A Kleene Theorem for Timed Automata*

Eugene Asarin'

Abstract

In this paper we define timed regular expressions, an ex-
tension of regular expressions for specifying sets of dense-
time discrete-valued signals. We show that this formalism
is equivalent in expressive power to the timed automata of
Alur and Dill by providing a translation procedure from ex-
pressionsto automata and vice versa. Theresult is extended
to w-regular expressions (Biichi’s theorem).

1. Introduction

Timed automata, i.e. automata equipped with clocks
[AD94], have been studied extensively in recent years as
they providearigorous model for reasoning about the quan-
titative temporal aspects of systems. Together with real-
time logics and process algebras they constitute the under-
lying theoretical basis for the specification and verification
of real-time systems.

Kleene' stheorem [K56], stating that the regular (or ratio-
nal) subsets of X.* are exactly the recognizable ones (those
accepted by finite automata), is one of the cornerstones of
automata theory. No such theorem has been established for
timed automata.® Numerous real-time extensions have been
suggested for process algebras (i.e. linear grammars plus
concurrency operators), but we failed to trace the desired
simple characterization, i.e. a class of algebraic objects?
equivalent to timed automata. Variousreal-timelogics have
been proposed and proved to be equivalent to certain classes
of timed automata (e.g. [W94] and the references therein),
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but a characterization analogous to Kleene theorem has not
been found.

The essence of Kleene's theorem is first and foremost
in the definition of regular sets, constructed from letters by
concatenation, union and the star operation, and in showing
the equivalence of this class of setsto those recognizable by
finite-state automata. Later, Blichi [B60] extended this re-
sult to w-languages (sets of infinite sequences) by using ex-
pressions involving the w-exponentiation operator and au-
tomata on infinite words.

In this paper we apply these old-fashioned recipes to
timed automata. We use the timed automata introduced
in [AD94] but dightly change the notion of their corre-
sponding languages from timed sequences to continuous-
time discrete-valued signals. We have chosen this seman-
tics because we think it captures the appropriate intuition
for dealing with automata operating in dense time. We de-
fine timed regular and w-regular expressions to denote sets
of signals and show that these sets are exactly what timed
automata can recognize.

There aretwo departuresfrom the original theorems con-
cerning the translation from automata to expressions. First,
we must sometimes employ expressions with intersection
(while in the classical theorems union is sufficient). We
prove that this is necessary for timed automata. Secondly,
when trandlating an automaton over the al phabet X, we may
create an expression over alarger alphabet 2/ such that the
language of the automaton is obtained from the language of
the expression viaarenaming g : ¥’ — X. Whether or not
thisis necessary is an open question.

Therest of the paper is organized as follows: in section
2 we introduce the syntax and semantics of timed regular
expressions. In section 3 we review the basic definitions of
timed automata and show how to associate with them sets
of signals. The trandlation of expressions into timed au-
tomata is presented in section 4. In section 5 we perform
the more involved transformation of automata into expres-
sions. Section 6 consists of an extension of the results to
timed w-regular expressions and signals of infinite length,
while in section 7 we prove that intersection is necessary
in order to express the language of certain timed automata.
Some contemplations on past and future work conclude the

paper.



2. Timed Regular Expressions

Let ¥ be a finite alphabet and let R, denote the set
of positive reals. A signal over X is a left-continuous
piecewise-constant function ¢ : (0,k] — X for some
k € Ry U {0} such that ¢ has a finite number of discon-
tinuities. Every signal can be written as

€= a;‘la£2 ,._a;n
wherea; € ¥, 7, € Ry, a; # a;4p and > r; = k. We
cal k the length of £ and denote it by |¢|. The signature of
the signal isthe string sig(§) = ajas - - - a,. The set of al
signalsis denoted by S(X). For every &;,& € S(A) such
that |£1] = k1 and |&2| = k2 we define their concatenation
as & = & o & where {(t) = & (t) a the interval (0, k]
and & (t — ky) at theinterval (kq, k1 + k2]. Thisnotion can
be extended naturally to concatenation of sets of signals by
letting

L10L2:{£1062:£1 €L1/\62€L2}.

A function g : ¥; — X, induces in a natural way a
function g, : S(X1) — S(X2) which we cal arenaming
function.

An integer-bounded interval is either [I,u], (I,u], [I,u),
or (I,u) wherel € Nandu € N U {oo} suchthat ! < u.
We exclude co] and use ! for [Z,1].

Definition 1 (Timed Regular Expressions) The set £(X%)
of timed regular expressions over an alphabet ¥, (expres-
sions, for short) is defined recursively as either a, ;1 - o,
1V 2, o1 A o, " OF (p); Wherea € X, ¢, 1,02 €
£(X) and I isan integer-bounded interval.

The semantics of timed regular expressions, [] : £(%) —
25(¥) isgiven by:

[a] = {a":reRy}

[p1 Vo] = [e1] U]

[er A2l = [l N2l
[p1-02] = [l olee]

[#*] = Uoe'D)

[{o)1] = [eln{¢: ¢ €1}

The novel features here with respect to classical untimed
regular expressionsisthat we useintersection (wewill show
in section 7 that this is necessary for timed automata, al-
though it is optional for untimed ones) and the () ; opera-
tor which restricts the length of the signalsin [¢] to bein
1.

Examples:

c1 > 1,{c2}

true, {c1,c2}

Figure 1. A timed automaton.

e | []
(a) (0,31 {a® 1z € (0,3]}
((@-0)*) 0,3 Upfa™b® - -a™b :
ri,S; € R+/\
> (ri+ s0) € (0,3}
(a-bys-cNha-(b-cys | {a®b¥c* :
(+y=3)A(y+2z=3)}

The subsets of S(X) which are expressible using timed
regular expressions are called timed regular languages.

3. Timed Automata

For the sake of readers not familiar with timed automata
we start with aninformal illustration of the behavior of these
objects. Consider the timed automaton of figure 1. It has
two states and two clocks ¢; and ¢,. Supposeit starts oper-
ating in the configuration (¢, 0, 0) (the two last coordinates
denote the values of the clocks). When the automaton stays
at ¢, , thevaluesof the clocksgrow with the unit slope. After
one second, the condition¢; > 1 (theguard of thetransition
from ¢; to ¢») is satisfied and the automaton can moveto ¢-
whileresetting ¢, to 0. Having entered ¢ at aconfiguration
(g2, t,0) for some ¢, the automaton can either stay there or
can unconditionally move to ¢; and reset the two clocks.
By fixing some initial and final states, and by assigning a
letter from X to each state, we can turn timed automatainto
generators/acceptors of timed languages, i.e. sets of signals.

Definition 2 (Timed Automaton) A timed automaton is a
tuple A = (Q,C,A, X, \, S, F) where ) is a finite set of
states, C is afinite state of clocks, ¥ is an output alphabet,
A is a transition relation (see below), A : Q@ — Y isan
output map, S C @ aninitial set and F C @ an accept-
ing set. An element of the transition relation is of the form
(¢, 9, p,q") where g and ¢' are states, p C C and ¢ (the
transition guard) is a boolean combination of formulae of
theform (¢ € I') for some clock ¢ and some integer-bounded
interval I.

A clock valuationisafunctionv : C' — R U{0} (which
isthe same avector v € (R U {0})/¢!). We denote the set
of al clock valuations by 7. For aclock valuation v and a
set p C C weput for any clock variablec € C

Reset, v(c) = { S(C) i; z;z



That is, Reset, resetsto zero al the clocksin p and leaves
the other clocks unchanged. We use 1 to denote the unit
vector (1,...,1).

A finite run of the automaton is a sequence

5 55 o
(q0,Vo) — (q1,V1) — ... —> (@n,Vn),
tq to tn

whereq; € Q,v; € H,0; € A,t; € Ry, andwhich satisfies
the following conditions:

Timeprogress. 0 < t; < ... < t, (for convenience we
put o = 0);

Succession: If 0 = (%QP;Q’) then qi—1 = 4,9 = ql,
the condition ¢(v;_1 + (t; — t;—1)1) holdsand v; =
Resetp(v,-_l + (t,' — ti_l)l).

An accepting run is a run satisfying the additional con-
ditions:

Initialization: gy € S;Vvy = 0;
Termination: ¢, € F.

The trace of such arunisthe signa

Aq0)" 0 A1) 0+ 0 A(gn_y)tntn-

which is defined on (0,¢,]. Notice that A(g,) is not in-
cluded. Thelanguage of a timed automaton, L(.4), consists
of all the traces of its accepting runs.

4. From Expressions to Automata

We construct automata by induction on the structure of
the expression. This construction is straightforward and
mimics the classical one [MY60]. We show that for every
timed regular expression we can build a timed automaton
with the following additional property: there are no tran-
sitions outgoing from any accepting states, and hence the
definition of \(q) for ¢ € F' is not important.

Before giving theformal definitionlet usexplainthe con-
structionintuitively (see also figure 2). The automatonfor a
can move at any time from an initial a-stateto afina state.
For union of two languageswe just run the automatain par-
allel. For concatenation, we replace any transition to afinal
state of the first automaton by transitionsto theinitial states
of the second automaton (while resetting its clocks). Sim-
ilarly for the x-operation we add transitions to initial state
for every transition leading to F'. For the () ; operator we
introduce a new clock ¢ and add atest (¢ € I) to the guard
of every transition leading to F'. Finally for intersection we
do the usual Cartesian product (with a slight variation due

to the fact that letters are assigned to states and not to tran-
sitions).

Let A1 = (Q1,C1,A1,%,A,51,F1) and Ay =
(Q2,C2,As, %, Xy, So, F) be the timed automata accept-
ing the languages [¢1 ] and [¢2] respectively.

e The automaton for [a] for every a € X
iS ({QI7q2}7®7A7Ea)‘a{ql}a{q2}) Where A =
{(q1,true,§,¢2)} and A(q1) = a.

e Theautomatonfor i1 V] is(Q1UQ2, C1UC, AU
A, X\ UAe, S1USy, Fi UF,).

e The automaton for [¢;1 A 2] is (Q,Ci U
Co, AV NS, F) where Q@ = {{q1, ) €
Q1 x Q2 AMlg) = X)) U FL x F,
A = {({q1,22),01 N d2,p1 U p2,{q1,45))
(@1, 01,01,91) € Arand (g2, d2,p2,0) € Ao},
Mg, 42)) = Mi(@) = A2(g2), S = Q@ N (S1 x S2)
and F' = (Fl X Fg)

e The automaton for [[(pl . (pg]] is (Ql @] QQ — Fi, ch u
Cy, A, ¥, A\ U2, S, F») where A isconstructed from
A; U A, asfollows: every transition (g1, ¢, p, q}) in
A, suchthat ¢; € F; isremoved and replaced by a set
of transitions of the form (q1, ¢, p U Cs, ¢2) for every
g2 € So.

e The automaton for [ei] is A =
(@Q1,C1,2,A,\1,S1 U Fi,F;) where A is con-
structed from A; by adding for every transition of
the form (¢, &, p,¢') in A; such that ¢’ € F; aset of
transitions of theform (q, ¢, C, ¢"') for every ¢" € S;.

e The automaton for [(¢1)r] is A = (Q1,C1 U
{c},A, %, 1,51, F1) where A is obtained from A,
by replacing every transition of theform (q, ¢, p, ¢') in
Ay suchthat ¢’ € Fy by (q,0 A (c € I),p,q").

This concludes the construction which gives one side of
Kleene theorem:

Theorem 1 (Exp = Aut) Every timed regular language
can be accepted by a timed automaton.

5. From Automata to Expressions
5.1. From Timed Automatato One-Clock Automata

In order to prove the main result we first perform a se-
guence of language-preserving transformations on the au-
tomaton. Each of these transformations eliminates an un-
desirable feature of the automaton as a preparation for the
tranglation into expressions. Then we “determinize” the au-
tomaton by assigning a distinct letter to every state. After
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Figure 2. Constructing automata from expres-
sions.

having doneall this we can separate the automaton into sev-
era one-clock automata for which it is (relatively) easy to
prove the theorem.

State-reset automata: A timed automaton is state-reset if
al the transitions entering a given state reset exactly the
same set of clocks. In order to make an automaton state-
reset we split every state not satisfying this property into
several copies and redirect the incoming transitions to each
copy according to the sets of clocks reset by those transi-
tions.

Self-loop free automata: An automaton is self-loop free
if it contains no transitions of the form (q, ¢, p,q). An
automaton becomes self-loop free by splitting every self-
looping state into two copies.

Digunction free automata: An automaton is digunction
free if for every transition (q, ¢, p,q’), the formula ¢ is a
conjunction of simple tests (c € I) and their negations.®
In order to get rid of the digunctions we first convert every
transition guard into a digunctive norma form (DNF) ¢ =
o1V P V... P Where every ¢; isaconjunction. We split
every state ¢ intom copiesqy, . - ., g, Wherem isthe max-
imum (over all the incoming transitions) of the number of
disuncts in the DNF formulafor a guard. We then replace
every transitiond = (q, ¢, p,q¢'), wheregp = ¢1 Vo V... ¢4
by k transitions of theform (¢, ¢4, p,4}), i =1,..., k.

In al the state-splittings described above, the copies re-

tain the same outgoing transitions, the same letter and the
same initia/final status as their original state. Hence the
original automaton is “homomorphic” to the new one and
accepts the same language.
State-output automata: An automaton is state-output if
¥ = @ and X istheidentity function on (). Given a state-
reset, self-loop free and digunction free automaton 4 =
(Q,C,A, X, \, S, F) weconvert it into a state-output .4’ =
(Q,C,A,Q,Id, S, F). Clearly, L(A) = A (L(A")).

From now on we assume that all automata have aready
been transformed into a state-reset, self-loop free, digunc-
tion free and state-output form.

One-clock automata: A one-clock automaton, as its name
implies, has only one clock.

Lemmal Let A = (Q,C,A,Q,Id,S,F) beatimed au-
tomaton where C' = {C4,...,Cy}. One can build k one-

k
clock automata A, ..., A, suchthat L(A) = () L(A;).
i=1

Proof: We separate A into k automata A; =
(Q7 {ci}7 Ai: Q7 Id7 S7 F) such that for every (Q7 ¢7 P ql) €
A thereis (q, ¢i, pi,q") € A; suchthat p; = p N {¢;} and
¢; is obtained from ¢ by substituting true in every occur-
rence of ¢; € I orits negation for j # ¢. In other words,

3In fact, it is sufficient to eliminate only disjunctions of conditions re-
ferring to different clocks such as (o € I1) V (c2 € I2) but our current
goal isto optimize readability rather than the number of states.



every A; respects only the constraintsimposed by the clock
¢; and ignoresthe rest of the clocks. Since every state hasa
different letter, every accepted word is atrace of exactly one
run, and thisisthe samerunin every A;. A runis possible
inevery A; iff itis possiblein A. o

5.2. Reset-free Automata and Sampling

We prove regularity of languages accepted by one-clock
automatain two stages, first we show regularity of runsthat
do not make transitions that reset the clock. For this we
need yet another important construct.

Let 4 = (@Q,{c},A,Q,Id,S, F) be aoneclock au-
tomaton and let 7; < ... < 7, be al the constants ap-
pearing in the transition guards (critical points). With ev-
ery signa ¢ € S(Q) we associate its sampling (&) =
5182...5m € (@ x Q)" wherem = max{j : [¢| > 7;}.
The sampling specifieswhat the signal isdoing at every crit-
ical point. In particular s; = (g,q) means that the signa
does not change its value at 7; and keeps it equal to ¢g. On
the other hand s; = (g¢,q’') where ¢ # ¢' means that the
signal does change its value from ¢ to ¢’ exactly at 7; (and
q' istheleft limit of £ at ;). Formally s; = (£(7;), £(T3+))
where

o ={ 2 1

(The second case covers signals whose domain of definition
is exactly some (0, ;] and can be ignored by the reader).

Since the length of the sampling is at most n, there are
finitely many possible samplings and sampling equivalence
induces a finite partition on S(Q). For any language M
and asampling ¢ let M, = M N {£|o(§) = <}. Clearly
M =JM.,.

<

Claim 2 The language accepted by a reset-free one-clock
automaton with one initial and one accepting state is regu-
lar.

Proof: Let A = (Q,{c},A,Q,Id,{s},{f}) be such an
automaton and let M = L(.A). Wewill show that for every
sampling ¢ = s182...8m, M. isregular. Note that since
there are no resets, the value of the clock at time ¢ is a-
wayst. For every i lets; = (g;,¢;). If for somes such that
¢ # ¢ thetransition ¢; — ¢} isimpossible at time 7; (i.e.
thereisno § = (¢, ¢, p,q") € A such that ¢(r;) = true),
we say that ¢ is inconsistent with A, the language M. is
empty and we are done. Suppose thisis not the case and ¢
is consistent with A. Constructing a regular expression for
M, is a2-step procedure. The first step consistsin dlicing
any signal in M. into parts corresponding to time intervals
(14, Tit1]. Formaly, let L;, i = 0,...,m — 1 be the lan-
guage consisting of all the signals ¢ such that

o || =Tiy1 — 7 (Weput o = 0and 7,41 = 0);
o ((0+) = g} (weput gy = s);
o ((Tit1 = Ti) = qiv1;

e (isatrace of arun of A (not necessarily accepting)
starting with the clock value 7;.

The last dlice corresponding to the time interval
(Tm, |€]] € (T, Tm+1) Needs a special treatment. L, is
the language consisting of all the signals ¢ such that

L4 |<| < Tm+1 — Tms
o ((04) = qp;

e (isatraceof arun of A starting with the clock value
Tm @nd terminating with atransitionto f .

Thefollowing result is now immediate from the definitions.

Lemma 2 If ¢ isconsistent with A then

e if ¢;, # f (which means that the lengths of signals
in M. areintheinterval (,,, 7,n+1) @and never equal
Tm), then

e if g/, = f (which meansthat some signalsin A, may
have a duration exactly 7,,,), then

m—1 m
M= O LiV QO Lj
i=0 i=0

Consider now any of the languages L; (thisisthe second
step of the procedure). The signals ( € L; are traces of
theruns of A such that during al the run the clock staysin
theinterva (7;, 7;+1). Notethat (because of the appropriate
choiceof thecritical points ;) the truth-valuesof the guards
of A’s transitions remain constant during all the (7;, 7;11)
interval, which means that the runs of A referred to in the
definition of L; are essentialy runs of an untimed automa-
ton and the only timing restriction concerns the length of
the signals. The following lemma holds.

Lemma 3 Let L; bethe signature of ;. Then
L; = {C :sig(¢) € Ly A[¢] € I},
where

I = Ti+1 — T; lf i:O,...,m—l
o 0, Timt1 — ) if i=m.

Thefact that A behaveslike an untimed automaton when
itsclock staysin (;, 7;+1) alowsto apply the untimed ver-
sion of Kleene theorem.



Lemma4 The untimed languages L; are regular.

Proof: Consider the untimed automaton 5; = (Q,A;)
where (q,q') € A; iff thereexistsad = (¢,¢,0,¢') € A
such that ¢(t) = true for t € (r;,7iy1). Then L,
1 =0,1,...,m — 1 isthe set of traces of all the runs of
B; starting in ¢} and finishing in ¢;4; and it is regular by
virtue of Kleene theorem. Regularity of L,,, can be stated
similarly. o

Now let ¢; be an untimed regular expression such that
[e:] = Li. Applying Lemmata 24 we obtain the regular
expression for M.:

M¢ = [{po)1o * (P1)1, =+ {Pm) 1]

in the first case of Lemma2 and

M =[{(po)1o = (Pm—1)1n 1 V(P01 " (Pm) 1]

in the second one. This concludes the proof of the claim as

we can write the expression for the whole automaton as a

disiunction of the expressions for the consistent samplings.
= |

5.3. Automata with Resets

Having stated the regularity of the set of signals whose
runs never reset the clock we can proceed by an inductive
argument that adds one more resetting state at atime. The
ideais adapted from one of the proofsof the untimed Kleene
theorem (see[HU79]) described shortly below. Supposethe
states of theautomatonare {qi, . . ., ¢, . Welet R{{ ; denote
the set* of sequences leading from ¢; to ¢; without passing
a states in {qx+1,...,¢»} (¢ and ¢; themselves can be
outside {q1,...,qx}). Clearly R}, consists of all the se-
quences leading from ¢; to ¢;. The basis of the induction,
R?J, issimply the set of letters that lead directly from ¢; to
g;. Theinductionis viathe formula

k41 _ pk k k « ok
R =Ry, UR g - (R k)™ B -

The first term stands for sequences leading from g; to g;
without ever visiting g1 . The second term denotes words
that lead from g; to gx+1 (without visiting gx+1), followed
by an arbitrary number of words that induce a cycle from
qr+1 toitself and ending with aword leading from ¢4, to
g;. This procedure derives the regular expression for every
R; ;.

We apply thisidea to one-clock automata in the follow-
ing way. As a basis we have the languages that lead from
every ¢; to g; without passing in any resetting state. Then
we inductively add a passage in one more resetting state
(which goes well with the star operation) until we get the
language of the whole automaton.

4Here we do not make the purist distinction between sets and the ex-

pressions they denote.

Claim 3 The language accepted by any one-clock automa-
tonisregular.

Proof: Let A = (Q,{c},A,Q,Id,S, F) have n non-
resetting and r resetting states. Without loss of gen-
erality suppose that ¢i,...,q, are non-resetting and
Gnt1,-- - > Qntr AETESELING.

We introduce some auxiliary languages. Let R; ; be the
set of the traces of all the runs of A starting in ¢; and fin-
ishing by a transition to ¢;, and Rl(f“j) the set of the traces
of dl suchrunsusingonly ¢y, ..., g asintermediate states.
Clearly R;; = R\""" and

L(A) =

U Ri,j7

2:€S,q; EF

so it issufficient to proveregularity and to find timed regular
expression for R.").

To construct this expression we use the induction on &
starting from the level £ = n (recall that n is the number of
non-resetting states).

For the base of induction we construct a non-resetting
automaton A; ; such that REZ.) = L(A;,;). The automaton
is just the non-resetting part of .4 and two specia states s
and f representing ¢; and g; respectively. Formally

Ai7j = (Qla {C}, Ala Q7 Id? {8}7 {f})7

whereQ' = {q1,... ¢z} U{s, f}andd = (¢,¢,0,q") € A’
iff one of the following holds:

* ¢,¢ €{q,...qu}andd € A;
e g=5,¢ €{q,...qn}and (g, ¢,0,q") € A,

e gc{q,...qu}, ¢ = fand(q, ¢, p,q;) € Aforsome
P

® ¢=s5,q = fand (g, ®,p,q;) € A for somep.

It is easy to see that REZ.) = L(A;;), hence by virtue of
claim 2 thislanguage is regular.

Theinductive step is easy: when k > n the state g1 IS
resetting and hence the following equality holds

(R(k) )* - R(k)

(k+1) _ plk) (k)
Ry =R UR 1,1 kt1,5°

i,k+1 !
This concludes the proof of the claim. 4
Collecting al the results in the section we obtain

Theorem 4 (Aut = Exp) Every language accepted by a
timed automatonis a renaming of a timed regular language.

Coroallary 5 (Kleene theorem for timed automata)
Timed automata and timed regular expressions have the
same expressive power modulo renaming.



Example: Consider the automaton A in figure 3. This au-
tomaton is already state-reset and self-loop free. Getting rid
of disjunctions and making it state-output we obtain A’. By
splitting b into b; and b, we get the state-output automaton
A" which is separated into two one-clock automata.4; and
As.

For A, the non-resetting states are b, and b,. Applying
the procedure of claim 2 we obtain the following languages:

3 a [ b [b]
a <a>(3,oo) by Va-b <a’>(3,oo) a
by by 0 0
by by 0 0

For A, the non-resetting state is a. Applying the proce-
dure of claim 2 we obtain the following languages:

[(Bllaf b | & |
a ||0] a (@) (0.5)

by || b1 | b1 -a | (b1 -a)ys)
by || b2 | ba-a | (b - a>(075)

Then by applying the procedure of claim 3 we have:

L(A) = [({@)s,00) - b1 Va-b2)7]

(bz - a)(o,5) V b2 -a(by -a)* (b1 - a)o5))" -
b+ (a-b1)")]
While L(A) = g.(L(A;) N L(Ay)) where g(a) = a and
g(b1) = g(b2) = b.

[
({a)(0,5) Va- (b1 -a)*(by-a)o,s)) -
(
(

6. Biichi Theorem

First we haveto extend the definitions of signals, expres-
sions and accepting runs:

Signals

An w-signal over X is aleft-continuous piecewise-constant
function ¢ : Ry — ¥ such that ¢ has a finite number of
discontinuities in any bounded sub-interval of R.. The set
of al such signalsis denoted by S, (X). The concatenation
& o& whereéy € S(A) and & € S, (A) isdefined almost
as before, resulting in an w-signal. For an infinite sequence
&1,&, ... of signalssuchthat }-.°, |&;] = oo, their infinite

concatenation 8 &; is the w-signal which coincides with
i=1

1=

Y e/
true

A

A

A

Az

Figure 3. Constructing an expression from an
automaton. The output letters appear on the
upper part of the state while the clocks reset
upon entering appear in the lower part.



each ¢; intheinterval (1;,1;.1] wherel; = """} |¢;]. Note
that when extending this definition to sets of w-signals, by
letting

.§Li: {éfiifi € L}

we do not alow an arbitrary choice of &;’s but only those
whose sum of lengths diverges. This prevents the so-called
Zeno phenomenon where an infinite concatenation results
inasignal of bounded length.

Expressions

The set of timed w-regular expressions £,,(X) is defined as
either ¥, @ - 1, 11 V 1 Or 11 A 9py Where p € £(X) and
¢7¢17¢2 € SW(E)

For timed w-regular expressions we define the semantic
function[],, : £(%) — 25+ as:

II'l:[}l Vv 1/}2]]w = |[1/}1]]w U II'l/}Z]]w

II'l:[}l A 1/}2]]w = |[1/}1]]w N II'l/}Z]]w

ool = lglolvl

[¢*]e = 91 []
Acceptance

An w-run of the automaton is an infinite sequence

01 02
(90,Vo) — (q1,V1) — (g2,V2)...,
t1 to

whereq; € Q,v; € H,0; € A,t; € Ry, andwhich satisfies
the following conditions:

Timeprogress. 0 < t; <ts <...andlim; o, t; = 00,
Succession: same as for finite runs;

An accepting run satisfies in addition the following condi-
tions:

Initialization: same as for finite runs;
Biichi acceptance: ¢; € F for infinitely many i.

The trace of this w-run is the w-signal defined on (0, co)
and equal to A(g;) on (¢;,t;+1]. Thew-language of atimed
automaton, L, (A), consists of al the traces of its accepting
w-runs.

Let us extend the results of the paper w-languages and
w-automata.

From w-expressionsto w-automata

As in the finitary case the inductive construction is rather
straightforward. As a basis we take the automaton for any
finitary timed regular expression. From theorem 1 we can
assume that timed regular languages are accepted by au-
tomata without transitions outgoing from accepting states.
The w-exponentiation is similar to the x where each transi-
tion to an accepting stateis replaced by transitionsto special
copiesof theinitial statesthat serve as new accepting states.
These states are visited infinitely-often in the w-automaton
iff infinitely many finite factors of the signals lead from S
to F' in the finitary automaton. The concatenation of a lan-
guage and an w-language, as well as the union of two w-
languages are almost identical to the finitary case. Inter-
section requires some more details (because the visits of a
signal in the accepting states of two automata need not be
simultaneous). All the constructions are minor adaptations
of their untimed anal ogues ([T90]).

Let ./41 = (Ql, 01,A1, E, )\1, Sl,Fl) and ./42 =
(Q2,C2,A5,%, Xy, So, F5) be the timed w-automata ac-
cepting the w-languages [+ | and [v-] respectively, and let
A=(Q,C,AX,\ S, F) accept the language [¢].

e The automaton for [e“] is (@ U S') —
F,C, 2, A" X ,S,S") where S’ is a new set of
states {s},...s}.} having one-to-one correspondence
with S. A’ is constructed from A by replacing every
transition of the form (g, ¢,p,q¢') in A such that
q' € F by aset of transitions of the form (¢, ¢, C, s")
for every s’ € S’. In addition, for every transition
(siy#,C,q) € A suchthat s; € Sweaddto A’ a
transition (s}, ¢, C, q), s; € S'. For every s, € S" we
let X' (sh) = A(s;).

e Theautomatonfor [[¢1 Vipa] is(Q1UQ2, C1UCs, AU
A, X\ UAe, S1USy, Fi UF,).

e The automaton for o1 A ¢2] is (Q x {1,2,3},C1 U
CQ,A,E,A,S,F) WhereQ = {<Q1aQ2> € Ql X QZ :
A1(q1) = Aa2(g2)}, A is constructed from A; and A,
in the following way: for every (q1, ¢1,p1,491) € A1
and (g2, ¢, pa2, ¢h) € Ay We put in A the transitions
({q1,q2,1), p1 Ag2, p1Up2, (41, G5, j)) Wheneveri = 3
andj=1orie {l,2}andj =id,0ri=1,q] € F}
andj =2o0ri=2,¢, € F, andj = 3. Thelabeling
A({q1,q2,7) = Mlq) = Xa(qe), S = (@ N (S x
Sy)) x {1} and F = Q x {3}.

e The automaton for [y - ¥2] is (Q U Q2 — F,C U
Cy, A" 3 A1 U Ao, S, F>) where A’ is constructed
from A U A, asfollows: every transition (q, ¢, p, q')
in A suchthat ¢’ € F isremoved and replaced by a set
of transitions of the form (g, ¢, p U Cs, ¢2) for every
g2 € Ss.



Hence we have the first part of Biichi theorem.

Theorem 6 (w-Exp = w-Aut) Every timed w-regular lan-
guage can be accepted by a timed w-automaton.

From w-automata to w-expressions

This constructionis based on theorem 4 and on the untimed
Biichi theorem. Thelevel of explanationisless detailed but
can be understood and verified by readers who have fully
grasped the ideas of the proofs of the abovementioned the-
orems. We assume that the automaton has gone through all
the transformation described in section 5.1.

Let 4 = (Q,{c},A,X,Id,S,F) be a one-clock w-
automatonwith F' = {f1,..., f,}. Clearly
= J ()
i=1

where 4; = (Q,C, A, X, )\, S,{f:}). Henceit is sufficient
to prove regularity for automata with one accepting state
F ={f}. Incese f isaresetting state we have

Ly(A) = |J Res - (Ryp)”
seS
and apply theorem 4. This will not work for non-resetting
states because f can be entered with different clock valu-
ations. Thus we have to follow a variation of the path of
theorem 4 and treat non-resetting automata first.

Claim 7 Let A be areset-free one-clock automaton and let
gi,q;, f be states. Then the following holds:

e Theset of all signalsleading fromg; to ¢; isregular.

e Theset of all signalsleading from ¢; to ¢; and visiting
fisregular.

e Theset of all w-signals accepted by A when S = {¢;}
and F' = {f} isw-regular.

Proof: The first part is just a rephrasing of claim 2. The
second part is a variation of the first (we spare the reader
from the details). For the third part observe that after the
last critical point 7,, the automaton behaveslike an untimed
one. Hence, by the virtue of the origina Buchi theorem,
for every state ¢; there is an untimed w-regular language
T,.., accepted by the automaton starting at ¢; with ¢ = 7,,.
Consider now the sampling (g;, ¢;) of agiven signd at 7,,.
If this sampling is consistent (j = [ or the transition from
g; to g; is possible at 7,,) then the language accepted from
¢; can bewritten as
Tij-Tiw

whereT; ; isthe set of signalsleading from ¢; to ¢; whose
length is exactly 7, and T, is the set of all signals whose
signaturesarein 7, (as expressions the two are identical).
Theregularity of T; ; isimplied by claim 2. o

Claim 8 The w-language accepted by any one-clock au-
tomaton with one accepting state is w-regular.

Proof: Asinclam 3wetakeq, ..., ¢, to be non-resetting
and ¢n11, ..., qnar aSTESElting states. Thethree Ianguag&s

mentionedin claim 7 are denoted by REZ), RE% , and R

We would like to calculate R; ,, = R(”J”’ inductively. To
make theinductive stepwhen k > n notethat when we add

anew resetting state the language R changes asfollows:

k41 k k k * k
Rz('w+ )= R( ) URE k)+1 (Rli-|21 k+1) 'Rl(c-gl,w U

k k * k w
RE Ic)+1 ((R;le k+1) : Rl(c+)17f,k+1) .
Thefirst term consists of accepting runs not visiting gy +1 at
all, the second contains those that visit g 41 afinite number
of times while the third involves those that visit it infi nitely

many times. Asin clam 3, the liberty to put Rk+1 k1

under the x and R(Jrl f.k+1 Under the w is due to the fact
that g1 resetsthecl ock. o
Thisimplies:

Theorem 9 (w-Aut = w-Exp) Every language accepted
by a timed w-automaton is a renaming of a timed w-regular
language.

And we can conclude:

Corollary 10 (Buchi theorem for timed automata)
Timed w-automata and timed w-regular expressions have
the same expressive power modul o renaming.

7. Necessity of Intersection

Claim 11 The language M = {a*b*~%c*|z € (0,1)} is
regular but it cannot be expressed without A.

Proof: Theequality M = [{a - b)1-cAa-(b- c);] guarantees
regularity of thelanguage. Thislanguage can be recognized
by the automaton of figure 4.

We first associate with every language L al of whose
signals having the signature abc, a set P, = {(z,y,z2) :
a®bvc* € L} C R%. Wethen show that if L is A-free then
Py, must have a certain form, while Py, the set associated
with M, is not of that form. Hence M cannot be expressed
without A. Our first step isto get rid of the renaming.

Lemmab Ifalanguage L = g.[¢] whereg. isarenaming
and ¢ is a A-free expression, then there exists a A-free ¢
suchthat L = [].

Thislemmais an immediate consequence of the fact that g,
commutes with all the operations occurring in . o



Next we eliminatethe star. A monomial regular language
is alanguage definable by an expression using only atoms, -
and ();. Noticethat al the signalsin a monomia language
have one and the same signature.

Lemma6 Let L = [¢] where ¢ is a A-free expression,
then L is a countable (or finite) union of monomial lan-

guages.

Proof: Induction on the structure of . It isstraightforward
for atomic expressions. Suppose Ly = |J L1, and Ly =

U L2 . Let us proceed with induction.
n

L =1L, UL,. Thiscaseisstraightforward: L = |J Ly ,,, U
m
ULz,

L =1L;oLs. Inthiscase L = UU (Ll,m o L27n).

m n

oo n
L=L3. Inthiscase L = |J O L, andthe previouscase
n=01i=1
can be applied to each term.

L = (Li1);. Inthiscase L = | J{L1,m)1- 4

Monomial languages are useful because they correspond
to convex polyhedraand operations on these languages have
a simple geometrical sense. We will state these properties
only for a subclass of monomial languages that could occur
in arepresentation of thelanguage M. LetU =a-b-cV
a-bVb-cVaVvbVc].

An abc-language is a nonempty monomial sublanguage
of U. For any language L C U put Py, = {(z,y,2) € R® :
a®b¥¢* € L}. For any two sets S;, S, C R® we denote by
S1 @ S, the set {(331 +T2,y1 + Y2, 21 +Z2) : (.’E1,y1, Z1) €
S1 A ($2,y2,22) S 52}

Lemma7 Let L be an abc-language, L; and L, - mono-
mial languages.

1. If L = [a], then P, istheray {(z,0,0)
similarly for b and c.

X € R+},

2. If L = L0 L, thenboth L; and L» are abe-languages
and Pj, = P, ®Pyp,.

3. If L = (Ly); then L, is an abc-language and P, =
Pr, N Pr where Py is a layer between two parallel
planes (maybe coinciding). If L has the signature abe
then the normal vector to these planesis (1,1,1).

4. Pr, isa convex polyhedron.
Proof:

1. Thisis straightforward from the definitions.

2. Letw € L andw = w; o wy Wherew; € L;. Since
L isan abe-language, the signature of w should be one
of abe, ab, be, a, b, ¢ and hence this is the case for w;
also. Thisimpliesthat L; are abc-languages. Further
study depends of the signatures of the languages L, L,
and L. Suppose, for example that signatures are abc,
ab and be respectively. In this case

L = {w10w2:w1 €L1/\w2€L2}:
= {aBBNTY e gt € [ AbRC € L)

Hence

{(z1,91 + y2,22) : (21,91,0) € Pr, A
(0,y2,22) € Pr,} =
= {(z1 + 22,51 +y2,21 + 22) :
(z1,y1,21) € Pr, A
(T2,Y2,22) € Pr,} =
= Pr, ®Fr,.

We have used the fact that the third coordinate of a
point in Pr,, aswell asthe first coordinate of the point
in P, are always zero.

Other possible signatures of the languages are consid-
ered similarly.

3. The case study depending of possible signatures (abe,
ab, be, a, b, ¢) of L can be used. Suppose the signature
isab. It follows from the definitions that P, = Pr, N
{(r,y,2) : = +y € I}. Theset {(z,y,2) : = +
y € I} isalayer between two paralel planes with a
normal vector (1,1,0). Other possible signatures are
considered similarly.

4. Immediate by induction from the previous statements
of lemma. o

For the language M the polyhedron Py, is the straight
lineinterval (AB), where A = (1,0,1) and B = (0, 1,0).
Suppose now that there exists a representation M = g..[¢]
where g, isarenamingand ) isaA-freeexpression. Apply-
ing Lemma 5 we obtain a representation M = [¢] where
@ is a A-free expression. Applying Lemma 6 we obtain a
representation M = |J L,, where L,, are monomial, hence

abc-languages. Hence Py = |J Pr,, which implies (to-

gether with Lemma 7) that at Iegst one of polyhedra Pr,,
is a nondegenerate (i.e non-singleton) subinterval of (AB).
The following result states that this is impossible and con-
cludes the proof of the claim.

Lemma8 There is no abc-language L such that P is
a non-degenerate interval paralle to the vector 7 =
(-1,1,-1).
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Figure 4. The automaton accepting [{a - b); -
cha-(b-ch].

Proof: Induction on the structure of L.

L € {[a], [b], [c]} The statement is immediate from the
statement 1 of Lemma7.

L=1L;o0Ly, ByLemma7 P, = Pr, ® Pr,. Pr, canbean
interval in two cases: either when one of P, and P,
isapoint and the other is an interval or when they are
both parallel intervals. In each of these cases Py, ispar-
alel toaninterval Py, or Pr,, hence, by the inductive
hypothesisit cannot be parallel to 7.

L = (L,); Theonly case when the statement could bevio-
lated iswhen L; hasthe signature abe. In this case by
Lemma7 Pr, = Pr, N Pr where Py isalayer between
two parallel planes with the normal 7 = (1,1,1). But
sinced [ i, thevector ¢ isnot parallel to these planes.
Thisimpliesthat P;, cannot be an interval parallel to o

unless Py, issuch aninterval. o
This concludes the proof. 4
8. Discussion

The main design decisions used to achieve the reported
results were the following. First by taking the signal se-
mantics (and not the one based on timed sequences), we
believe that the definitions of concatenation and star be-
came more natural and easier to manipulate.®> The second
issue was how to introduce dense real-timeinto regular ex-
pressions. After having tried some first-order extensions
of regular expressions (which lead to a class incomparable
to timed automata, and which suffers from undecidability
problems) we have settled on the current solution, namely
to take an untimed regular set and limit the length of its
members to an integer-bounded interval. As the example
in section 4 shows, this construct alone is not sufficient be-
causein timed automatathe order of clock resetting and the
order of clock testing need not be compatible (leading to
“unbalanced parentheses’, so to speak). This motivated the
separation of clocks and the use of intersection. This also
forced us to make the automata state-output and to use re-
naming in the formulation of the result. We conjecture that
renaming is necessary but we found no proof for it.

SHowever, the theory can be developed without significant modifica-
tions around timed sequences.

After reduction to one-clock automata we still had a
problem with the star. Unlike untimed automata, a cycle
in the transition graph of atimed automaton is not really a
cycleinits configuration space unlessthe clock isreset. For
this reason we had to treat the non-resetting part of the au-
tomaton separately, using the concept of sampling whichis
roughly the one-dimensional analog of the “region-graph”
of [AD94]. Cutting the behavior according to the sampling
interval can be seen as a concatenation of timed automata
having a specia kind of real-time constraints such that each
of themistested only once. After the non-resetting part was
solved we could use standard proof techniques for Kleene
theorem to add the resetting states.

We have tried to follow the path of classical regular ex-
pressions where the expression provides an “extrinsic” de-
scription (not mentioning internal states at all). While ap-
plying this attitude to timed automata, we have avoided any
explicit references to clock values (internal variables) and
our formalism is based only on external observable features
of the signals. We hope that the result and the proofs will
improve our understanding of the role of clocks in timed
automata. Recently, the notion of speed-independent opera-
torswas introducedin [RT97]. Thisisan operator from sig-
nals to signals which is “stretching” invariant. It isimme-
diate to see that languages defined using expressions with-
out the (); operator are exactly the speed-independent lan-
guages where membership is determined only by signature.

For the future, the question of whether renaming is nec-
essary should be settled. In addition bounds on the com-
plexity of the trand ation should be established. Another in-
teresting question iswhether the techniquesintroduced here
can be applied to various logic-based formalisms.

A more speculative domain for future research might be
the extension of the theory to signals which are not nec-
essarily piecewise-constant. For example, one may con-
sider an “alphabet” consisting of a set of rational constants
{k1, ..., kn} where the semantics of an expression k isthe
set of real-valued signals whose time derivative is k. It
would beinteresting to see whether such atheory of regular-
ity can contribute new insightsto hybrid dynamical systems
and signal processing.
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