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Abstract. We propose a remedy to that part of the state-explosion @nolfbr
timed automata which is due to interleaving of actions. Waverthe following
quite surprising result: the union of all zones reached Bgmint interleavings of
the same set of transitionsésnvex Consequently we can improve the standard
reachability computation for timed automata by merginghsmones whenever
they are encountered. Since passage of time distributesuoi@n, we can con-
tinue the successor computation from the new zone and etmgompletely the
explosion due to interleaving.

1 Introduction

Exploring the state space of timed automata [AD94] is a fumelatal activity with
numerous potential applications in circuit timing anasysicheduling, verification of
real-time software, performance analysis, etc. It is, h@mrea very difficult problem
still waiting for a performance breakthrough despite a@ffanvested during the last 15
years. We hope that the results of this paper will advance ttgs respect.

Partial-order methods have been widely reported in theeliswerification litera-
ture. They focus on that part of the state-explosion prolpjesed by the interleaving
semantics, as illustrated by the example of Figure 1 whersegetwo automata and
their asynchronous composition. Actiom&ndb are mutually independent and hence,
in the product automaton, staté can be reached via two paththat commute in a
“diamond”. For certain simple reachability propertiesttida not mention paths and
intermediate states, it is sufficient to explore only onehafse paths. However, if ad-
ditional non-commuting transitions are possible from thieimediate states, or if the
properties are more sequential and less invariant undemeainutations, the situation
is more involved and has been a subject of numerous puldiitatT his is not the topic
of the present paper.

In the analysis of timed automata, diamonds pose additjpradllems. Due to the
clock variables, paths that seem to commute on the trangifagram do not necessar-
ily converge to the same extended state which includes laésolbck values. Consider
the timed automata appearing in Figure 2 together with gminposition. In each au-
tomaton the transition fror to 1 resets the respective clock. The standard reachabil-
ity computation algorithm for timed automata computes aréie directed graph, the

* This is a slightly revised version of the CONCUR’'06 paperthnadditional references to
related work which were brought to our attention after tHensission of the final manuscript.
1 In generalp! paths when there aretransitions.



Fig. 1. Two automata with independent actiormndb, and their composition.

nodes of which are “symbolic states” of the fofm Z) whereg is a discrete state ari

is azone a convex set of clock valuations satisfying some conjamotif inequalities.
Apply this algorithm to the automaton we obtain two zone®eissed with statd 1,
one in whichz < y (because in all runs along this paths reset aftey) and the other
with y < 2. So here, in a situation where untimed reachability will\ange to single
state, timed reachability will generate several symbaétes from which the computa-
tion can be continued, leading very quickly to explosionugay speaking, while the
ordinary explosion associated with a productrodutomata, each with states will
lead in the worst case ©(m") states, the additional splitting due to interleaving may
resultinO(n™") states, a fact that prevents verification of systems of ncitees?

In this paper we propose a solution to this problem, whiclaiell on a new surpris-
ing® result which shows that the set of all points in the clock spaached by runs con-
sisting of interleaving of the same set of actionsdgvex Since evolution distributes
over union, zones that have been reached through diffeatins jin the transition graph
can be merged during reachability computation, thus ebutimig the interleaving explo-
sion. The rest of the paper is organized as follows. In Se@iwe give the definition
of timed automata and their interaction. In Section 3 we grawr main result which is
used in Section 4 to define a modified reachability algorithmse superiority is exper-
imentally confirmed. In Section 5 we discuss the applicghdf the results to various
forms of interaction, and conclude in Section 6 with a dis@us of related work, in
particular the idea of local time scales.

2 Timed Automata

We consider a compositiad!||.A?|| - - - || A™ of timed automata. Interaction can be de-
fined using two types of mechanisms, the first one is by symihed transitions and the
other one, which is more expressive and useful, is by shagdbles. To simplify the

2 Note that if we can push the size limit of timed verificatiow#wd non-trivial systems, the rest
of the battle against explosion can continue from theregualistraction-based methods like
the ones we have recently proposed [BBM03,BBMO06].

% What is surprising is the fact that this simple fact has nebioge part of the explicit collective
knowledge of those working in the domain, the authors inetud
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Fig. 2. Two timed automata, their composition and an example ofhaaitity computation.

presentation we will use the former to present our resultdiscuss later its extension
to state-based synchronization. For the same pedagogasdms, we make additional
simplifying assumptions concerning the form of invariaasl guards, but the results
extend naturally to any conjunction of timed inequaliti&s.for non-convex (disjunc-
tive) conditions allowed by the original definition of timadtomata, we have found no
use of them in more than 10 years experience in the dofaka also do not pay much
attention to the distinction between strict and non striegjualities which are irrelevant
to convexity.

Definition 1 (Timed Automaton). A timed automaton isl = (X, Q,C, I, A) where

X’ is a finite set of transition labelg) is a finite set of stateg, is a finite set of clocks,
I is the staying condition (invariant), assigning to every= @ a conjunction/, of
inequalities of the forme < wu, for some clock: and integeru, and A is a transition
relation consisting of elements of the fofim g, a,r, ¢') whereq and ¢’ are states,

a € X' is a transition labelg (the transition guard) is a conjunction of formulae of the
form (¢ > ) for some clocle and integerl andr C C'is a set of clocks to be reset by
the transition.

We assume one transition labelledor everya € Y. A clock valuationis a function

v : C — Rx( and aconfigurationof the automaton is a paily, v) consisting of a
discrete state (location) and a clock valuation. Weruglso to denote the reset function
on clock valuation that sets the clockiirto zero and leaves the other intact. We use
v + d to denote the clock valuation obtained frenby addingd to all clock values. A
stepof the automaton is one of the following:

— A discrete step(q, v) — (¢’,v"), for some transitiofq, g, a, r, ¢') € A such that
v satisfiesg andv’ = r(v).

* The tendency to look for results proved for the “most gerietelinition, inherited uncritically
from mathematics, can be sometimes very counter-produictidsomains which are still evolv-
ing. Perhaps this could be one of the reasons for the syasflitertain branches of theoretical
computer science.



— A time step(q,v) <, (g,v + d) for somed € R such thaw + d satisfiesl,.
A compound stejs a time step (possibly of a zero duration) followed by awdisestep:

(0,v) 25 (¢,0') = (g,0) -5 (qv+d) = (¢,0).

A run of the automaton starting from a configuratign, vo) is a finite sequence of
compound steps ending in a time step.

§: (qo,v0) ey (q1,v1) L (> 0k) 2 (i, vi + do).

We use also the notatidn, v) £, (¢',v") for runs.

We will define the interaction between the automata via afithisted alphabet’>
in the sense of the theory of traces [DR95]. For each autamétplet X be its local
alphabet, that is the set of transition labels it uses. Ompmsition semantics requires
that all 4; such that: € X should participate in an-labelled global transition. Hence
in any run of the global automaton artransition will be taken the same number of
times in all A’ such thatz € X°.

Definition 2 (Composition of Timed Automata). A composition of timed automata is
A= A'||A?||--- || A™ where each automaton is of the forth = (27, Q*, C*, I*, A?).
The sets of states and clocks of the automata are mutuajbjirtis

The global automaton obtained from the compositionlis= (X, Q, C, I, A) where
Q= 1I",Q",C = J;_,C"and X = (J;, X'. We write global states ag =
(¢%,...,q") € Q and global clock valuations ovér asv = (v!,...,v"). The seman-
tics of the composition is given in terms of global steps diefcs:

— A discrete step(q,v) — (q,v'), such that for every eithera € X' and
(¢, v") =% (¢",v") is astep ofd’, ora ¢ X% and(q"*,v") = (¢*,v").
— A time step:(q,v) <, (q,v + d) for somed € R, such that + d satisfies

Ny Iy
Global compound steps and runs are defined similarly to tbeal counterparts. It is
sometimes (and this time in particular) useful to speak efhojection of a global
run on each automaton. The projectigiof a global run¢ is obtained fron€ in two
stages. First we “hide” transitions in which? does not participate and collapse the
time passages, that is apply successively the followingsframation:

(q7 V) ﬂ) (q/,V/) d/_ﬂ: (q//7vl/) — (q’ V) ‘1#1_+;1/ (q”,v”)

whenever’' ¢ X¢. After all such external transitions have been eliminatedonoject
the run on the states and clocksA4f.

Finally let us define two additional notions. Two rugs’ of A are qualitatively
equivalentf they go through the same sequence of discrete transiindgiffer only
in timing. We denote this fact by ~ ¢’ and write equivalence classes~efby [£]. We
say thatt and¢’ arelocally equivalentdenoted by ~ &', if all their local projections
are equivalent, that is? ~ ¢ for everyi. We denote equivalence classes-~ofas
(€). Clearly,~ is stronger thanv, and perhaps too strong. Whén~ &', both runs
agree on the order of local transitions whilez £’ means that they agree also on their
interleaving.



3 Main Result

We can now formulate our main result.

Theorem 1 (Convexity).Let Z be a convex timed polyhedron anddgandq’ be two
global states ofd. Let¢ be a run starting aty and ending ing’. Then the set
g/
RZ,({) = U {V/ rdvez (qa V) - (qlvvl)}
£e(€)

is convex.

The proof is given via a characterization of the reachaldelclaluations by a quanti-
fied formula consisting of conjunctions of inequalities pelck values and auxiliary
variables. Since convex sets are closed under projectioresult follows. For economy
of notation we assume thgis such that each automateti makes exactly: steps. The
restriction of.A’ to the states and transitions involved in the run is of thenfdepicted
in Figure 3.
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Fig. 3. The part ofA* which participates ig".

As a first step we extend the description of local runs to idelthetime stamp®f
the transitions:

& (QS,UBJE) - (qzlavzlvtzl) — = (g, v, ty) — (q;c’v;chl’t;chl)'
Eachtl variable denotes thabsolute timan which the corresponding transition has
been taken Every global run if§) is completely characterized by the valwgsand
1 fori = 1.n andj = 0..k + 1. All those runs satisfy the natural local ordering
among time stamps, i. ez < t1+1, while those that are alss-equivalent agree also
on the ordering of time stamps of different automata, whicaracterize the particular
interleaving (shuffle) of the local runs.

We can now proceed to the logical characterization. We @l the following auxil-
iary notations and abbreviationg; = (¢j,...¢}) for global statesy; = (v}, ...v}),
for global clock valuationsy® = {vj, ..., v}, for the set of valuations appearing in a
local rung® andt® = {t}, ...t} for the set of local time stamps. The set of all values
that characterize a run ave= | J; v;, andt = J, t'. The predicate$®; } characterize
the clock values and time stamps in a valid stey A°.

Jdd =t —t: A

i (0 7 1) — Il ( 1+d)
BB = gl )

vj —r(7 1+ d)



This is nothing but a recapitulation of the definition of a guund step, namely that
time passage does not violate the staying condition, tinsitian guard is satisfied and
that a reset takes place. Note that this definition is inmaniender a shift of global
time, that is,<25§- (v,t,0',t') is equivalent to@é- (v,t+ d,v',t" + d) for everyd. We can
now define what constitutes a valid run.df in isolation, without taking into account
synchronization constraints. We keep this definition shifariant as well and do not
yet insist on the initial zone which is defined globally.

k
(6, v) = N\ Dhi 1, t)
j=1

The predicate which defines what constitutes a valid glalmais a conjunction of the
conditions for local runs with additional conditions thaké care of all the synchro-
nization aspects, including the fact that all runs startt@nchinate simultaneously. For
everya € Y let S, = {(i,j) : a® = a} be the set of steps that synchronizesio

J
force alla-transitions to take place at the same time we define the gatedi

W, (t) = N =t

(4:9), (3" ) ESa
The conditions for a valid global run starting.8 are then:

th=t2 = =tl A
Vo € Z() /\. _
B(t,v) = ¢ AL &' (v, t9) A
/\aGE !pa(t) A
tl — t2 R — tn
k+1 k+1 k+1

Note that the first and last conditions can be viewed as spnéhation conditions for
two additional fictitious transitions “start” and “end” inhich all automata participate.
This set is a convex subset of the space consisting of alhtialus and time stamps in
the run, and so is its projection on the lastlimensions which is the reachable set:

RZ7<5>(V]€+1) = Etﬂvl,...,vk @(t,vl,...vk,VkJrl).

O
Let us mention that the result extends naturally to arhjttnear” hybrid automata
with convex guards and invariants.

4 Application to Reachability Computation

4.1 A Modified Algorithm

We will now modify the standard reachability computatiogaithm for timed au-
tomata to take advantage of this result. The idea is to gemeganbolic states in a
breadth-firsitnanner and at each level merge those reached by the sameasetmiund



steps. To identify those we need to decorate symbolic stategpartially ordered) path

information. Ashuffle expressioaver X is a = ol||...||a™ with o* € (X%)*. Con-
catenation of a shuffle expression and a symb@ defined agal||...||[a") - a =
(BY]...]|8™) wheregi = o' if a ¢ X" and3’ = o' - a otherwise.

Reachability computation for timed automata [HNSY94] iséxdon zones (timed
polyhedra) which are expressed as conjunctions of rectanmequalities of the form
¢ < dorc > d and diagonal inequalities of the forax ¢’ < d for clockse, ¢’ and
integerd. A symbolic state is a paifq, Z) whereZ is a zone. The:i-successor of a
symbolic statdq, Z) such thay admits arn: transition is defined as

Suc*(q, Z) ={(¢’,v") : Fve Z3d >0 (q,v) e, (q',v").

The computatior(¢’, Z') = Suc®(q, Z) is done by first applying “time passage” to
Z, intersecting the result witlh, and with the transition guard and then applying the
corresponding reset. This computation cagts?) time forn clocks.

Algorithm 1 performs this computation. At each iteratidfaiting is a list of ex-
tended zones to be explored, all reached by the same numbransitions. We com-
pute the successors of all those symbolic states and putithartist New TheMerge
procedure scarldewand replaces every subset of symbolic states of the form

{(Qa Zlaa)a R (Q7 Zmaa)}

by a single statéq, Z, ) where Z is the convex hull of all these zones. From our
result it follows thatZ is exactly the union of the zones. Note that the path labels of
a zone need not be kept after its successors have been caimphigalso guarantees
termination due to the finite number of zones.

Algorithm 1 (New Reachability Algorithm)

Explored:= New:=f)
Waiting:={ (dl. Zo. <||-.[|e)}
while Waiting# () do
for each(q, Z, o) € Waiting such thatq, Z) ¢ Exploreddo
for eacha € X' do
New :=NewJ{(Suc®(q, Z),a - a)}
Explored := ExploredJ{(q, Z)}
Waiting := Merge(New)
return (Explored)

4.2 Experimental Results

To confirm the complexity reduction empirically we have fiestted a preliminary im-
plementation of Algorithm 1 restricted to products of chhke automata. Such au-
tomata are notorious for generating state explosion dugedeaving. We have consid-
ered two simple families of synthetic benchmarks shown guFeé 4. The first consists
of parallel compositions af independemnteset sequenced lengthm each. The second
class consists of parallel compositionskoindependent synchronization chains, each



being a parallel composition af synchronized sequenceflengthm. A synchronized
sequenceA”) alternates between actions that synchronize with thédeft) and the
right (a;+1,;) neighbor while separating them by at least 4 time units.

?7—1/%I =0 aij/xi; =0
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Fig. 4. The structure of the synthetic benchmarks.

The experimental results obtained for the two benchmarnidiferent values of:,
m andk are summarized in Table 1. Each entry in the table is of the B/C where B
is the number of symbolic states encountered in an ordinaagdih-first exploration,
while C is the number of states explored by Algorithm 1. Watlimarselves to instances
with less thanl0® symbolic states, and use tHesymbol to denote the fact that this
limit has been reached. Let us note that we achieve an expahesduction both for
the interleaving oindependenactions (reset sequences) and for strongly-synchronized
actions (a single synchronization chain with= 1). The reduction is clearly much
more impressive in the synchronized case, where redudbiassd on partial order or
symmetry [HBL"03] are not directly applicable.

We have then implemented Algorithm 1 into the IF toolset [BGland tested its
performance on several publicly-available benchmarkblera compares the perfor-
mance of the new algorithm on the Fisher mutual-exclusiatgzol benchmark with
other reported results. We compare with old Kronos reseferted in [T98], Uppaal
results reported in [U] and results obtained with IF withasing the new algorithm.
It is interesting to note that although our new algorithmfpens much better than
the standard Uppaal machinery, their performances ardasimhen the convex-hull
approximation option of the latter is employed. Our reshtivgs that this “approxima-
tion” can be easily made exact.

5 Generalizations and Limitations

Let us discuss briefly the applicability of our result to mgemeral modes of interaction
between timed automata. A crucial condition for expressimgchronization constraints



L n=2 | n=4 | n=6 | n=8 | n=10 |
Independent reset sequences

m=1 5/4 65/16 1957 /64 (109601 /256 1 /1024
m=2 13/9 633/81 | 75973 /729 1/6561 | 1 /59049
m=3 25/16 2713/ 256 (732529 / 4096 | /65536 /L

Synchronization chains = 1

m=1 4/4 6/6 8/8 10/10 12/12
m=2 8/8 37117 236/30 1600 /47 | 10949 /68
m=3 12/12 86 /32 1441 /72 | 30841 /140660615 /244

Synchronization chaing = 3
m=1|| 2012/64 |(812375/216 1 /512 1./1000 171728
m=2|| 97142 /512| 1/4913 | L1 /27000 | 1/103823| 1 /314432
m=3||745197 /1728 | /32768 | L /373248 /L /1

Table 1. Experimental results on the synthetic acyclic benchmarks.

|Sizd|Kronos|| Uppaal |Uppaal-A| IF | IF-U |
2 -/- -/0.01s -/0.00s 29/0.003s 18/0.002s

3 -/- -/0.03s -/0.01s 165/0.01s 53/0.01s

4 752/- -/0.23s -/0.06s 1099/0.07s 164/0.03s

5 || 3552/- -/5.09s -/0.29s 8453/1.07s 527/0.04s

6 (|16320/4] -/310.97s| -/1.34s || 74939/21.06s| 1726/0.20s

7 ||73620/4|-/51598.175 -/5.89s |(|762429/595.79s 5693/1.75s

8 /1 /1 -/25.83s /1 18792/5.73s
9 /1 /1 -/113.53s /1 61883/28.42s
10| L/L /1 -/498.88s /1 202994/367.76%
11 L/L /1 -/2525.314 /1 662873/4489.23s

Table 2.Results on the Fisher protocol benchmark. The Uppaal-Anoloorresponds to results
obtained using the convex-hull approximation, while théJdfeolumn represents our new algo-
rithm. Table entries represent the number of symbolic statel computation time. The symbol
“-” means “ not reported” (or “irrelevant” for the case of cpotation time on older computers)
and_L means “too big”.



in a conjunctive form is that in every abstract run, everpsiion admits a unique set
of transitions with which it is has to synchronize. This citiodh is fulfilled by requiring
that whenever an-transition takes place, all automata havino their alphabet must
participate. If a transition could choose some subset obther transitions to synchro-
nize with,® may contain disjunctions that cannot be eliminated andekeltno longer
holds.

State-based synchronization in which the state of one oemotomata may appear
in the invariants and transition guards of other automatzoge general and has a more
asymmetric flavor as one automaton may enable a transititreinther without being
obliged to take a transition by itself. Suppadé can take a transition whed? is in
stateq and consider an abstract run in whigh takes this transition andl®> passes
throughg twice (see Figure 5). Let be the time stamp of thel! transition, and let
[t1,t2] and|ts,t4] be the time intervals in whicti? stays ing. The synchronization
condition in this case will be disjunctive: € [t1,t2] V t € [t3,t4]. If, however, the
disablingof the A" transition is always accompanied by an explicit transifion*
the run that synchronizes with the first sojournyiand the one synchronizing with the
second one, are not qualitatively equivalent and the résylteserved. This property
holds, for example, in the automata we use to model bi-boditdatial delays [MP95]
as well as in models derived from free-choice Petri nets.

Fig. 5. AutomataA' || A? do not satisfy Theorem 1 whild'"||.A* do.

Another illuminating example which is particularly impart for our motivating
application domain (circuits) is the following: led”, AY and.A* be three Boolean
automata modeling an AND gate= z A y and consider runs in which bothandy
rise from0 to 1 and consequently rises as well. Denoting the respective time stamps
by t., t, andt., the synchronization condition is of the form

(teg <ty =t)V(ty <ty =t)

or equivalentlyt, = max{t,, t, }, which does not define a convex set. In order to apply
Algorithm 1 correctly to systems admitting this type of siirmnization we need to split
every such transition to several copies, each with a unignehsonization context.

Let us remark that when the local automata are acyclic aretsevdeterministic (no
state is entered via two different sequences of transijjaliglobal symbolic states that



agree on the discrete state are reached via the same setsifibras. Hence our result
can be exploited without decorating the states with patbrinftion.

6 Related Work and Discussion

The application of partial-order techniques to timed systdnas been subject to sev-
eral publications [R94,RM94,YS97,DGKK98,BJJY98,M992I0NZ05,ZYNO3]. Al-
though our simple result is related to some of the work meetitin the next paragraph,
it has not been stated explicitly and, moreover, its exatmn by a breadth-first version
of the standard timed-automaton reachability algorithsrever been considered.

The algorithm of Rokicki [R94,RM94], using a variant of tich®etri nets is simi-
lar to ours by computing a zone which corresponds to thele#eing of independent
transitions. This work which has been done in parallel withdevelopment of the first
verification tools for timed automata, uses another tertomyand has not proliferated
to the timed automaton culture. Two more recent effortsctvlare more ambitious with
respectto full-fledged partial-order reductions, areéafZzhao [202] and of Niebert et
al. [ZYNO03,LNZ05]. Both works use additional clocks in thalgorithms and use zones
over the extended clock space (“event zones” in the term@gyobf [ZYNO3,LNZ05],
“local successors” in the terminology of [Z02]) that repssall configurations reached
by interleavings of independent actions. We use the auyxitimcks only in the proof of
convexity which can be deduced via their results. It is woigting that our result does
not require independence of actions. It would be intergdtincompare the reductions
provided by the two approaches in terms of scope and perfarea

An interesting idea which was first proposed in [BJJY98]pinsd by distributed
simulation, is to uséocal time scalesthat is to compute successors for each automaton
separately on its own clock subspace, and somehow combeése thcal zones upon
synchronization. Although the idea is aesthetically glegsit suffers from several
problems including the implicit global synchronizatiorathiakes place at time zero,
and the fact that you need to augment each automaton with diticaal clock that
measures its corresponding total elapsed time. This idwegVer, inspired our proof of
convexity.

We prove, nevertheless, a small result which indicates tlwirostances under
which local time scales can be effectively exploited. Wespre the result informally.
Consider two automata® and.4? and a prefix of a global run that reaches a global
state(q', ¢?), and in which each of the two has passed through a local statéich
all its clocks were inactive.lf no synchronized action has taken place since then,
one can see that if' — ¢’' andg® — ¢'2 via synchronization-free local runs, then
(%, ¢%) — (¢'*, ¢'?) in the product automaton. The reason is that because ofdbk cl
inactivity, each of the local runs can be “delayed” and evepal state that can be
reached at time can be reached as well at atly> ¢ and hence any pair of local states
can be made to be reached simultaneously. This implies fteatsaich a “desynchro-
nization” point, reachable sets can be computed separfateach automaton and be

5 A clock is inactive in a state if along any path starting inttsiate it will be reset before being
tested. This fact has been used to reduce the dimensionabfaieitity computation [DY96].



merged via intersection before the next synchronizatibis ®bservation can be useful
for verifying products of automata that repeatedly go tigtosuch inactive states.

As a final remark, let us note that reducing the number of zbgésaking their con-
vex hull has been considered in the past [DT98] but alwaysaver-approximation
We speculate that the reason for not discovering the rebtittegpresent paper is due
to the fact that the systems studied were cyclic, in whichstrae discrete state could
be reached by different paths, not all of which being pertarta of the same set of
transitions. That is why the possibility of exact convexltadcaped the attention. In
general we think that looking at the structureimdividual runscan give insights that
are sometimes masked by focusing exclusively on the redithglbaph representation.

AcknowledgmentThis paper has benefitted from discussions with P. Niebert.
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