
A Kleene Theorem for Timed Automata�

Eugene Asariny Paul Caspiz Oded Malerz

Abstract

In this paper we define timed regular expressions, an ex-
tension of regular expressions for specifying sets of dense-
time discrete-valued signals. We show that this formalism
is equivalent in expressive power to the timed automata of
Alur and Dill by providing a translation procedure from ex-
pressions to automata and vice versa. The result is extended
to �-regular expressions (Büchi’s theorem).

1. Introduction

Timed automata, i.e. automata equipped with clocks
[AD94], have been studied extensively in recent years as
they provide a rigorous model for reasoning about the quan-
titative temporal aspects of systems. Together with real-
time logics and process algebras they constitute the under-
lying theoretical basis for the specification and verification
of real-time systems.

Kleene’s theorem [K56], stating that the regular (or ratio-
nal) subsets of �� are exactly the recognizable ones (those
accepted by finite automata), is one of the cornerstones of
automata theory. No such theorem has been established for
timed automata.1 Numerous real-time extensions have been
suggested for process algebras (i.e. linear grammars plus
concurrency operators), but we failed to trace the desired
simple characterization, i.e. a class of algebraic objects2

equivalent to timed automata. Various real-time logics have
been proposed and proved to be equivalent to certain classes
of timed automata (e.g. [W94] and the references therein),

�This research was supported in part by the European Community
projects HYBRID EC-US-043 and INTAS-94-697.

yInstitute for Information Transmission Problems, 19 Bol. Karetnyi
per., 101447 Moscow, Russia. asarin@ippi.ac.msk.su The results were
obtained while the author was a visiting professor at ENSIMAG, INPG,
Grenoble.

zVERIMAG, Centre Equation, 2, av. de Vignate, 38610 Gières, France,
fcaspi,malerg@imag.fr

1In the reference paper of Alur and Dill [AD94] the regular sets are
defined to be those acceptable by timed automata which makes the formu-
lation of such a theorem a tautology.

2We exclude, of course, algebraic objects that refer explicitly to
states and clocks, and which are equivalent to timed automata almost by
definition.

but a characterization analogous to Kleene theorem has not
been found.

The essence of Kleene’s theorem is first and foremost
in the definition of regular sets, constructed from letters by
concatenation, union and the star operation, and in showing
the equivalence of this class of sets to those recognizable by
finite-state automata. Later, Büchi [B60] extended this re-
sult to �-languages (sets of infinite sequences) by using ex-
pressions involving the �-exponentiation operator and au-
tomata on infinite words.

In this paper we apply these old-fashioned recipes to
timed automata. We use the timed automata introduced
in [AD94] but slightly change the notion of their corre-
sponding languages from timed sequences to continuous-
time discrete-valued signals. We have chosen this seman-
tics because we think it captures the appropriate intuition
for dealing with automata operating in dense time. We de-
fine timed regular and �-regular expressions to denote sets
of signals and show that these sets are exactly what timed
automata can recognize.

There are two departures from the original theorems con-
cerning the translation from automata to expressions. First,
we must sometimes employ expressions with intersection
(while in the classical theorems union is sufficient). We
prove that this is necessary for timed automata. Secondly,
when translating an automaton over the alphabet�, we may
create an expression over a larger alphabet �� such that the
language of the automaton is obtained from the language of
the expression via a renaming g � �� � �. Whether or not
this is necessary is an open question.

The rest of the paper is organized as follows: in section
2 we introduce the syntax and semantics of timed regular
expressions. In section 3 we review the basic definitions of
timed automata and show how to associate with them sets
of signals. The translation of expressions into timed au-
tomata is presented in section 4. In section 5 we perform
the more involved transformation of automata into expres-
sions. Section 6 consists of an extension of the results to
timed �-regular expressions and signals of infinite length,
while in section 7 we prove that intersection is necessary
in order to express the language of certain timed automata.
Some contemplations on past and future work conclude the
paper.

1



2. Timed Regular Expressions

Let � be a finite alphabet and let R� denote the set
of positive reals. A signal over � is a left-continuous
piecewise-constant function � � ��� k� � � for some
k � R� � f�g such that � has a finite number of discon-
tinuities. Every signal can be written as

� � ar�� ar�� � � � arnn

where ai � �, ri � R�, ai �� ai�� and
P

ri � k. We
call k the length of � and denote it by j�j. The signature of
the signal is the string sig��� � a�a� � � � an. The set of all
signals is denoted by S���. For every ��� �� � S�A� such
that j��j � k� and j��j � k� we define their concatenation
as � � �� � �� where ��t� � ���t� at the interval ��� k��
and ���t� k�� at the interval �k�� k� � k��. This notion can
be extended naturally to concatenation of sets of signals by
letting

L� � L� � f�� � �� � �� � L� 	 �� � L�g�

A function g � �� � �� induces in a natural way a
function g� � S���� � S���� which we call a renaming
function.

An integer-bounded interval is either 	l� u�, �l� u�, 	l� u�,
or �l� u� where l � N and u � N � f
g such that l � u.
We exclude
� and use l for 	l� l�.

Definition 1 (Timed Regular Expressions) The set E���
of timed regular expressions over an alphabet �, (expres-
sions, for short) is defined recursively as either a, �� � ��,
�� � ��, �� 	 ��, �� or h�iI where a � �, �� ��� �� �
E��� and I is an integer-bounded interval.

The semantics of timed regular expressions, 		�� � E��� �

S���, is given by:

		a�� � far � r � R�g
		�� � ���� � 		���� � 		����
		�� 	 ���� � 		���� 
 		����
		�� � ���� � 		���� � 		����
		���� �

S�
i���		�

i���
		h�iI �� � 		��� 
 f� � j�j � Ig

The novel features here with respect to classical untimed
regular expressions is that we use intersection (we will show
in section 7 that this is necessary for timed automata, al-
though it is optional for untimed ones) and the h�iI opera-
tor which restricts the length of the signals in 		��� to be in
I .
Examples:

c� � �� fc�g

true� fc�� c�g

q� q�

Figure 1. A timed automaton.

� 		���

hai���	
 fax � x � ��� ��g
h�a � b��i���	


S
kfa

r�bs� � � �arkbsk �
ri� si � R�	Pk

i���ri � si� � ��� ��g
ha � bi	 � c 	 a � hb � ci	 faxbycz �

�x � y � �� 	 �y � z � ��g

The subsets of S��� which are expressible using timed
regular expressions are called timed regular languages.

3. Timed Automata

For the sake of readers not familiar with timed automata
we start with an informal illustration of the behavior of these
objects. Consider the timed automaton of figure 1. It has
two states and two clocks c� and c�. Suppose it starts oper-
ating in the configuration �q�� �� �� (the two last coordinates
denote the values of the clocks). When the automaton stays
at q�, the values of the clocks grow with the unit slope. After
one second, the condition c� � � (the guard of the transition
from q� to q�) is satisfied and the automaton can move to q�
while resetting c� to �. Having entered q� at a configuration
�q�� t� �� for some t, the automaton can either stay there or
can unconditionally move to q� and reset the two clocks.
By fixing some initial and final states, and by assigning a
letter from � to each state, we can turn timed automata into
generators/acceptors of timed languages, i.e. sets of signals.

Definition 2 (Timed Automaton) A timed automaton is a
tuple A � �Q�C�
��� �� S� F � where Q is a finite set of
states, C is a finite state of clocks, � is an output alphabet,

 is a transition relation (see below), � � Q � � is an
output map, S � Q an initial set and F � Q an accept-
ing set. An element of the transition relation is of the form
�q� �� �� q�� where q and q� are states, � � C and � (the
transition guard) is a boolean combination of formulae of
the form �c � I� for some clock c and some integer-bounded
interval I .

A clock valuation is a function v � C � R��f�g (which
is the same a vector v � �R� � f�g�jCj). We denote the set
of all clock valuations by H. For a clock valuation v and a
set � � C we put for any clock variable c � C

Reset� v�c� �
�

� if c � �

v�c� if c �� �



That is, Reset� resets to zero all the clocks in � and leaves
the other clocks unchanged. We use 1 to denote the unit
vector ��� � � � � ��.

A finite run of the automaton is a sequence

�q�� v��
	�
��
t�

�q�� v��
	�
��
t�

� � �

	n
��
tn

�qn� vn��

where qi � Q� vi � H� 	i � 
� ti � R�, and which satisfies
the following conditions:

Time progress: � 
 t� 
 � � � 
 tn (for convenience we
put t� � �);

Succession: If 	i � �q� �� �� q�� then qi�� � q� qi � q�,
the condition ��vi�� � �ti � ti���1� holds and vi �
Reset��vi�� � �ti � ti���1�.

An accepting run is a run satisfying the additional con-
ditions:

Initialization: q� � S� v� � 0;

Termination: qn � F .

The trace of such a run is the signal

��q��
t� � ��q��

t��t� � � � � � ��qn���
tn�tn��

which is defined on ��� tn�. Notice that ��qn� is not in-
cluded. The language of a timed automaton,L�A�, consists
of all the traces of its accepting runs.

4. From Expressions to Automata

We construct automata by induction on the structure of
the expression. This construction is straightforward and
mimics the classical one [MY60]. We show that for every
timed regular expression we can build a timed automaton
with the following additional property: there are no tran-
sitions outgoing from any accepting states, and hence the
definition of ��q� for q � F is not important.

Before giving the formal definition let us explain the con-
struction intuitively (see also figure 2). The automaton for a
can move at any time from an initial a-state to a final state.
For union of two languages we just run the automata in par-
allel. For concatenation, we replace any transition to a final
state of the first automaton by transitions to the initial states
of the second automaton (while resetting its clocks). Sim-
ilarly for the �-operation we add transitions to initial state
for every transition leading to F . For the h�iI operator we
introduce a new clock c and add a test �c � I� to the guard
of every transition leading to F . Finally for intersection we
do the usual Cartesian product (with a slight variation due

to the fact that letters are assigned to states and not to tran-
sitions).

Let A� � �Q�� C��
���� ��� S�� F�� and A� �
�Q�� C��
���� ��� S�� F�� be the timed automata accept-
ing the languages 		���� and 		���� respectively.

� The automaton for 		a�� for every a � �
is �fq�� q�g� ��
��� �� fq�g� fq�g� where 
 �
f�q�� true� �� q��g and ��q�� � a.

� The automaton for 		������� is �Q��Q�� C��C��
��

���� �� � ��� S� � S�� F� � F��.

� The automaton for 		�� 	 ���� is �Q�C� �
C��
��� �� S� F � where Q � fhq�� q�i �
Q� � Q� � ���q�� � ���q��g � F� � F�,

 � f�hq�� q�i� �� 	 ��� �� � ��� hq��� q

�
�i� �

�q�� ��� ��� q
�
�� � 
� and �q�� ��� ��� q

�
�� � 
�g,

��hq�� q�i� � ���q�� � ���q��, S � Q 
 �S� � S��
and F � �F� � F��.

� The automaton for 		�� � ���� is �Q� � Q� � F�� C� �
C��
��� ������ S�� F�� where
 is constructed from

� � 
� as follows: every transition �q�� �� �� q

�
�� in


� such that q�� � F� is removed and replaced by a set
of transitions of the form �q�� �� � � C�� q�� for every
q� � S�.

� The automaton for 		����� is A �
�Q�� C����
� ��� S� � F�� F�� where 
 is con-
structed from 
� by adding for every transition of
the form �q� �� �� q�� in 
� such that q� � F� a set of
transitions of the form �q� �� C� q��� for every q�� � S�.

� The automaton for 		h��iI �� is A � �Q�� C� �
fcg�
��� ��� S�� F�� where 
 is obtained from 
�

by replacing every transition of the form �q� �� �� q �� in

� such that q� � F� by �q� � 	 �c � I�� �� q��.

This concludes the construction which gives one side of
Kleene theorem:

Theorem 1 (Exp � Aut) Every timed regular language
can be accepted by a timed automaton.

5. From Automata to Expressions

5.1. From Timed Automata to One-Clock Automata

In order to prove the main result we first perform a se-
quence of language-preserving transformations on the au-
tomaton. Each of these transformations eliminates an un-
desirable feature of the automaton as a preparation for the
translation into expressions. Then we “determinize” the au-
tomaton by assigning a distinct letter to every state. After



�� � ��

C�

�� ��

�

�

��C

truea

��

��

�� � ��

��

�� 	 ��

b�� �	
a

�� c ��

�� 	 �


�	 	 ��

�� 	 ��
c

a

cb

��

a

�


��

�� 	 ��

b

a

�

� 	 c � I

��

h�iI

Figure 2. Constructing automata from expres-
sions.

having done all this we can separate the automaton into sev-
eral one-clock automata for which it is (relatively) easy to
prove the theorem.
State-reset automata: A timed automaton is state-reset if
all the transitions entering a given state reset exactly the
same set of clocks. In order to make an automaton state-
reset we split every state not satisfying this property into
several copies and redirect the incoming transitions to each
copy according to the sets of clocks reset by those transi-
tions.
Self-loop free automata: An automaton is self-loop free
if it contains no transitions of the form �q� �� �� q�. An
automaton becomes self-loop free by splitting every self-
looping state into two copies.
Disjunction free automata: An automaton is disjunction
free if for every transition �q� �� �� q��, the formula � is a
conjunction of simple tests (c � I� and their negations.3

In order to get rid of the disjunctions we first convert every
transition guard into a disjunctive normal form (DNF) � �
�� � �� � � � � �k where every �i is a conjunction. We split
every state q into m copies q�� � � � � qm where m is the max-
imum (over all the incoming transitions) of the number of
disjuncts in the DNF formula for a guard. We then replace
every transition 	 � �q� �� �� q��, where � � ������� � � �k
by k transitions of the form �q� �i� �� q

�
i�, i � �� � � � � k.

In all the state-splittings described above, the copies re-
tain the same outgoing transitions, the same letter and the
same initial/final status as their original state. Hence the
original automaton is “homomorphic” to the new one and
accepts the same language.
State-output automata: An automaton is state-output if
� � Q and � is the identity function on Q. Given a state-
reset, self-loop free and disjunction free automaton A �
�Q�C�
��� �� S� F � we convert it into a state-outputA� �
�Q�C�
� Q� Id� S� F �. Clearly, L�A� � ���L�A���.

From now on we assume that all automata have already
been transformed into a state-reset, self-loop free, disjunc-
tion free and state-output form.
One-clock automata: A one-clock automaton, as its name
implies, has only one clock.

Lemma 1 Let A � �Q�C�
� Q� Id� S� F � be a timed au-
tomaton where C � fC�� � � � � Ckg. One can build k one-

clock automataA�� � � � �Ak such that L�A� �
kT
i��

L�Ai�.

Proof: We separate A into k automata Ai �
�Q� fcig�
i� Q� Id� S� F � such that for every �q� �� �� q�� �

 there is �q� �i� �i� q�� � 
i such that �i � � 
 fcig and
�i is obtained from � by substituting true in every occur-
rence of cj � I or its negation for j �� i. In other words,

3In fact, it is sufficient to eliminate only disjunctions of conditions re-
ferring to different clocks such as �c� � I�� � �c� � I�� but our current
goal is to optimize readability rather than the number of states.



everyAi respects only the constraints imposed by the clock
ci and ignores the rest of the clocks. Since every state has a
different letter, every accepted word is a trace of exactly one
run, and this is the same run in every Ai. A run is possible
in everyAi iff it is possible in A.

5.2. Reset-free Automata and Sampling

We prove regularity of languages accepted by one-clock
automata in two stages, first we show regularity of runs that
do not make transitions that reset the clock. For this we
need yet another important construct.

Let A � �Q� fcg�
� Q� Id� S� F � be a one-clock au-
tomaton and let �� 
 � � � 
 �n be all the constants ap-
pearing in the transition guards (critical points). With ev-
ery signal � � S�Q� we associate its sampling ���� �
s�s� � � � sm � �Q � Q�� where m � maxfj � j�j � �jg.
The sampling specifies what the signal is doing at every crit-
ical point. In particular si � �q� q� means that the signal
does not change its value at �i and keeps it equal to q. On
the other hand si � �q� q�� where q �� q� means that the
signal does change its value from q to q� exactly at �i (and
q� is the left limit of � at �i). Formally si � ����i�� ���i���
where

��t�� �

�
lim��� ��t� 
� if t 
 j�j
f if t � j�j

(The second case covers signals whose domain of definition
is exactly some ��� �i� and can be ignored by the reader).

Since the length of the sampling is at most n, there are
finitely many possible samplings and sampling equivalence
induces a finite partition on S�Q�. For any language M

and a sampling � let M� � M 
 f�j���� � �g. Clearly
M �

S
�

M� .

Claim 2 The language accepted by a reset-free one-clock
automaton with one initial and one accepting state is regu-
lar.

Proof: Let A � �Q� fcg�
� Q� Id� fsg� ffg� be such an
automaton and let M � L�A�. We will show that for every
sampling � � s�s� � � � sm, M� is regular. Note that since
there are no resets, the value of the clock at time t is al-
ways t. For every i let si � �qi� q

�
i�. If for some i such that

qi �� q�i the transition qi � q�i is impossible at time �i (i.e.
there is no 	 � �q� �� �� q�� � 
 such that ���i� � true),
we say that � is inconsistent with A, the language M� is
empty and we are done. Suppose this is not the case and �

is consistent with A. Constructing a regular expression for
M� is a 2-step procedure. The first step consists in slicing
any signal in M� into parts corresponding to time intervals
��i� �i���. Formally, let Li, i � �� � � � �m � � be the lan-
guage consisting of all the signals � such that

� j�j � �i�� � �i (we put �� � � and �n�� �
);

� ����� � q�i (we put q�� � s);

� ���i�� � �i� � qi��;

� � is a trace of a run of A (not necessarily accepting)
starting with the clock value �i.

The last slice corresponding to the time interval
��m� j�j� � ��m� �m��� needs a special treatment. Lm is
the language consisting of all the signals � such that

� j�j 
 �m�� � �m;

� ����� � q�m;

� � is a trace of a run of A starting with the clock value
�m and terminating with a transition to f .

The following result is now immediate from the definitions.

Lemma 2 If � is consistent with A then

� if q�m �� f (which means that the lengths of signals
in M� are in the interval ��m� �m��� and never equal
�m), then

M� �
m

�
i��

Li�

� if q�m � f (which means that some signals in M� may
have a duration exactly �m), then

M� �
m��

�
i��

Li �
m

�
i��

Li�

Consider now any of the languagesLi (this is the second
step of the procedure). The signals � � Li are traces of
the runs of A such that during all the run the clock stays in
the interval ��i� �i���. Note that (because of the appropriate
choice of the critical points �i) the truth-values of the guards
of A’s transitions remain constant during all the ��i� �i���
interval, which means that the runs of A referred to in the
definition of Li are essentially runs of an untimed automa-
ton and the only timing restriction concerns the length of
the signals. The following lemma holds.

Lemma 3 Let �Li be the signature of Li. Then

Li � f� � sig��� � �Li 	 j�j � Iig�

where

Ii �

�
�i�� � �i if i � �� � � � �m� �
��� �m�� � �m� if i � m�

The fact thatA behaves like an untimed automaton when
its clock stays in ��i� �i��� allows to apply the untimed ver-
sion of Kleene theorem.



Lemma 4 The untimed languages �Li are regular.

Proof: Consider the untimed automaton Bi � �Q�
i�
where �q� q�� � 
i iff there exists a 	 � �q� �� �� q�� � 

such that ��t� � true for t � ��i� �i���. Then �Li,
i � �� �� � � � �m � � is the set of traces of all the runs of
Bi starting in q�i and finishing in qi�� and it is regular by
virtue of Kleene theorem. Regularity of �Lm can be stated
similarly.

Now let �i be an untimed regular expression such that
		�i�� � �Li. Applying Lemmata 2–4 we obtain the regular
expression for M� :

M� � 		h��iI� � h��iI� � � � h�miIm ��

in the first case of Lemma 2 and

M� � 		h��iI� � � � h�m��iIm��
� h��iI� � � � h�miIm ��

in the second one. This concludes the proof of the claim as
we can write the expression for the whole automaton as a
disjunction of the expressions for the consistent samplings.

5.3. Automata with Resets

Having stated the regularity of the set of signals whose
runs never reset the clock we can proceed by an inductive
argument that adds one more resetting state at a time. The
idea is adapted from one of the proofs of the untimed Kleene
theorem (see [HU79]) described shortly below. Suppose the
states of the automaton are fq�� � � � � qng. We let Rk

i�j denote
the set4 of sequences leading from qi to qj without passing
at states in fqk��� � � � � qng (qi and qj themselves can be
outside fq�� � � � � qkg). Clearly Rn

i�j consists of all the se-
quences leading from qi to qj . The basis of the induction,
R�
i�j , is simply the set of letters that lead directly from qi to

qj . The induction is via the formula

Rk��
i�j � Rk

i�j �Rk
i�k�� � �R

k
k���k���

� � Rk
k���j �

The first term stands for sequences leading from qi to qj
without ever visiting qk��. The second term denotes words
that lead from qi to qk�� (without visiting qk��), followed
by an arbitrary number of words that induce a cycle from
qk�� to itself and ending with a word leading from qk�� to
qj . This procedure derives the regular expression for every
Ri�j .

We apply this idea to one-clock automata in the follow-
ing way. As a basis we have the languages that lead from
every qi to qj without passing in any resetting state. Then
we inductively add a passage in one more resetting state
(which goes well with the star operation) until we get the
language of the whole automaton.

4Here we do not make the purist distinction between sets and the ex-
pressions they denote.

Claim 3 The language accepted by any one-clock automa-
ton is regular.

Proof: Let A � �Q� fcg�
� Q� Id� S� F � have n non-
resetting and r resetting states. Without loss of gen-
erality suppose that q�� � � � � qn are non-resetting and
qn��� � � � � qn�r are resetting.

We introduce some auxiliary languages. Let Ri�j be the
set of the traces of all the runs of A starting in qi and fin-
ishing by a transition to qj , and R

�k�
i�j the set of the traces

of all such runs using only q�� � � � � qk as intermediate states.
Clearly Ri�j � R

�n�r�
i�j and

L�A� �
�

qi�S�qj�F

Ri�j �

so it is sufficient to prove regularity and to find timed regular
expression for R�k�

i�j .
To construct this expression we use the induction on k

starting from the level k � n (recall that n is the number of
non-resetting states).

For the base of induction we construct a non-resetting
automaton Ai�j such that R�n�

i�j � L�Ai�j�. The automaton
is just the non-resetting part of A and two special states s
and f representing qi and qj respectively. Formally

Ai�j � �Q�� fcg�
�� Q� Id� fsg� ffg��

where Q� � fq�� � � � qng�fs� fg and 	 � �q� �� �� q�� � 
�

iff one of the following holds:

� q� q� � fq�� � � � qng and 	 � 
;

� q � s� q� � fq�� � � � qng and �qi� �� �� q�� � 
;

� q � fq�� � � � qng� q� � f and �q� �� �� qj� � 
 for some
�;

� q � s� q� � f and �qi� �� �� qj� � 
 for some �.

It is easy to see that R�n�
i�j � L�Ai�j�, hence by virtue of

claim 2 this language is regular.
The inductive step is easy: when k � n the state qk�� is

resetting and hence the following equality holds

R
�k���
i�j � R

�k�
i�j � R

�k�
i�k�� � �R

�k�
k���k���

� �R
�k�
k���j �

This concludes the proof of the claim.
Collecting all the results in the section we obtain

Theorem 4 (Aut � Exp) Every language accepted by a
timed automaton is a renaming of a timed regular language.

Corollary 5 (Kleene theorem for timed automata)
Timed automata and timed regular expressions have the
same expressive power modulo renaming.



Example: Consider the automaton A in figure 3. This au-
tomaton is already state-reset and self-loop free. Getting rid
of disjunctions and making it state-output we obtainA�. By
splitting b into b� and b� we get the state-output automaton
A�� which is separated into two one-clock automataA� and
A�.

For A� the non-resetting states are b� and b�. Applying
the procedure of claim 2 we obtain the following languages:

R a b� b�

a hai�	��� � b� � a � b� hai�	��� a

b� b� � �
b� b� � �

For A� the non-resetting state is a. Applying the proce-
dure of claim 2 we obtain the following languages:

R a b� b�

a � a hai���
�
b� b� b� � a hb� � ai���
�
b� b� b� � a hb� � ai���
�

Then by applying the procedure of claim 3 we have:

L�A�� � 		�hai�	��� � b� � a � b��
���

and

L�A�� � 		�a � b��
� �

�hai���
� � a � �b� � a�
�hb� � ai���
�� �

�hb� � ai���
� � b� � a�b� � a�
�hb� � ai���
��

� �

�b� � �a � b��
����

While L�A� � g��L�A�� 
 L�A��� where g�a� � a and
g�b�� � g�b�� � b.

6. Büchi Theorem

First we have to extend the definitions of signals, expres-
sions and accepting runs:

Signals

An �-signal over � is a left-continuous piecewise-constant
function � � R� � � such that � has a finite number of
discontinuities in any bounded sub-interval of R�. The set
of all such signals is denoted by S����. The concatenation
�� � �� where �� � S�A� and �� � S��A� is defined almost
as before, resulting in an �-signal. For an infinite sequence
��� ��� � � � of signals such that

P�
i�� j�ij �
, their infinite

concatenation
�

�
i��

�i is the �-signal which coincides with

true

a

c�

b

c�

A

c�

true

c� � 


true

a

c�

c�

c� � 	

c�

true

c� � 


true

a

c�

c�

c� � 	 b�

b�

A�

A��

b

b

c� � 	 � c� � 


true

true

true
a

c�

c� � 	 b�

b�

true

true

c� � 


true

a

c�

c�

b�

b�

A�

A�

Figure 3. Constructing an expression from an
automaton. The output letters appear on the
upper part of the state while the clocks reset
upon entering appear in the lower part.



each �i in the interval �li� li��� where li �
Pi��

j�� j�j j. Note
that when extending this definition to sets of �-signals, by
letting

�

�
i��

Li � f
�

�
i��

�i � �i � Lig

we do not allow an arbitrary choice of �i’s but only those
whose sum of lengths diverges. This prevents the so-called
Zeno phenomenon where an infinite concatenation results
in a signal of bounded length.

Expressions

The set of timed �-regular expressions E���� is defined as
either ��, � � �, �� � �� or �� 	 �� where � � E��� and
�� ��� �� � E����.

For timed �-regular expressions we define the semantic
function 		��� � E���� 
S���� as:

		�� � ����� � 		����� � 		�����
		�� 	 ����� � 		����� 
 		�����
		� � ���� � 		��� � 		����

		����� �
�

�
i��

		���

Acceptance

An �-run of the automaton is an infinite sequence

�q�� v��
	�
��
t�

�q�� v��
	�
��
t�

�q�� v�� � � � �

where qi � Q� vi � H� 	i � 
� ti � R�, and which satisfies
the following conditions:

Time progress: � 
 t� 
 t� 
 � � � and limi�� ti �
,

Succession: same as for finite runs;

An accepting run satisfies in addition the following condi-
tions:

Initialization: same as for finite runs;

Büchi acceptance: qi � F for infinitely many i.

The trace of this �-run is the �-signal defined on ���
�
and equal to ��qi� on �ti� ti���. The �-language of a timed
automaton,L��A�, consists of all the traces of its accepting
�-runs.

Let us extend the results of the paper �-languages and
�-automata.

From �-expressions to �-automata

As in the finitary case the inductive construction is rather
straightforward. As a basis we take the automaton for any
finitary timed regular expression. From theorem 1 we can
assume that timed regular languages are accepted by au-
tomata without transitions outgoing from accepting states.
The �-exponentiation is similar to the � where each transi-
tion to an accepting state is replaced by transitions to special
copies of the initial states that serve as new accepting states.
These states are visited infinitely-often in the �-automaton
iff infinitely many finite factors of the signals lead from S

to F in the finitary automaton. The concatenation of a lan-
guage and an �-language, as well as the union of two �-
languages are almost identical to the finitary case. Inter-
section requires some more details (because the visits of a
signal in the accepting states of two automata need not be
simultaneous). All the constructions are minor adaptations
of their untimed analogues ([T90]).

Let A� � �Q�� C��
���� ��� S�� F�� and A� �
�Q�� C��
���� ��� S�� F�� be the timed �-automata ac-
cepting the �-languages 		���� and 		���� respectively, and let
A � �Q�C�
��� �� S� F � accept the language 		���.

� The automaton for 		�� �� is ��Q � S�� �
F�C���
�� ��� S� S�� where S� is a new set of
states fs��� � � � s

�
kg having one-to-one correspondence

with S. 
� is constructed from 
 by replacing every
transition of the form �q� �� �� q�� in 
 such that
q� � F by a set of transitions of the form �q� �� C� s��
for every s� � S�. In addition, for every transition
�si� �� C� q� � 
 such that si � S we add to 
� a
transition �s�i� �� C� q�, s

�
i � S�. For every s�i � S� we

let ���s�i� � ��si�.

� The automaton for 		������� is �Q��Q�� C��C��
��

���� �� � ��� S� � S�� F� � F��.

� The automaton for 		�� 	 ���� is �Q � f�� 
� �g� C� �
C��
��� �� S� F � where Q � fhq�� q�i � Q� �Q� �
���q�� � ���q��g, 
 is constructed from 
� and 
�

in the following way: for every �q�� ��� ��� q
�
�� � 
�

and �q�� ��� ��� q
�
�� � 
� we put in 
 the transitions

�hq�� q�� ii� ��	��� ������ hq��� q
�
�� ji� whenever i � �

and j � � or i � f�� 
g and j � i, or i � �, q �� � F�
and j � 
 or i � 
, q�� � F� and j � �. The labeling
��hq�� q�� ii� � ���q�� � ���q��, S � �Q 
 �S� �
S���� f�g and F � Q� f�g.

� The automaton for 		� � ���� is �Q � Q� � F�C �
C��


���� �� � ��� S� F�� where 
� is constructed
from 
 � 
� as follows: every transition �q� �� �� q��
in 
 such that q� � F is removed and replaced by a set
of transitions of the form �q� �� � � C�� q�� for every
q� � S�.



Hence we have the first part of Büchi theorem.

Theorem 6 (�-Exp � �-Aut) Every timed �-regular lan-
guage can be accepted by a timed �-automaton.

From �-automata to �-expressions

This construction is based on theorem 4 and on the untimed
Büchi theorem. The level of explanation is less detailed but
can be understood and verified by readers who have fully
grasped the ideas of the proofs of the abovementioned the-
orems. We assume that the automaton has gone through all
the transformation described in section 5.1.

Let A � �Q� fcg�
��� Id� S� F � be a one-clock �-
automaton with F � ff�� � � � � fng. Clearly

L�A� �
n�
i��

L�Ai�

where Ai � �Q�C�
��� �� S� ffig�. Hence it is sufficient
to prove regularity for automata with one accepting state
F � ffg. In case f is a resetting state we have

L��A� �
�
s�S

Rsf � �Rff �
�

and apply theorem 4. This will not work for non-resetting
states because f can be entered with different clock valu-
ations. Thus we have to follow a variation of the path of
theorem 4 and treat non-resetting automata first.

Claim 7 Let A be a reset-free one-clock automaton and let
qi� qj � f be states. Then the following holds:

� The set of all signals leading from qi to qj is regular.

� The set of all signals leading from qi to qj and visiting
f is regular.

� The set of all �-signals accepted by A when S � fqig
and F � ffg is �-regular.

Proof: The first part is just a rephrasing of claim 2. The
second part is a variation of the first (we spare the reader
from the details). For the third part observe that after the
last critical point �n the automaton behaves like an untimed
one. Hence, by the virtue of the original Büchi theorem,
for every state ql there is an untimed �-regular language
�Tl�� accepted by the automaton starting at qi with c � �n.
Consider now the sampling �qj � ql� of a given signal at �n.
If this sampling is consistent (j � l or the transition from
qj to ql is possible at �n) then the language accepted from
qi can be written as

Ti�j � Tl��

where Ti�j is the set of signals leading from qi to qj whose
length is exactly �n, and Tl�� is the set of all signals whose
signatures are in �Tl�� (as expressions the two are identical).
The regularity of Ti�j is implied by claim 2.

Claim 8 The �-language accepted by any one-clock au-
tomaton with one accepting state is �-regular.

Proof: As in claim 3 we take q�� � � � � qn to be non-resetting
and qn��� � � � � qn�r as resetting states. The three languages
mentioned in claim 7 are denoted byR�n�

i�j , R�n�
i�f�j , andR�n�

i�� .

We would like to calculate Ri�� � R
�n�r�
i�� inductively. To

make the inductive step when k � n note that when we add
a new resetting state the language R�k�

i� changes as follows:

R
�k���
i� � R

�k�
i� � R

�k�
i�k�� � �R

�k�
k���k���

� �R
�k�
k���� �

R
�k�
i�k�� � ��R

�k�
k���k���

� � R
�k�
k���f�k���

� �

The first term consists of accepting runs not visiting qk�� at
all, the second contains those that visit qk�� a finite number
of times while the third involves those that visit it infinitely
many times. As in claim 3, the liberty to put R�k�

k���k��

under the � and R
�k�
k���f�k�� under the � is due to the fact

that qk�� resets the clock.
This implies:

Theorem 9 (�-Aut� �-Exp) Every language accepted
by a timed �-automaton is a renaming of a timed �-regular
language.

And we can conclude:

Corollary 10 (Büchi theorem for timed automata)
Timed �-automata and timed �-regular expressions have
the same expressive power modulo renaming.

7. Necessity of Intersection

Claim 11 The language M � faxb��xcxjx � ��� ��g is
regular but it cannot be expressed without 	.

Proof: The equalityM � 		ha � bi��c	a�hb � ci��� guarantees
regularity of the language. This language can be recognized
by the automaton of figure 4.

We first associate with every language L all of whose
signals having the signature abc, a set PL � f�x� y� z� �
axbycz � Lg � R	

�. We then show that if L is 	-free then
PL must have a certain form, while PM , the set associated
with M , is not of that form. Hence M cannot be expressed
without 	. Our first step is to get rid of the renaming.

Lemma 5 If a languageL � g�		��� where g� is a renaming
and � is a 	-free expression, then there exists a 	-free �

such that L � 		���.

This lemma is an immediate consequence of the fact that g�
commutes with all the operations occurring in �.



Next we eliminate the star. A monomial regular language
is a language definable by an expression using only atoms, �
and hiI . Notice that all the signals in a monomial language
have one and the same signature.

Lemma 6 Let L � 		��� where � is a 	-free expression,
then L is a countable (or finite) union of monomial lan-
guages.

Proof: Induction on the structure of �. It is straightforward
for atomic expressions. Suppose L� �

S
m

L��m and L� �S
n

L��n. Let us proceed with induction.

L � L� � L�. This case is straightforward: L �
S
m

L��m �S
n

L��n.

L � L� � L�. In this case L �
S
m

S
n

�L��m � L��n�.

L � L��. In this case L �
�S
n��

n

�
i��

L� and the previous case

can be applied to each term.

L � hL�iI . In this case L �
S
m

hL��miI .

Monomial languages are useful because they correspond
to convex polyhedra and operations on these languages have
a simple geometrical sense. We will state these properties
only for a subclass of monomial languages that could occur
in a representation of the language M . Let U � 		a � b � c �
a � b � b � c � a � b � c���

An abc-language is a nonempty monomial sublanguage
of U . For any language L � U put PL � f�x� y� z� � R	 �
axbycz � Lg. For any two sets S�� S� � R	 we denote by
S��S� the set f�x��x�� y�� y�� z�� z�� � �x�� y�� z�� �
S� 	 �x�� y�� z�� � S�g.

Lemma 7 Let L be an abc-language, L� and L� - mono-
mial languages.

1. If L � 		a��, then PL is the ray f�x� �� �� � x � R�g,
similarly for b and c.

2. If L � L��L� then bothL� andL� are abc-languages
and PL � PL�

� PL�
.

3. If L � hL�iI then L� is an abc-language and PL �
PL�


 PI where PI is a layer between two parallel
planes (maybe coinciding). If L has the signature abc
then the normal vector to these planes is (1,1,1).

4. PL is a convex polyhedron.

Proof:

1. This is straightforward from the definitions.

2. Let w � L and w � w� � w� where wi � Li. Since
L is an abc-language, the signature of w should be one
of abc� ab� bc� a� b� c and hence this is the case for wi

also. This implies that Li are abc-languages. Further
study depends of the signatures of the languagesL, L�

and L�. Suppose, for example that signatures are abc,
ab and bc respectively. In this case

L � fw� � w� � w� � L� 	 w� � L�g �

� fax�by��y�cz� � ax�by� � L� 	 by�cz� � L�g�

Hence

PL � f�x�� y� � y�� z�� � �x�� y�� �� � PL�
	

��� y�� z�� � PL�
g �

� f�x� � x�� y� � y�� z� � z�� �

�x�� y�� z�� � PL�
	

�x�� y�� z�� � PL�
g �

� PL�
� PL�

�

We have used the fact that the third coordinate of a
point in PL�

as well as the first coordinate of the point
in PL�

are always zero.

Other possible signatures of the languages are consid-
ered similarly.

3. The case study depending of possible signatures (abc,
ab, bc, a, b, c) of L can be used. Suppose the signature
is ab. It follows from the definitions that PL � PL�



f�x� y� z� � x � y � Ig. The set f�x� y� z� � x �
y � Ig is a layer between two parallel planes with a
normal vector (1,1,0). Other possible signatures are
considered similarly.

4. Immediate by induction from the previous statements
of lemma.

For the language M the polyhedron PM is the straight
line interval �AB�, where A � ��� �� �� and B � ��� �� ��.
Suppose now that there exists a representation M � g�		���
where g� is a renaming and� is a 	-free expression. Apply-
ing Lemma 5 we obtain a representation M � 		��� where
� is a 	-free expression. Applying Lemma 6 we obtain a
representation M �

S
n

Ln where Ln are monomial, hence

abc-languages. Hence PM �
S
n

PLn which implies (to-

gether with Lemma 7) that at least one of polyhedra PLn

is a nondegenerate (i.e non-singleton) subinterval of (AB).
The following result states that this is impossible and con-
cludes the proof of the claim.

Lemma 8 There is no abc-language L such that PL is
a non-degenerate interval parallel to the vector �v �
���� �����.



a b

c�

true c� � � c� � �
c

Figure 4. The automaton accepting 		ha � bi� �
c 	 a � hb � ci���.

Proof: Induction on the structure of L.

L � f		a��� 		b��� 		c��g The statement is immediate from the
statement 1 of Lemma 7.

L � L� � L� By Lemma 7 PL � PL�
�PL�

. PL can be an
interval in two cases: either when one of PL�

and PL�

is a point and the other is an interval or when they are
both parallel intervals. In each of these cases PL is par-
allel to an interval PL�

or PL�
, hence, by the inductive

hypothesis it cannot be parallel to �v.

L � hL�iI The only case when the statement could be vio-
lated is when L� has the signature abc. In this case by
Lemma 7 PL � PL�


PI where PI is a layer between
two parallel planes with the normal �n � ��� �� ��. But
since �v �� �n, the vector �v is not parallel to these planes.
This implies that PL cannot be an interval parallel to �v
unless PL�

is such an interval.

This concludes the proof.

8. Discussion

The main design decisions used to achieve the reported
results were the following. First by taking the signal se-
mantics (and not the one based on timed sequences), we
believe that the definitions of concatenation and star be-
came more natural and easier to manipulate.5 The second
issue was how to introduce dense real-time into regular ex-
pressions. After having tried some first-order extensions
of regular expressions (which lead to a class incomparable
to timed automata, and which suffers from undecidability
problems) we have settled on the current solution, namely
to take an untimed regular set and limit the length of its
members to an integer-bounded interval. As the example
in section 4 shows, this construct alone is not sufficient be-
cause in timed automata the order of clock resetting and the
order of clock testing need not be compatible (leading to
“unbalanced parentheses”, so to speak). This motivated the
separation of clocks and the use of intersection. This also
forced us to make the automata state-output and to use re-
naming in the formulation of the result. We conjecture that
renaming is necessary but we found no proof for it.

5However, the theory can be developed without significant modifica-
tions around timed sequences.

After reduction to one-clock automata we still had a
problem with the star. Unlike untimed automata, a cycle
in the transition graph of a timed automaton is not really a
cycle in its configuration space unless the clock is reset. For
this reason we had to treat the non-resetting part of the au-
tomaton separately, using the concept of sampling which is
roughly the one-dimensional analog of the “region-graph”
of [AD94]. Cutting the behavior according to the sampling
interval can be seen as a concatenation of timed automata
having a special kind of real-time constraints such that each
of them is tested only once. After the non-resetting part was
solved we could use standard proof techniques for Kleene
theorem to add the resetting states.

We have tried to follow the path of classical regular ex-
pressions where the expression provides an “extrinsic” de-
scription (not mentioning internal states at all). While ap-
plying this attitude to timed automata, we have avoided any
explicit references to clock values (internal variables) and
our formalism is based only on external observable features
of the signals. We hope that the result and the proofs will
improve our understanding of the role of clocks in timed
automata. Recently, the notion of speed-independent opera-
tors was introduced in [RT97]. This is an operator from sig-
nals to signals which is “stretching” invariant. It is imme-
diate to see that languages defined using expressions with-
out the hiI operator are exactly the speed-independent lan-
guages where membership is determined only by signature.

For the future, the question of whether renaming is nec-
essary should be settled. In addition bounds on the com-
plexity of the translation should be established. Another in-
teresting question is whether the techniques introduced here
can be applied to various logic-based formalisms.

A more speculative domain for future research might be
the extension of the theory to signals which are not nec-
essarily piecewise-constant. For example, one may con-
sider an “alphabet” consisting of a set of rational constants
fk�� � � � � kng where the semantics of an expression k is the
set of real-valued signals whose time derivative is k. It
would be interesting to see whether such a theory of regular-
ity can contribute new insights to hybrid dynamical systems
and signal processing.

References

[AD94] R. Alur and D.L. Dill, A theory of timed
automata, Theoretical Computer Science 126,
183–235, 1994.

[B60] J.R. Büchi, A decision method in restricted
second order arithmetic, in E. Nagel et al
(Eds.), Proc. Int. Congr. on Logic, Methodology
and Philosophy of Science, Stanford University
Press, 1960.



[HU79] J.E. Hopcroft and J.D. Ullman, Introduction
to Automata Theory, Languages and Computa-
tion, Addison-Wesley, 1979.

[K56] S.C. Kleene, Representations of events in nerve
nets and finite automata, in C.E. Shannon and
J. McCarthy (Eds.), Automata Studies, 3–42,
Princeton University Press, 1956.

[MY60] R. McNaughton and H. Yamada, Regular ex-
pressions and state graphs for automata, IRE
Trans. Electronic Computers EC-9, 39–47,
1960.

[RT97] A. Rabinovich and B.A. Trakhtenbrot, From fi-
nite automata toward hybrid systems, Unpub-
lished manuscript, 1997.

[T90] W. Thomas, Automata on infinite objects, in J.
Van Leeuwen (Ed.), Handbook of Theoretical
Computer Science, Vol. B, 133-191, Elsevier,
Amsterdam, 1990.

[W94] Th. Wilke, Specifying state sequences in pow-
erful decidable logics and timed automata, in
H. Langmaack et al (Eds.), Proc. FTRTFT’94,
LNCS 863, 694-715, Springer, 1994.


