function fs : E — {0, 1}, defined as fs(e) = f(s-e), which
characterizes the row of the observation table labeled by s. To build an automaton from
a table it should satisfy certain conditions.

Definition 2 (Closed, Reduced and Consistent Tables). An observation table T is:

— Closed if for every r € R, there exists an s € S, such that f, = fs;
— Reduced if for every s,s' € S fo # fo;
— Consistent if for every s,s' € S, fs = fo implies fs.o = fs.q,Va € X.

Note that a reduced table is trivially consistent and that for a closed and reduced table
we can define a function g : R — S mapping every r € R to the unique s € S such
that f; = f,.. From such an observation table T' = (X, S, R, E, f) one can construct an
automaton Ar = (X, Q, qo, 0, F) where Q = S, qo = ¢, F = {s € S: fs(e) =1} and

5(s, a) = s-a whens-a€S
5:0) = g(s-a) whens-a € R

The learner attempts to keep the table closed at all times. The table is not closed
when there is some € R such that f,. is different from f; for all s € S. To close
the table, the learner moves r from R to S and adds the X'-successors of r to R. The
extended table is then filled up by asking membership queries until it becomes closed.

Variants of the L* algorithm differ in the way they treat counter-examples, as de-
scribed in more detail in [BR04]. The original algorithm [Ang87] adds all the prefixes of
the counter-example to .S and thus possibly creating inconsistency that should be fixed.



The version proposed in [MP95] for learning w-regular languages adds all the suffixes
of the counter-example to E. The advantage of this approach is that the table always
remains consistent and reduced with S corresponding exactly to the set of states. A dis-
advantage is the possible introduction of redundant columns that do not contribute to
further discrimination between states. The symbolic algorithm that we develop in this
paper is based on an intermediate variant, referred to in [BR04] as the reduced obser-
vation algorithm, where some prefixes of the counter-example are added to S and some
suffixes are added to F.

Example: We illustrate the behavior of the L* algorithm while learning L = aX*
over ¥ = {a,b}. We use +w to indicate a counter-example w € L rejected by the
conjectured automaton, and —w for the opposite case. Initially, the observation table
isTy = (X,S, R, E, f) with S = FE = {e} and R = X and we ask membership
queries for all words in (S U R) - E = {¢, a, b} to obtain table Ty, shown in Fig. 1. The
table is not closed so we move a to S, add its continuations, aa and ab to R and ask
membership queries to obtain the closed table 77, from which the hypothesis automaton
A; of Fig. 2 is derived. In response to the equivalence query for A1, a counter-example
—ba is presented, its prefixes b and ba are added to .S and their successors are added
to R, resulting in table 75 of Fig. 1. This table is not consistent: two elements € and b
in S are equivalent but their a-successors a and ba are not. Adding a to £ and asking
membership queries yields a consistent table 73 whose automaton A3 is the minimal

automaton recognizing L. a

To Th 1> 15

€ € a

el0 el0 1

€ all all 1

€ €l0 b0 bl0 0

el all ba |0 ba|0 0

all b0 aa|l aa|l 1

b0 aa|l ab|1 ab|1 1

ab|1 bb|0 bb|0 0

baa |0 baa |0 0

bab |0 bab|0 0

Fig. 1. Observation tables of L* while learning a - X*.

3 Symbolic Automata

Symbolic automata are automata over large alphabets where from each state there is a
small number of outgoing transitions labelled by subsets of X' that form a partition of
the alphabet. Let X' be a large and possibly infinite alphabet, that we call the concrete
alphabet. Let i be a total surjective function from X to a finite (symbolic) alphabet X .
For each symbolic letter a € X' we assign a X-semantics [a]y, = {a € X' : ¢(a) = a}.
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Fig. 2. Hypothesis automata for a - X*

Since ® is total and surjective, the set {[a]y, : @ € X'} forms a partition of X. We will
often omit ¢ from the notation and use [a] where 1, which is always present, is clear
from the context. The Y'-semantics can be extended to symbolic words of the form
w = a1 -as---a; € X* as the concatenation of the concrete one-letter languages
associated with the respective symbolic letters or, recursively speaking, [€] = {€} and
[w-a]=[w] [a]forwe X* ac X

Definition 3 (Symbolic Automaton). A deterministic symbolic automaton is a tuple
A: (Ea 27¢7Qa57QO3F)r where

— X is the input alphabet,

— X is a finite alphabet, decomposable into X = |4 1cQ o

- ¢ = {1, : ¢ € Q} is a family of total surjective functions 1 : X — X,

— Q is a finite set of states,

- 0 :Q x X — Q is a partial transition function decomposable into a family of total
functions 84 : {q} x Xy — Q,

— qo is the initial state and F is the set of accepting states.

Automaton A can be viewed as representing a concrete deterministic automaton A
whose transition function is defined as 0(¢, a) = d(q,1,(a)) and its accepted concrete
language is L(A) = L(A).

Remark: The association of a symbolic language with a symbolic automaton is more
subtle because we allow different partitions of X' and hence different input alphabets
at different states, rendering the transition function partial with respect to 3. When in
a state ¢ and reading a symbol a ¢ 37, the transition to be taken is well defined only
when [a] C [a’] for some a’ € X,,. The model can, nevertheless, be made deterministic
and complete over a refinement of the symbolic alphabet. Let

X = H X, with the X-semantics [(a1,...,a,)] = [a1]N...N[ay]
qcQ

andlet ¥ = {b € X’ : [b] # (0}. We can then define an ordinary automaton A =
(2, Q, S, qo, F') where, by construction, for every b € X and every ¢ € (@, there
is @ € X, such that [b] C [a] and hence one can define the transition function as
d(q,b) = 8(q,a). This model is more comfortable for language-theoretic studies but
we stick in this paper to Definition 3 as it is more efficient. A similar choice has been
made in [IHS13]. o



Proposition 1 (Closure under Boolean Operations). Languages accepted by deter-
ministic symbolic automata are closed under Boolean operations.

Proof. Closure under negation is immediate by complementing the set of accepting
states. For intersection we adapt the standard product construction as follows. Let L1, Lo
be languages recognized by the symbolic automata A, = (X, X, 1, Q1, 1, go1, F1)
and Ay = (X, X5, 9, Qo, 82, qo2, F), respectively. Let A = (X, 3.1, Q, 8, qo, F),
where

- Q=0Q1 xQ2, 9 = (qo1,902), F = F1 x F;
— Forevery (¢1,¢2) € Q
* X4 = {(a1,82) € X1 x X5 | [a1] N [az] # 0}
hd w(quqz)(a) = (wl,th (G)J/J?,qz (a)) Va € X
® 5((q1,92), (a1,a2)) = (91(q1, @1),02(q2, @2)) V(a1,a2) € Xy, 4,)

It is sufficient to observe that the corresponding implied concrete automata A;, A5 and
A satisfy 6((¢q1,42),a) = (01(q1,a),d2(ge,a)) and the standard proof that L(A) =
L(A;) N L(Ag) follows. J

Equivalence queries are implemented by constructing a product automaton which
accepts the symmetric difference between the target language and the conjectured one,
finding shortest paths to accepting states and selecting a lexicographically minimal
word.

Definition 4 (Balanced Symbolic 3'-Tree). A balanced symbolic X -tree is a tuple
(X, S, R, 1) where

— S'W R is a prefix-closed subset of X
- X =, ,cg ¥s is a symbolic alphabet
— ¢ = {95 }ses is a family of total surjective functions of the form s : X — 3.

It is required that for every s € S and a € X, s-a € SU R and for any r € R and
ac X r-a¢ SUR.Elements of R are called boundary elements of the tree.

We will use observation tables whose rows are symbolic words and hence an entry
in the table will constitute a statement about the inclusion or exclusion of a large set
of concrete words in the language. We will not ask membership queries concerning all
those words, but only for a small representative sample that we call evidence.

Definition 5 (Symbolic Observation Table). A symbolic observation table is a tuple
T: (2727S’R7’¢)7E’f’u) SuChthat

— XY is an alphabet,

- (X, S, R, ) is a finite balanced symbolic X-tree (with R being its boundary),

— FEis a subset of X%,

- f:(SUR) - E — {0,1} is the symbolic classification function

- u:(SUR)-E — 2% — {0} is an evidence function satisfying pn(w) C [w]. The
image of the evidence function is prefix-closed: w - a € p(w - a) = w € p(w).



We use, as for the concrete case, fs : E — {0,1} to denote the partial evaluation
of f to some symbolic word s € S U R, such that, fs(e) = f(s - e). Note that the
set E' consists of concrete words but this poses no problem because elements of E are
used only to distinguish between states and do not participate in the derivation of the
symbolic automaton from the table. The notions of closed, consistent and reduced table
are similar to the concrete case.

The set Mz = (S U R) - E is called the symbolic sample associated with T'. We
require that for each word w € M there is at least one concrete w € u(w) whose
membership in L, denoted by f(w), is known. The set of such words is called the
concrete sample and is defined as M = {s-e:s € u(s),s € SUR,e € E}. A table
where all evidences of the same symbolic word admit the same classification is called
evidence-compatible.

Definition 6 (Table Conditions). A table T = (X, X, S, R, ), E, f, 1) is

Closed ifVr € R,3s = g(r) € S, fr = fs,

Reduced ifVs, s’ € S, fs # fs,

Consistent if Vs, s' € S, fs = fq implies fs.q = fg.4,Va € Xs.
Evidence compatible if Vw € M, Ywy,ws € p(w), f(wy) = f(ws).

When a table T is evidence compatible the symbolic classification function f can be
defined forevery s € (SUR) ande € Eas f(s-e) = f(s-e), s € u(s).

Theorem 1 (Automaton from Table). From a closed, reduced and evidence compat-
ible table T = (X, X, S,R,¢,E, f,u) one can construct a deterministic symbolic
automaton compatible with the concrete sample.

Proof. Let Ar = (X, X,4,Q, 8, qo, F) where:

- Q:S7QO:6
- F={se S| fs(e) =1}
—6:Q><Z‘—>Qisdeﬁneda56(s,a):{S.a whens-a €S

g(s-a) whens-a € R

By construction and like the L* algorithm, A7 classifies correctly the symbolic sample.
Due to evidence compatibility this holds also for the concrete sample. o

4 The Algorithm

In this section we present a symbolic learning algorithm starting with an intuitive verbal
description. From now on we assume that the alphabet is ordered and use a( to denote
its minimal. We assume that the teacher always provides the smallest counter-example
with respect to length and lexicographic order on X*. Also, when we choose an evi-
dence for a new symbolic word w in a membership query we always take the smallest
possible element of [w].

The algorithmic scheme is similar to the concrete L* algorithm but differs in the
treatment of counter-examples and the new concept of evidence compatibility. When the



table is not closed, S U R is extended until closure. Then a conjectured automaton Ag
is constructed and an equivalence query is posed. If the answer is positive we are done.
Otherwise the teacher provides a counter-example leading possibly to the extension of
E and/or S U R. Whenever such an extension occurs, additional membership queries
are posed to fill the table. The table is always kept evidence compatible and reduced
except temporarily during the processing of counter-examples.

The learner starts with the symbolic table T = (X, X, S, R, ¢, E, f, 1), where
Y ={ao}, S = {€}, R = {ao}, E = {€}, and pu(ag) = {ao}. Whenever T is
not closed, there is some r € R such that f. # fs for every s € S. To make the
table closed we move r from R to S and add to R the word ' = = - a, where a
is a new symbolic letter with [@] = X, and extend the evidence function by letting
pu(r') = p(r) - ao.

When a counter-example w is presented, it is of course not part of the concrete
sample. It admits a factorization w = wu - a - v, where u is the largest prefix of u such
that v € p(u) for some u € S U R. There are two cases, the second of which is
particular to our symbolic algorithm.

1. u € R: Assume that g(u) = s € S and since the table is reduced, f,, # fs for
any other s’ € S. Because w is the shortest counter-example, the classification of
s - a - v in the automaton is correct (otherwise s - a - v, for some s € [s] would
constitute a shorter counter-example) and different from that of u - a - v. Thus we
conclude that u deserves to be a state and should be added to S. To distinguish
between © and s we add a - v to E, possibly with some of its suffixes (see [BR04]
for a more detailed discussion of counter-example treatment). As w is a new state
we need to add its continuations to R. We distinguish two cases depending on a:
(a) If a = ag is the smallest element of Y’ then a new symbolic letter a is added

to X2, with [a] = ¥ and p(u - @) = pu(u) - ag, and the symbolic word u - a is
added to R.

(b) If a # agp then two new symbolic letters, a and a’, are added to X' with [a] =
{b:b<a}l,[@]={b:b>a}and p(u-a) = u(u)-ap, p(u-a’) = p(u)-a.
The words u - @ and u - a’ are added to R.

2. u € S: In this case the counter-example indicates that v - « was wrongly assumed
to be part of [u - a] for some a € X, and a was wrongly assumed to be part of
[a]. There are two cases:

(a) There is some a’ # a such that the classification of u - @’ - v by the symbolic
automaton agrees with the classification of u - a - v. In this case we just move
a and all letters greater than a from [a] to [a’] and no new state is added.

(b) If there is no such a symbolic letter, we create a new a’ with [a’] = {b € [a] :
b > a} and update [a] to be [a] — [a’]. We let u(u - a@’) = p(u) - a and add
u-a’to R.

A detailed description is given in Algorithm 1 with major procedures in Algorithm 2. A
statement of the form X' = X' U {a} indicates the introduction of a new symbolic letter
a ¢ X. We use M(Q and EQ as shorthands for membership and equivalence queries,
respectively. Note also that for every r» € R, u(r) is always a singleton.

We illustrate the behavior of the algorithmon L = {a-u : b < a < c,u € X*}
for two constants b < ¢ in X. The table is initialized to Ty = (X, X, S, R, ¢, E, f, 1),



Algorithm 1 The symbolic algorithm

1: procedure SYMBOLIC

2 learned = false

3 Initialize the table T' = (X', X, S, R, ¢, E, f, 1)

4: ¥ ={a}; Yc(a) =a,Va e X

5: S={e}; R={a}; E={e}

6: n(a) = {ao}

7 Ask MQ on € and ao to fill f

8: if T is not closed then

9: CLOSE
10: end if
11: repeat
12: if EQ(Ar) then > Ar is correct
13: learned = true
14: else > A counter-example w is provided
15: M= MU {w}
16: COUNTER-EX(w) > Process counter-example
17: end if
18: until learned

19: end procedure

where X' = {ao}, u(ag) = {ao}, S = {e}, E = {e}, R = {ap} and ¢y = {¢.} with
Ye(a) = ag,Ya € X. We ask membership queries to learn f(e) and f(ap). Table Tp,
shown in Fig. 3, is closed, reduced and evidence compatible and its related hypothesis
automaton 4, consists of only one rejecting state, as shown in Fig. 4. The teacher
responds to this conjecture by the counter-example +b. Since b ¢ p(ap) and € € S, we
are in Case 2-(b) of the counter-example treatment, where there is no symbolic word
that classifies b correctly. We create a new symbolic letter a; with u(a,) = {b} and
modify ¢, to ¥.(a) = ap when a < b and ¢.(a) = a; otherwise. The derived table
T, is not closed since for a; € R there is no element s € S such that fo, = fs.
To close the table we move a; from R to S and introduce a new symbolic letter as
to represent the continuations of a;. We define ¢4, with ¢4, (a) = ag forall a € X,
play - az) = {b-ap} and add the symbolic word a; - a2 to R. We ask membership
queries for the missing words and construct a new observation table 75.

This table is closed and reduced, resulting in a new hypothesis automaton As.
The counter-example provided by the teacher is —c. This is case 2-(a) of the counter-
example treatment as there exists a symbolic letter ag that agrees with the classification
of ¢. We move ¢ and all elements greater than it from [a4] to [ay], that is, ¥.(a) = ag
when a < b, .(a) = a3 when b < a < ¢ and ¢.(a) = a3 otherwise. Table T5 is
closed, reduced and evidence compatible leading to the hypothesis automaton A3 for
which —ab is a counter-example where a € u(ag) and @y € R. Thus we are now in
case 1 and since the counter-example is considered to be the shortest, ag is a new state
of the automaton, different from €. We move ag to .S and add a new symbolic letter a4
to X2, which represents the transition from ag, with p(as) = {ag}. Now g, (a) = a4
and 14, (a) = a for all a € X. However the obtained table T} is not reduced since



Procedures 2 Closing the table and processinging counter-examples

1:
2
3
4:
5:
6
7
8
9

25:

26:
27:
28:
29:
30:

procedure CLOSE > Make the table closed

while 3 € R such thatVs € S, f,. # fs do
X' =X uU{a}; ¢ = U} withpr(a) = a,Va € X
S'=Su{rh R=(R-{r})U{r-a}
u(r-a) = pu(r) - ao
Ask MQ for all words in {u(r - a)-e: e € E}
T — (27 2/75/,R’,wl,E,f’,/,Ll)
end while

: end procedure

: procedure COUNTER-EX(w) > Process counter-example

Find a factorization w = u-a-v,a € X, u, v € X* such that
Ju € Mz, u € p(u) andVu' € M, u-a ¢ pu(u’)
ifu € R then
if a = ao then > Case 1(a)
X' =XU{a}; ¢ = U{u}, withtpy (o) = a,Vo € X
S"=Su{u};R =(R—{u})U{u-a}; E' = EU {suffixes of a - v}
n(u - a) = p(u) - ao
Ask MQ for all words in {z(u-a)-e:e € E'}
else > Case 1(b)
> =XuU{a,ad'}

¢ =1 U {Yu}, with (o) = {

S'=SU{ul; R = (R—{u})U{u-a,u-a’}; E' = EU {suffixesof a- v}
(- @) = p(w) - ag; p(u - a’) = p(u) - a
Ask MQ for all words in {(u(u-a)Up(u-a’))-e:e€ E'}
end if
Tﬂ::(E,ZT,SCIy,¢Zly,qu)
else > Case 2(a),(b)
Find @ € ¥, such that a € [a]
if thereisnoa’ € X : fu.a = fu(u-a’) o0 E then
Y =XU{d}; R =RU{u-a’}
p(u-a’) = p(u)-a
Ask MQ for all words in {z(u-a’)-e:e€ E}

a ifo<a
a’ otherwise

end if
Yu(o) ifo ¢ [a
Yu(o) =4 a ifo€falando < a
a’ otherwise
T= (2%, S8R ¢,E f,u
end if
if T is not closed then
CLOSE
end if

31: end procedure




fe(e) = fa,(e) forall e € E. We add experiment b to F and fill the gaps using mem-
bership queries, resulting in table 75 which is closed, reduced and evidence compatible.
The derived automaton .Aj is the right one and the algorithm terminates.

To Ty Ty T3 Ty
€ eb
€ el0 e|l01
€ . (6) €0 ao |0 ag|00
e|l0 0 a|l a|l a|l1l
ao |0 ZO 1 ao |0 aop as|0 apas|00
- aas|l ai as |l ajas|ll
as |0 a3 |00

Fig. 3. Symbolic observation tables for (b < a < ¢) - X*

It is easy to see that for large alphabets our algorithm is much more efficient than
L*. For example, when X~ = {1..100}, b = 20 and ¢ = 50, the L* algorithm will
need around 400 queries while ours will ask less than 10. The symbolic algorithm is
influenced not by the size of the alphabet but by the resolution (partition size) with
which we observe it. Fig. 5 shows a larger automaton over the same alphabet learned
by our procedure.

5 Discussion

We have defined a generic algorithmic scheme for automaton learning, targeting lan-
guages over large alphabets that can be recognized by finite symbolic automata having
a modest number of states and transitions. Some ideas similar to ours have been pro-
posed for the particular case of parametric languages [BJR06] and recently in a more
general setting [HSM11,IHS13] including partial evidential support and alphabet re-
finement during the learning process.”

The genericity of the algorithm comes from the semantic approach (alphabet parti-
tions) but of course, each and every domain will have its own semantic and syntactic
specialization in terms of the size and shape of the alphabet partitions. In this work we
have implemented an instantiation of this scheme for the alphabet X' = (N, <) and
the adaptation to real numbers is immediate. When dealing with numbers, the partition
into a finite number of intervals (and convex sets in higher dimensions) is very natural
and used in many application domains ranging from quantization of sensor readings
to income tax regulations. It will be interesting to compare the expressive power and
succinctness of symbolic automata with other approaches for representing numerical
time series and to compare our algorithm with other inductive inference techniques for
sequences of numbers.

% Let us remark that the modification of partition boundaries is not always a refinement in the
precise mathematical sense of the term.
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& Nomwo
[ao] ={a|a<b}
[ag] = X l[ai] ={a]a =0}
[as] = X
ag U as as
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[ao] = {a | a < b}
[ai]={a|b<a<c}
las] = {a|a>c}

[ao] ={a|a < b}
[ai]={a|b<a<c}
las] ={a|a>c}

las] =X [az] = [a4] = %
Az As

Fig. 4. Hypothesis automata for (b < a < ¢) - X*

As a first excursion into the domain, we have made quite strong assumptions on
the nature of the equivalence oracle, which, already for small alphabets, is a bit too
strong and pedagogical to be realistic. We assumed that it provides the shortest counter-
example and also that it chooses always the minimal available concrete symbol. We
can relax the latter (or both) and replace the oracle by random sampling, as already
proposed in [Ang87] for concrete learning. Over large alphabets, it might be even more
appropriate to employ probabilistic convergence criteria a-la PAC learning [Val84] and
be content with a correct classification of a large fraction of the words, thus tolerating
imprecise tracing of boundaries in the alphabet partitions. This topic, as well as the
challenging adaptation of our framework to languages over Boolean vectors are left for
future work.
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11-BS02-004). We thank Peter Habermehl, Eugene Asarin and anonymous referees for
useful comments and pointers to the literature.
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