
On Interleaving in Timed Automata⋆

Ramzi Ben Salah Marius Bozga Oded Maler

VERIMAG, 2, av. de Vignate, 38610 Gieres, France
Ramzi.Salah@imag.fr Marius.Bozga@imag.fr Oded.Maler@imag.fr

Abstract. We propose a remedy to that part of the state-explosion problem for
timed automata which is due to interleaving of actions. We prove the following
quite surprising result: the union of all zones reached by different interleavings of
the same set of transitions isconvex. Consequently we can improve the standard
reachability computation for timed automata by merging such zones whenever
they are encountered. Since passage of time distributes over union, we can con-
tinue the successor computation from the new zone and eliminate completely the
explosion due to interleaving.

1 Introduction

Exploring the state space of timed automata [AD94] is a fundamental activity with
numerous potential applications in circuit timing analysis, scheduling, verification of
real-time software, performance analysis, etc. It is, however, a very difficult problem
still waiting for a performance breakthrough despite efforts invested during the last 15
years. We hope that the results of this paper will advance us in this respect.

Partial-order methods have been widely reported in the discrete verification litera-
ture. They focus on that part of the state-explosion problemposed by the interleaving
semantics, as illustrated by the example of Figure 1 where wesee two automata and
their asynchronous composition. Actionsa andb are mutually independent and hence,
in the product automaton, state11 can be reached via two paths1 that commute in a
“diamond”. For certain simple reachability properties that do not mention paths and
intermediate states, it is sufficient to explore only one of those paths. However, if ad-
ditional non-commuting transitions are possible from the intermediate states, or if the
properties are more sequential and less invariant under path permutations, the situation
is more involved and has been a subject of numerous publications. This is not the topic
of the present paper.

In the analysis of timed automata, diamonds pose additionalproblems. Due to the
clock variables, paths that seem to commute on the transition diagram do not necessar-
ily converge to the same extended state which includes also the clock values. Consider
the timed automata appearing in Figure 2 together with theircomposition. In each au-
tomaton the transition from0 to 1 resets the respective clock. The standard reachabil-
ity computation algorithm for timed automata computes a discrete directed graph, the

⋆ This is a slightly revised version of the CONCUR’06 paper, with additional references to
related work which were brought to our attention after the submission of the final manuscript.

1 In general,n! paths when there aren transitions.

0 0

1 1

ba

0110

11

00

Fig. 1. Two automata with independent actiona andb, and their composition.

nodes of which are “symbolic states” of the form(q, Z) whereq is a discrete state andZ
is azone, a convex set of clock valuations satisfying some conjunction of inequalities.
Apply this algorithm to the automaton we obtain two zones associated with state11,
one in whichx ≤ y (because in all runs along this pathx is reset aftery) and the other
with y ≤ x. So here, in a situation where untimed reachability will converge to single
state, timed reachability will generate several symbolic states from which the computa-
tion can be continued, leading very quickly to explosion. Roughly speaking, while the
ordinary explosion associated with a product ofn automata, each withm states will
lead in the worst case toO(mn) states, the additional splitting due to interleaving may
result inO(nmn) states, a fact that prevents verification of systems of modest size.2

In this paper we propose a solution to this problem, which is based on a new surpris-
ing3 result which shows that the set of all points in the clock space reached by runs con-
sisting of interleaving of the same set of actions isconvex. Since evolution distributes
over union, zones that have been reached through different paths in the transition graph
can be merged during reachability computation, thus eliminating the interleaving explo-
sion. The rest of the paper is organized as follows. In Section 2 we give the definition
of timed automata and their interaction. In Section 3 we prove our main result which is
used in Section 4 to define a modified reachability algorithm whose superiority is exper-
imentally confirmed. In Section 5 we discuss the applicability of the results to various
forms of interaction, and conclude in Section 6 with a discussion of related work, in
particular the idea of local time scales.

2 Timed Automata

We consider a compositionA1||A2|| · · · ||An of timed automata. Interaction can be de-
fined using two types of mechanisms, the first one is by synchronized transitions and the
other one, which is more expressive and useful, is by shared variables. To simplify the

2 Note that if we can push the size limit of timed verification toward non-trivial systems, the rest
of the battle against explosion can continue from there using abstraction-based methods like
the ones we have recently proposed [BBM03,BBM06].

3 What is surprising is the fact that this simple fact has not become part of the explicit collective
knowledge of those working in the domain, the authors included.

0 0

1 1

ba

11

x := 0 y := 0

x := 0

00

y := 0

0110

00

y := 0

y := 0

x := 0

0 ≤ y ≤ x 0 ≤ x ≤ y

10 01

1111

y := 0

x := 0

x := 0

Fig. 2.Two timed automata, their composition and an example of reachability computation.

presentation we will use the former to present our result anddiscuss later its extension
to state-based synchronization. For the same pedagogical reasons, we make additional
simplifying assumptions concerning the form of invariantsand guards, but the results
extend naturally to any conjunction of timed inequalities.As for non-convex (disjunc-
tive) conditions allowed by the original definition of timedautomata, we have found no
use of them in more than 10 years experience in the domain.4 We also do not pay much
attention to the distinction between strict and non strict inequalities which are irrelevant
to convexity.

Definition 1 (Timed Automaton). A timed automaton isA = (Σ, Q, C, I, ∆) where
Σ is a finite set of transition labels,Q is a finite set of states,C is a finite set of clocks,
I is the staying condition (invariant), assigning to everyq ∈ Q a conjunctionIq of
inequalities of the formc ≤ u, for some clockc and integeru, and∆ is a transition
relation consisting of elements of the form(q, g, a, r, q′) whereq and q′ are states,
a ∈ Σ is a transition label,g (the transition guard) is a conjunction of formulae of the
form (c ≥ l) for some clockc and integerl andr ⊆ C is a set of clocks to be reset by
the transition.

We assume one transition labelleda for everya ∈ Σ. A clock valuationis a function
v : C → R≥0 and aconfigurationof the automaton is a pair(q, v) consisting of a
discrete state (location) and a clock valuation. We user also to denote the reset function
on clock valuation that sets the clock inr to zero and leaves the other intact. We use
v + d to denote the clock valuation obtained fromv by addingd to all clock values. A
stepof the automaton is one of the following:

– A discrete step: (q, v)
a

−→ (q′, v′), for some transition(q, g, a, r, q′) ∈ ∆ such that
v satisfiesg andv′ = r(v).

4 The tendency to look for results proved for the “most general” definition, inherited uncritically
from mathematics, can be sometimes very counter-productive in domains which are still evolv-
ing. Perhaps this could be one of the reasons for the sterility of certain branches of theoretical
computer science.

– A time step: (q, v)
d

−→ (q, v + d) for somed ∈ R≥0 such thatv + d satisfiesIq.

A compound stepis a time step (possibly of a zero duration) followed by a discrete step:

(q, v)
d,a
−→ (q′, v′) ≡ (q, v)

d
−→ (q, v + d)

a
−→ (q′, v′).

A run of the automaton starting from a configuration(q0, v0) is a finite sequence of
compound steps ending in a time step.

ξ : (q0, v0)
d1,a1

−→ (q1, v1)
d2,a2

−→ · · ·
dk,ak−→ (qk, vk)

d∗−→ (qk, vk + d∗).

We use also the notation(q, v)
ξ

−→ (q′, v′) for runs.
We will define the interaction between the automata via a “distributed alphabet”Σ

in the sense of the theory of traces [DR95]. For each automatonAi, let Σi be its local
alphabet, that is the set of transition labels it uses. Our composition semantics requires
that allAi such thata ∈ Σi should participate in ana-labelled global transition. Hence
in any run of the global automaton ana-transition will be taken the same number of
times in allAi such thata ∈ Σi.

Definition 2 (Composition of Timed Automata).A composition of timed automata is
A = A1||A2|| · · · ||An where each automaton is of the formAi = (Σi, Qi, Ci, Ii, ∆i).
The sets of states and clocks of the automata are mutually disjoint.

The global automaton obtained from the composition isA = (Σ, Q, C, I, ∆) where
Q = Πn

i=1Q
i, C =

⋃n

i=1 Ci and Σ =
⋃n

i=1 Σi. We write global states asq =
(q1, . . . , qn) ∈ Q and global clock valuations overC asv = (v1, . . . , vn). The seman-
tics of the composition is given in terms of global steps as follows:

– A discrete step:(q,v)
a

−→ (q′,v′), such that for everyi either a ∈ Σi and
(qi, vi)

a
−→ (q′i, v′i) is a step ofAi, or a 6∈ Σi and(q′i, v′i) = (qi, vi).

– A time step:(q,v)
d

−→ (q,v + d) for somed ∈ R+ such thatv + d satisfies
∧n

i=1 Iqi .

Global compound steps and runs are defined similarly to theirlocal counterparts. It is
sometimes (and this time in particular) useful to speak of the projection of a global
run on each automaton. The projectionξi of a global runξ is obtained fromξ in two
stages. First we “hide” transitions in whichAi does not participate and collapse the
time passages, that is apply successively the following transformation:

(q,v)
d,a
−→ (q′,v′)

d′,a′

−→ (q′′,v′′) 7−→ (q,v)
a,d+d′

−→ (q′′,v′′)

whenevera′ 6∈ Σi. After all such external transitions have been eliminated we project
the run on the states and clocks ofAi.

Finally let us define two additional notions. Two runsξ, ξ′ of A arequalitatively
equivalentif they go through the same sequence of discrete transitionsand differ only
in timing. We denote this fact byξ ≈ ξ′ and write equivalence classes of≈ by [ξ]. We
say thatξ andξ′ arelocally equivalent, denoted byξ ∼ ξ′, if all their local projections
are equivalent, that is,ξi ≈ ξ′i for every i. We denote equivalence classes of∼ as
〈ξ〉. Clearly,≈ is stronger than∼, and perhaps too strong. Whenξ ∼ ξ′, both runs
agree on the order of local transitions whileξ ≈ ξ′ means that they agree also on their
interleaving.

3 Main Result

We can now formulate our main result.

Theorem 1 (Convexity).LetZ be a convex timed polyhedron and letq andq′ be two
global states ofA. Letξ be a run starting atq and ending inq′. Then the set

RZ,〈ξ〉 ≡
⋃

ξ′∈〈ξ〉

{v′ : ∃v ∈ Z (q,v)
ξ′

−→ (q′,v′)}

is convex.

The proof is given via a characterization of the reachable clock valuations by a quanti-
fied formula consisting of conjunctions of inequalities over clock values and auxiliary
variables. Since convex sets are closed under projection the result follows. For economy
of notation we assume thatξ is such that each automatonAi makes exactlyk steps. The
restriction ofAi to the states and transitions involved in the run is of the form depicted
in Figure 3.

· · ·
gi
1

, ai
1

, ri
1

gi
k

, ai
k

, ri
k

Ii
0

Ii
1

Ii
k−1

Ii
k

qi
0

qi
1

qi
k−1

qi
k

Fig. 3. The part ofAi which participates inξi.

As a first step we extend the description of local runs to include thetime stampsof
the transitions:

ξi : (qi
0, v

i
0, t

i
0) → (qi

1, v
i
1, t

i
1) → · · · → (qi

k, vi
k, tik) → (qi

k, vi
k+1, t

i
k+1).

Eachtij variable denotes theabsolute timein which the corresponding transition has
been taken. Every global run in〈ξ〉 is completely characterized by the valuestij and
vi

j for i = 1..n and j = 0..k + 1. All those runs satisfy the natural local ordering
among time stamps, i.e.tij ≤ tij+1, while those that are also≈-equivalent agree also
on the ordering of time stamps of different automata, which characterize the particular
interleaving (shuffle) of the local runs.

We can now proceed to the logical characterization. We will use the following auxil-
iary notations and abbreviations:qj = (q1

j , . . . qn
j) for global states,vj = (v1

j , . . . vn
j),

for global clock valuations,vi = {vi
0, . . . , v

i
k}, for the set of valuations appearing in a

local runξi andti = {ti0, . . . , t
i
k} for the set of local time stamps. The set of all values

that characterize a run arev =
⋃

i vi, andt =
⋃

i t
i. The predicates{Φi

j} characterize
the clock values and time stamps in a valid stepj of Ai.

Φi
j(v

i
j−1, t

i
j−1, v

i
j , t

i
j) ≡















∃d d = tij − tij−1 ∧
Ii
j−1(v

i
j−1 + d) ∧

gi
j(v

i
j−1 + d) ∧

vi
j = ri

j(v
i
j−1 + d)

This is nothing but a recapitulation of the definition of a compound step, namely that
time passage does not violate the staying condition, the transition guard is satisfied and
that a reset takes place. Note that this definition is invariant under a shift of global
time, that is,Φi

j(v, t, v′, t′) is equivalent toΦi
j(v, t + d, v′, t′ + d) for everyd. We can

now define what constitutes a valid run ofAi in isolation, without taking into account
synchronization constraints. We keep this definition shift-invariant as well and do not
yet insist on the initial zone which is defined globally.

Φi(ti,vi) =
k
∧

j=1

Φi
j(v

i
j−1, t

i
j−1, v

i
j , t

i
j)

The predicate which defines what constitutes a valid global run is a conjunction of the
conditions for local runs with additional conditions that take care of all the synchro-
nization aspects, including the fact that all runs start andterminate simultaneously. For
everya ∈ Σ let Sa = {(i, j) : ai

j = a} be the set of steps that synchronize ona. To
force alla-transitions to take place at the same time we define the predicate

Ψa(t) ≡
∧

(i,j),(i′,j′)∈Sa

tij = ti
′

j′ .

The conditions for a valid global run starting atZ0 are then:

Φ(t,v) =























t10 = t20 = · · · = tn0 ∧
v0 ∈ Z0 ∧
∧n

i=1 Φi(vi, ti) ∧
∧

a∈Σ Ψa(t) ∧
t1k+1 = t2k+1 = · · · = tnk+1

Note that the first and last conditions can be viewed as synchronization conditions for
two additional fictitious transitions “start” and “end” in which all automata participate.
This set is a convex subset of the space consisting of all valuations and time stamps in
the run, and so is its projection on the lastn dimensions which is the reachable set:

RZ,〈ξ〉(vk+1) ≡ ∃t∃v1, . . . ,vk Φ(t,v1, . . .vk,vk+1).

⊓⊔
Let us mention that the result extends naturally to arbitrary “linear” hybrid automata
with convex guards and invariants.

4 Application to Reachability Computation

4.1 A Modified Algorithm

We will now modify the standard reachability computation algorithm for timed au-
tomata to take advantage of this result. The idea is to generate symbolic states in a
breadth-firstmanner and at each level merge those reached by the same set ofcompound

steps. To identify those we need to decorate symbolic stateswith (partially ordered) path
information. Ashuffle expressionoverΣ is α = α1|| . . . ||αn with αi ∈ (Σi)∗. Con-
catenation of a shuffle expression and a symbola is defined as(α1|| . . . ||αn) · a =
(β1|| . . . ||βn) whereβi = αi if a 6∈ Σi andβi = αi · a otherwise.

Reachability computation for timed automata [HNSY94] is based on zones (timed
polyhedra) which are expressed as conjunctions of rectangular inequalities of the form
c ≤ d or c ≥ d and diagonal inequalities of the formc − c′ ≤ d for clocksc, c′ and
integerd. A symbolic state is a pair(q, Z) whereZ is a zone. Thea-successor of a
symbolic state(q, Z) such thatq admits ana transition is defined as

Suca(q, Z) = {(q′, v′) : ∃v ∈ Z ∃d ≥ 0 (q, v)
d,a
−→ (q′, v′).

The computation(q′, Z ′) = Suca(q, Z) is done by first applying “time passage” to
Z, intersecting the result withIq and with the transition guard and then applying the
corresponding reset. This computation costsO(n3) time forn clocks.

Algorithm 1 performs this computation. At each iterationWaiting is a list of ex-
tended zones to be explored, all reached by the same number oftransitions. We com-
pute the successors of all those symbolic states and put themin a list New. TheMerge
procedure scansNewand replaces every subset of symbolic states of the form

{(q, Z1, α), . . . , (q, Zm, α)}

by a single state(q, Z, α) whereZ is the convex hull of all these zones. From our
result it follows thatZ is exactly the union of the zones. Note that the path labels of
a zone need not be kept after its successors have been computed. This also guarantees
termination due to the finite number of zones.

Algorithm 1 (New Reachability Algorithm)

Explored:= New:=∅
Waiting:={(q0, Z0, ε||..||ε)}
while Waiting6= ∅ do

for each(q, Z, α) ∈ Waiting such that(q, Z) 6∈ Exploreddo
for eacha ∈ Σ do

New :=New∪{(Suca(q, Z), α · a)}
Explored := Explored∪{(q, Z)}

Waiting := Merge(New)
return (Explored)

4.2 Experimental Results

To confirm the complexity reduction empirically we have firsttested a preliminary im-
plementation of Algorithm 1 restricted to products of chain-like automata. Such au-
tomata are notorious for generating state explosion due to interleaving. We have consid-
ered two simple families of synthetic benchmarks shown in Figure 4. The first consists
of parallel compositions ofn independentreset sequencesof lengthm each. The second
class consists of parallel compositions ofk independent synchronization chains, each

being a parallel composition ofn synchronized sequencesof lengthm. A synchronized
sequence (Aij) alternates between actions that synchronize with the left(ai,j) and the
right (ai+1,j) neighbor while separating them by at least 4 time units.

qi
1

qi
0

qi
m

τi/xi := 0

‖n
i=1

τi/xi := 0

qij
0

qij
1

qij
m

aij/xij := 0

[xij ≥ 4] ai+1j

aij/xij := 0

rij
0

‖n
i=1‖k

j=1

Fig. 4. The structure of the synthetic benchmarks.

The experimental results obtained for the two benchmarks for different values ofn,
m andk are summarized in Table 1. Each entry in the table is of the form B/C where B
is the number of symbolic states encountered in an ordinary breadth-first exploration,
while C is the number of states explored by Algorithm 1. We limit ourselves to instances
with less than106 symbolic states, and use the⊥ symbol to denote the fact that this
limit has been reached. Let us note that we achieve an exponential reduction both for
the interleaving ofindependentactions (reset sequences) and for strongly-synchronized
actions (a single synchronization chain withk = 1). The reduction is clearly much
more impressive in the synchronized case, where reductionsbased on partial order or
symmetry [HBL+03] are not directly applicable.

We have then implemented Algorithm 1 into the IF toolset [BGM02] and tested its
performance on several publicly-available benchmarks. Table 2 compares the perfor-
mance of the new algorithm on the Fisher mutual-exclusion protocol benchmark with
other reported results. We compare with old Kronos results reported in [T98], Uppaal
results reported in [U] and results obtained with IF withoutusing the new algorithm.
It is interesting to note that although our new algorithm performs much better than
the standard Uppaal machinery, their performances are similar when the convex-hull
approximation option of the latter is employed. Our result shows that this “approxima-
tion” can be easily made exact.

5 Generalizations and Limitations

Let us discuss briefly the applicability of our result to moregeneral modes of interaction
between timed automata. A crucial condition for expressingsynchronization constraints

n=2 n=4 n=6 n=8 n=10

Independent reset sequences
m=1 5 / 4 65 / 16 1957 / 64 109601 / 256 ⊥ / 1024
m=2 13 / 9 633 / 81 75973 / 729 ⊥ / 6561 ⊥ / 59049
m=3 25 / 16 2713 / 256 732529 / 4096 ⊥ / 65536 ⊥ / ⊥

Synchronization chainsk = 1

m=1 4 / 4 6 / 6 8 / 8 10 / 10 12 / 12
m=2 8 / 8 37 / 17 236 / 30 1600 / 47 10949 / 68
m=3 12 / 12 86 / 32 1441 / 72 30841 / 140660615 / 244

Synchronization chainsk = 3

m=1 2012 / 64 812375 / 216 ⊥ / 512 ⊥ / 1000 ⊥ / 1728
m=2 97142 / 512 ⊥ / 4913 ⊥ / 27000 ⊥ / 103823 ⊥ / 314432
m=3 745197 / 1728 ⊥ / 32768 ⊥ / 373248 ⊥ / ⊥ ⊥ / ⊥

Table 1.Experimental results on the synthetic acyclic benchmarks.

Size Kronos Uppaal Uppaal-A IF IF-U

2 -/- -/0.01s -/0.00s 29/0.003s 18/0.002s
3 -/- -/0.03s -/0.01s 165/0.01s 53/0.01s
4 752/- -/0.23s -/0.06s 1099/0.07s 164/0.03s
5 3552/- -/5.09s -/0.29s 8453/1.07s 527/0.04s
6 16320/- -/310.97s -/1.34s 74939/21.06s 1726/0.20s
7 73620/- -/51598.17s -/5.89s 762429/595.75s 5693/1.75s
8 ⊥/⊥ ⊥/⊥ -/25.83s ⊥/⊥ 18792/5.73s
9 ⊥/⊥ ⊥/⊥ -/113.53s ⊥/⊥ 61883/28.42s
10 ⊥/⊥ ⊥/⊥ -/498.88s ⊥/⊥ 202994/367.76s
11 ⊥/⊥ ⊥/⊥ -/2525.31s ⊥/⊥ 662873/4489.23s

Table 2.Results on the Fisher protocol benchmark. The Uppaal-A column corresponds to results
obtained using the convex-hull approximation, while the IF-U column represents our new algo-
rithm. Table entries represent the number of symbolic states and computation time. The symbol
“-” means “ not reported” (or “irrelevant” for the case of computation time on older computers)
and⊥ means “too big”.

in a conjunctive form is that in every abstract run, every transition admits a unique set
of transitions with which it is has to synchronize. This condition is fulfilled by requiring
that whenever ana-transition takes place, all automata havinga in their alphabet must
participate. If a transition could choose some subset of theother transitions to synchro-
nize with,Φ may contain disjunctions that cannot be eliminated and the result no longer
holds.

State-based synchronization in which the state of one or more automata may appear
in the invariants and transition guards of other automata ismore general and has a more
asymmetric flavor as one automaton may enable a transition inthe other without being
obliged to take a transition by itself. SupposeA1 can take a transition whenA2 is in
stateq and consider an abstract run in whichA1 takes this transition andA2 passes
throughq twice (see Figure 5). Lett be the time stamp of theA1 transition, and let
[t1, t2] and [t3, t4] be the time intervals in whichA2 stays inq. The synchronization
condition in this case will be disjunctive:t ∈ [t1, t2] ∨ t ∈ [t3, t4]. If, however, the
disablingof theA1 transition is always accompanied by an explicit transitionin A1

the run that synchronizes with the first sojourn inq and the one synchronizing with the
second one, are not qualitatively equivalent and the resultis preserved. This property
holds, for example, in the automata we use to model bi-bounded inertial delays [MP95]
as well as in models derived from free-choice Petri nets.

qtrue

A′1A2A1

q

¬q

q

q ¬qq

Fig. 5.AutomataA1||A2 do not satisfy Theorem 1 whileA′1||A2 do.

Another illuminating example which is particularly important for our motivating
application domain (circuits) is the following: letAx, Ay andAz be three Boolean
automata modeling an AND gatez = x ∧ y and consider runs in which bothx andy

rise from0 to 1 and consequentlyz rises as well. Denoting the respective time stamps
by tx, ty andtz , the synchronization condition is of the form

(tx ≤ ty = tz) ∨ (ty ≤ tx = tz)

or equivalentlytz = max{tx, ty}, which does not define a convex set. In order to apply
Algorithm 1 correctly to systems admitting this type of synchronization we need to split
every such transition to several copies, each with a unique synchronization context.

Let us remark that when the local automata are acyclic and reverse-deterministic (no
state is entered via two different sequences of transitions), all global symbolic states that

agree on the discrete state are reached via the same set of transitions. Hence our result
can be exploited without decorating the states with path information.

6 Related Work and Discussion

The application of partial-order techniques to timed systems has been subject to sev-
eral publications [R94,RM94,YS97,DGKK98,BJJY98,M99,Z02,LNZ05,ZYN03]. Al-
though our simple result is related to some of the work mentioned in the next paragraph,
it has not been stated explicitly and, moreover, its exploitation by a breadth-first version
of the standard timed-automaton reachability algorithm has never been considered.

The algorithm of Rokicki [R94,RM94], using a variant of timed Petri nets is simi-
lar to ours by computing a zone which corresponds to the interleaving of independent
transitions. This work which has been done in parallel with the development of the first
verification tools for timed automata, uses another terminology and has not proliferated
to the timed automaton culture. Two more recent efforts, which are more ambitious with
respect to full-fledged partial-order reductions, are those of Zhao [Z02] and of Niebert et
al. [ZYN03,LNZ05]. Both works use additional clocks in their algorithms and use zones
over the extended clock space (“event zones” in the terminology of [ZYN03,LNZ05],
“local successors” in the terminology of [Z02]) that represent all configurations reached
by interleavings of independent actions. We use the auxiliary clocks only in the proof of
convexity which can be deduced via their results. It is worthnoting that our result does
not require independence of actions. It would be interesting to compare the reductions
provided by the two approaches in terms of scope and performance.

An interesting idea which was first proposed in [BJJY98], inspired by distributed
simulation, is to uselocal time scales, that is to compute successors for each automaton
separately on its own clock subspace, and somehow combine these local zones upon
synchronization. Although the idea is aesthetically pleasing, it suffers from several
problems including the implicit global synchronization that takes place at time zero,
and the fact that you need to augment each automaton with an additional clock that
measures its corresponding total elapsed time. This idea, however, inspired our proof of
convexity.

We prove, nevertheless, a small result which indicates the circumstances under
which local time scales can be effectively exploited. We present the result informally.
Consider two automataA1 andA2 and a prefix of a global run that reaches a global
state(q1, q2), and in which each of the two has passed through a local state in which
all its clocks were inactive.5 If no synchronized action has taken place since then,
one can see that ifq1 → q′1 andq2 → q′2 via synchronization-free local runs, then
(q1, q2) → (q′1, q′2) in the product automaton. The reason is that because of the clock
inactivity, each of the local runs can be “delayed” and everylocal state that can be
reached at timet can be reached as well at anyt′ ≥ t and hence any pair of local states
can be made to be reached simultaneously. This implies that after such a “desynchro-
nization” point, reachable sets can be computed separatelyfor each automaton and be

5 A clock is inactive in a state if along any path starting in that state it will be reset before being
tested. This fact has been used to reduce the dimension of reachability computation [DY96].

merged via intersection before the next synchronization. This observation can be useful
for verifying products of automata that repeatedly go through such inactive states.

As a final remark, let us note that reducing the number of zonesby taking their con-
vex hull has been considered in the past [DT98] but always as an over-approximation.
We speculate that the reason for not discovering the result of the present paper is due
to the fact that the systems studied were cyclic, in which thesame discrete state could
be reached by different paths, not all of which being permutations of the same set of
transitions. That is why the possibility of exact convex hull escaped the attention. In
general we think that looking at the structure ofindividual runscan give insights that
are sometimes masked by focusing exclusively on the reachability graph representation.

AcknowledgmentThis paper has benefitted from discussions with P. Niebert.

References

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata,Theoretical Computer Science
126, 183-235, 1994.

[BJJY98] J. Bengtsson, B. Jonsson, J. Lilius and W. Yi, Partial Order Reductions for Timed
Systems,CONCUR’98, 485-500, 1998.

[BBM03] R. Ben Salah, M. Bozga and O. Maler, On Timing Analysis of Combinational Cir-
cuits,FORMATS’03, 204-219, 2003.

[BBM06] R. Ben Salah, M. Bozga and O. Maler, Automatic Abstraction of Timed Compo-
nents, submitted, 2006.

[BGM02] M. Bozga, S. Graf and L. Mounier, IF-2.0: A Validation Environment for
Component-Based Real-Time Systems,CAV’02, 343-348, 2002.

[DGKK98] D. Dams, R. Gerth, B. Knaack and R. Kuiper, Partial-order Reduction Techniques
for Real-time Model Checking,Formal Aspects of Computing10, 469-482, 1998.

[DT98] C. Daws and S. Tripakis, Model Checking of Real-Time Reachability Properties
Using Abstractions,TACAS’98, 313-329, 1998.

[DY96] C. Daws and S. Yovine, Reducing the Number of Clock Variables of Timed Au-
tomata,RTSS’96, 73-81, 1996.

[DR95] V. Diekert and G. Rozenberg (Eds.),The Book of Traces, World Scientific, 1995.
[HBL+03] M. Hendriks, G. Behrmann, K. Larsen, P. Niebert and F. Vaandrager, Adding Sym-

metry Reduction to Uppaal, FORMATS’03, 46-59, 2003.
[HNSY94] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic Model-checking for

Real-time Systems,Information and Computation111, 193-244, 1994.
[LNZ05] D. Lugiez, P. Niebert and S. Zennou, A Partial Order Semantics Approach to the

Clock Explosion Problem of Timed Automata,Theoretical Computer Science345,
27-59, 2005.

[MP95] O. Maler and A. Pnueli, Timing Analysis of Asynchronous Circuits using Timed
Automata,CHARME’95, 189-205, 1995.

[M99] M. Minea, Partial Order Reduction for Model Checking of Timed Automata,CON-
CUR’99, 431-446, 1999.

[R94] T.G. Rokicki,Representing and Modeling Digital Circuits, PhD Thesis, Stanford
University, 1994.

[RM94] T. Rokicki and C.J. Myers, Automatic Verification of Timed Circuits,CAV’94, 468-
480, 1984.

[T98] S. Tripakis, The Analysis of Timed Systems in Practice, PhD Thesis, Université
Joseph Fourier, Grenoble, 1998.

[U] Uppaal benchmarks:
www.it.uu.se/research/group/darts/uppaal/benchmarks

[YS97] T. Yoneda and B.-H. Schlingloff, Efficient Verification of Parallel Real-Time Sys-
tems,Formal Methods in System Design11, 187-215, 1997.

[ZYN03] S. Zennou, M. Yguel and P. Niebert, ELSE: A New Symbolic State Generator for
Timed Automata,FORMATS’03, 273-280, 2003.

[Z02] J. Zhao, Partial Order Path Technique for Checking Parallel Timed Automata,
FTRTFT’02, 417-432, 2002.

