
On the Programming of Industrial Computers

Oded Maler

June �� ����

Abstract

This report� which is part of the deliverable IP�� of the Esprit project VHS �Veri�cation
of Hybrid Systems�� analyzes some software engineering aspects of industrial computers
such as PLCs �programmable logic controllers� and DCS �distributed control systems��
The report starts with a comparison between the development of software engineering for
general�purpose computers and the programming of control computers� Then it critically
surveys the �ve programming languages de�ned by the IEC ��	��	 standard which is
intended to unify PLC programming languages� Finally several potential contributions of
the consortium toward improving the state�of�the�art in this domain are suggested�

� Introduction� Industrial vs� General�purpose Computers

Programming methodologies for the general�purpose computer have undergone tremendous
improvements since the ���s� In few decades programming moved from machine code and
assembly languages� via the �rst high�level languages� structured programming� data�types�
cross�compilers and debuggers up to object libraries� graphical programming environments
and inter�application interfaces� The outcome of all these developments 	and many others not
mentioned here
 is that programming can be done at a more abstract and problem�oriented
fashion� letting the computer itself do the tedious tasks of handling the technical details of
the speci�c hardware platform on which the program will eventually run� Consequently the
cost�e�ectiveness and quality of software production has increased beyond what could be
imagined in the early days of computers�

So far the development of programming methodologies for special purpose industrial com�
puters has been signi�cantly slower�� Before we analyze this problem� its origins and� hope�
fully� some of its solutions� we have to characterize� even roughly� the type of systems we are
talking about� First and foremost we are concerned with systems whose major role is to inter�
act via sensors and actuators with a dynamic physical environment� in other words� computers
that control� Of course� ordinary computers are connected as well to peripherals such as a
mouse� a keyboard or a communication port� but this interaction is not their raison�d��etre�
The functionality of control computers is de�ned in terms of the performance of the physical
processes with which they interact� In order to achieve this performance the control system
monitors input signals which deliver information from the process� makes some calculations

�While the scope of this report is the class of systems controlled by PLCs and DCSs� some of the initial
considerations are common to all computer that control� sometimes referred to as �embedded�� �reactive�� or
�real�time� systems�

and produces output signals which are then ampli�ed and transduced into actions that in�u�
ence the process� The calculations done by the controller are usually simple� 	compared to
arbitrary algorithms which can be performed by general�purpose computers
 but they must
respect some timing constraints due to the interaction with a dynamic environment which
does not wait for the controller to conclude its computations�

One can distinguish between two types of signals� continuous and discrete� The former
represent quantities such as temperature� velocity or water level while the latter can stand for
on�o� states of devices such as valves and furnaces� for threshold conditions on continuous
quantities or for higher�level supervisory signals� In the pre�computer days calculations over
continuous signals where done by analog means� �rst mechanically and later electrically by
analog computers� This is the origin of the block diagram paradigm where input signal move
through arithmetical components and integrators to produce output signals� Similarly the
discrete �logical� input�output functions were computed initially by electro�magnetic and
pneumatic relays and later by hardwired digital electronics� which can be viewed as a discrete
version of block diagrams�

The rapid progress in VLSI technology and the arrival of cheap micro�processors a�ected
both types of control systems� For continuous control it turned out to be more cost�e�ective
to replace analog noisy devices by digital calculations� The price of going digital is the replace�
ment of �real� numbers� represented by magnitudes of physical quantities� by their binary en�

coded �oating�point approximations and of continuous control by sampled piecewise�constant
control� The nature of continuous processes 	sampling theorems
 combined with the speed
and accuracy of digital computers guarantee the dominance of digital control� Discretized
versions of continuous blocks such as integrators and PID controllers are widely used� On
the discrete control side� the replacement of the hardwired 	and later programmable
 logic
controller by a general�purpose microprocessor was even more natural� With a microprocessor
inside� one would expect that control computers will converge toward general�purpose com�
puters and bene�t from the progress in software engineering but some technical� conceptual
and sociological factors are slowing�down this convergence� To analyze the situation let us
see what is still special about computers that control�

The major feature of control computers is the need to interact with many I�O signals com�
ing from various types of devices� From the computer hardware point of view this means that
the processor board is augmented with specialized I�O boards whose function is to connect
physical signals with the computer memory using A�D and D�A conversion� ampli�cation of
output signals in order to drive actuators� and communication with the processor� In addi�
tion� these computers are supposed sometimes to work in hard physical conditions and be
more solid and reliable�

Hence the processor and its software constituted a secondary concern relative to measure�
ment technology and other electrical and mechanical engineering considerations� The intimate
connection with the physical world explains the lag in development of more high�level pro�
gramming culture in this domain� In fact� the situation is similar to that of operating systems
programming two decades ago� where �systems� programming was dominated by assembly
languages and low�level primitives to handle I�O devices and improve performance�

The diversity of plants to be controlled� such as airplanes and missiles� re�neries� CNC
machines� production lines at various scales� railway systems� washing machines� alarm sys�

�Simple in the technical sense that all instances of the computation can be performed within a�priori
bounded time and space� These computations can be very complicated in other senses�

�

tems� and what not� made it hard to reach a general abstract concept encompassing the
common features of all these phenomena�� As a result� real�time programming 	also known
as embedded systems� computer enabled control� etc�
 is one of the most eclectic and con�
fused parts of computer science� In some safety�critical domains such as avionics� or nuclear
plant monitoring� there was a concentration of a critical mass of software engineers working
on the same application using the same hardware and software platform� However� in many
industrial domains� software developers work in relative isolation� they are not the domi�
nant sub�community in the enterprise� and their productivity is not the determining factor in
hardware selection decisions� Consequently� they are often locked in the speci�c programming
environment supplied by hardware vendors� and need to stay with the same vendor in order
to reutilize already developed software� This situation was very convenient for the major
hardware vendors�

In contrast� the general�purpose market converged mostly into the open architectures of the
personal computer or workstation where hardware vendors compete with each other� o�ering
a variety of choices in motherboards� processors� I�O cards� modems� monitors� etc� This
open �plug�and�play� architecture encourages competition among vendors� resulting in price
reduction and can be viewed as one of the driving forces behind the proliferation of computers
in contemporary society� The quest for a similar standard interface is now taking place in
the consumer electronics market 	IEEE ���
� and will probably change the landscape of this
domain as well� As for software� albeit the dominance of Microsoft on the Intel architecture�
users have a choice in almost any application domain 	including operating systems
 and there
are numerous programming environments� including several competing compilers for every
useful programming language�

Inspired by this state�of�a�airs� users and developers of industrial control systems started
to push toward an open hardware and software architecture for industrial computers� based
on a PC�like computer with a modern programming environment� The advantage of such
PC�like systems is their easy integration with other software used by the enterprise� This
connection is achieved either by interfacing the PLC operating system with a commonly�used
operating system� or by using the concept of a Soft PLC� which is deliever the functionality
of a PLC as a software task under an ordinary operating system� At the hardware level�
compatibility is to be achieved by the use of one or more out of several standard buses and
communication protocols already being used in the industry 	some �eld bus standard already
exist for DCS
� In order to create a common base for stadards� terminology and software�
the IEC 	International Electro�technical Commission
 formed several technical committees
resulting in the so�called IEC ��� standard� published in ����� Later� an independent
association called PLCopen was created to promote the usage and supply of products in
conformance with this standard�

�Compare again with the much simpler domain of business data�processing� in which it took many years
to develop the unifying concept of the data�base management system� separating the logical from the physical
in information storage�

�This is part of a more general standard� supposed to de�ne common terminology in the chemical process
control world� but we will concentrate on the software�

�

� The IEC ������ Standard

��� Introduction

The IEC ��� standard 	hereafter �the standard�
 is an attempt to unify� at least at the
syntactic level� the main types of languages used in practice for PLC programming around
the world� Before getting into the details� some general comments about theory and practice

are in order� From a theoretical point of view it is somewhat strange to read a document
that speaks with the same importance about details such as character sets� and about how to
connect and evaluate function blocks� the former being a theoretically�trivial question while
the latter is a deep semantic issue on which numerous papers have been written� Neither does
a theoretician feel comfortable with a document starting as a legal contract with a list of ��
terms and their meaning in the text� These terms are of various sorts including absolute time�
bistable function block� generic data�type� resource� task� carriage return and ��� semantics�
These sentiments are not particular to the IEC standard and one can feel the same toward
formalisms such as VHDL 	hardware de�nition language
� SDL 	a language for specifying
distributed systems
 and UML� which is supposed to be a �universal� modeling formalism�
supported by software industry giants� All these formalisms seem to put too much attention
to notation and features 	to satisfy all committee members
� while neglecting the semantics�
that is� what is the meaning of the speci�cation or the program written in them� However�
let us not forget that�

� Theoretically�trivial questions such as compatibility of character sets 	or electronic
plugs� for that matter
 are prerequisites for any possibility of connecting devices and
software units together�

� The engineer needs to solve problems in real�time and produce solutions for concrete
problems today� The esthetics� generality and scalability of the solutions are of sec�
ondary importance� People started to communicate with each other long before having
any abstract ideas about grammar or meaning�

� Theoreticians have a tendency to want to start everything from scratch� However in
real life� backward compatibility is very important� even if the price is carrying with
you some of the anachronisms of previous solutions� Moreover� practitioners tend to
hold on to formalisms and tools they are used to 	see Fortran or Cobol
 as long as they
feel they solve their problems�

Having this in mind� together with the fact that before the standard� many PLC vendors
provided more or less the same functionalities but with di�erent syntax� one can appreciate
the enormous progress which the standard has brought� although some aspects of the standard
will be criticized from a theoretical standpoint in the sequel� Five classes of languages are
covered by the standard�

� Instruction List 	IL
� An assembly language inspired by languages used in various ex�
isting hardware platforms�

�� Structured Text 	ST
� A Pascal�like imperative general�purpose programming language�

�� Ladder Diagram 	LD
� Essentially the popular graphical RLL formalism used mostly
in the US� Ladder diagrams are essentially yet another way to write Boolean switching
functions based on the metaphpor of relays�

�

�� Function Block Diagrams 	FBD
� a data��ow formalism for describing a network of
function blocks connected by signals�

�� Sequential Function Charts 	SFC
� A graphical formalism inspired by the French 	stan�
dard
 formalism Grafcet� based on a variation of a class of Petri nets� This formalism
allows a combination of sequential and parallel activities and is popular in Europe� The
standard is adopted mostly from an older standard called IEC ��� de�ned in ����

As one can see� the languages come from various origins� IL and ST are in the computer
science tradition of sequential programming� while LD and FBD imitate the structure of their
predecessors� that is� hardware implementation of discrete and continuous controllers� which
are essentially parallel by nature� SFC combines sequentiality with parallelism�

The standard does not try to de�ne compatibility relations between these formalisms� It
allows 	without a guarantee of meaningfulness
 to combine elements from di�erent languages�
Many lexical� syntactical and graphical conventions are shared by all these languages�

��� Common Features

The standard starts with a description of the hardware and systems software environments
	con�guration and resource
 on which programs are supposed to be run� The simplest and
most generic case is a single control program running on single PLC� Such a program reads its
input� calculates its state and writes its output� The details of how a speci�c PLC performs
I�O and memory management operation are not part of the standard� which is based on a
layered architecture� It is assumed that the PLC sensor readings and actuator values are
passed through machine�speci�c memory locations� and the application software need not be
concerned with these details� This part of the standard also links the programming standard
with higher�level parts of the IEC�� standard for which PLC systems are among the
building blocks� The standard has constructs for allowing di�erent programs to be loaded
and run on the same PLC 	separately or under multi�tasking
 and for several PLCs running
in parallel and communicate via �access paths� which are abstractions of communication
protocols�

A program is built from a number of di�erent software elements� written in any of the �ve
languages 	typically function blocks
� which may exchange data among themselves� These
software elements are composed in parallel and are not invoked by themselves unless they
are assigned to a task and the task is either triggered by an event or con�gured to execute
periodically�

All languages share the same character sets and conform to ISO standards and conven�
tions for encoding time stamps� The standard de�nes elementary data�types� declaration of
compound data�types� initializations� etc� Variables can have local or global scopes� This is
standard stu� in modern programming� In addition to the usual abstract variables� there are
�directly represented� variables which are addresses in the input� output and internal memory
locations� There is also a distinction between normal and �retainable� variables� where the
latter are supposed to keep their value after a physical shutdown of the computer�

��� Functions and Function Blocks

Function blocks are one of the basic elements of the standard� a special case of which are
the 	memoryless
 functions which we discuss �rst� These are functions that have no internal

�

variables that persist between two invocation� and hence produce the same output for the
same input each time they are called� Basic built�in functions can be composed together in
an acyclic fashion to yield new functions� This is a well�known and non�problematic practice
in sequential programming and in the design of combinatorial circuits�

Functions can be written either in the textual ST language 	standard Pascal�like de��
nition
 or in a graphical formalism used for the FBD language� The syntax of the latter
is de�ned using a mixture of text and ASCII graphics whose origin is probably related to
backward compatibility with existing programming environments� Someone more aware to
the distinction between syntax and semantics and between internal and graphical representa�
tion� would have probably o�ered a cleaner formulation based on an abstract mathematical
representation of a network of functions 	along with its isomorphic internal computer repre�
sentation
� a compilation of textual programs into this format� and a graphic editor which
can extract the structure of the network from a user�drawn graphical layout� This is in fact
what is done today by IEC�����based tools�

The standard o�ers numerous built�in functions including� type conversions� numerical
operations� boolean functions and string manipulation and selection functions� In general�
functions do not seem to pose any serious semantical problems as long as combinatorial loops
are avoided�

Function blocks� which are function with memory� constitute the major software element
of the standard� In software terminology� a function block is a reactive module with its own
variables and data�structure and an interface with the outside world�

Here� we believe� a better understanding of the theoretical issues involved� would have
improved the standard� The objects described by function blocks are as well functions� but not
functions on �static� data�types such as reals� or integers or Booleans or some aggregations of
those� but rather functions on sequences of elements taken from these domains� For example�
the function block DEBOUNCE appearing in Figure � of the standard is not a function from
BOOL � TIME to BOOL � TIME but a functions that maps sequences of BOOL � TIME
to other sequences of this domain� In theoretical terminology this is a sequential function
or a transducer� which can be represented by an automaton or by a circuit with latches� Of
course� memoryless functions� described in the previous paragraph� such as AND which maps
pairs of Booleans to Booleans can be extended naturally to functions on sequences� but since
at each time instance the current output depends only on the current input� this point of view
does not contribute much� For functions with memory� this insight is indispensable� and is in
the heart of the distinction between transformational and reactive systems��

Function block declaration are syntactically similar to functions� except for having internal
variables which can be updated at every invocation and retain their value after each invocation
	this is an indirect way to speak of sequences
� In fact� the declaration of a function block
is viewed in the standard as declaring a type� and then instances of this type are declared
as variables� In principle function blocks can be transferred as arguments to function blocks�
which is a semantic can of worms� I am not sure the authors would like to open�

There are many standard function blocks such as �ip��ops and counters� Other function
blocks provide discretized versions of continuous�time operators such as integral and deriva�
tives� Integration� for example� is done at each cycle by adding the product of the input and

�These claims should not be interpreted as preference of I�O descriptions over state�space descriptions�
The only message here is that what function blocks do is to transform input sequences to output sequences� A
representation by a program or ab automaton can be as good and sometimes preferrable to an I�O description�
as long as we remeber what is the functionality of the object in question�

�

the size of the time step� Here� again� a careful understanding of the objects in question 	in
this case� discrete time and continuous time signals and functions de�ned on them
 could
contribute to clarifying the text�� As an example of blurring this distinctions� we can look at
section ���������� where de�nitions of standard blocks called timers are given� They appear
only graphically without their de�nition in textual language� Moreover� for some of them it
is speci�ed explicitly that they cannot be used in textual languages� Their �semantics� is
exempli�ed in table �� using what appear to be continuous time signals�

��� The Languages

����� The Textual Languages IL and ST

The textual languages are Instruction List � IL and Structured Text � ST� Both are essentially
classical sequential and imperative languages� the �rst being a low�level assembly language and
the second a high�level Pascal�like language� Such languages are fairly standard in computer
science and we have only the following comments�

� Using the full expressive power of these languages 	e�g� WHILE loops
 it is possible to
write procedures whose execution time is not predicted� not bounded and even in�nite�
Incorporating such programs in control application is� of course� not a healthy practice�
On the other hand� it is possible to impose syntactic restrictions which may guarantee
bounded response time� For example� one can allow only programs with no backward
jumps 	in IL
 or restrict FOR�loops to have constant delimiters 	in ST
 to guarantee
this property�

� These languages are inherently sequential which makes them insu�cient for being a for�
malism for writing whole control applications� which almost always have parallelism� In
the absence of an explicit parallel composition construct� concurrency is achieved either
using additional multi�tasking de�nitions 	as in ADA
� or doing the parallel composi�
tion via other languages 	FB and SFC
 which can accept sequential modules as building
blocks� An alternative approach is demonstrated by the real�time imperative language
Esterel� or by formalisms such as CCS and CSP� which do admit an explicit parallel
composition operator in the syntax of the programming language itself�

In any case� these languages are well�suited for writing modules by programmers having a
general computer science 	rather than control
 culture� The IL language can serve as a basis
for an abstract machine to which other language can compile�

����� Ladder Diagrams � LD

Ladder diagrams is a graphical language designed for backward compatibility with the RLL
formalism� itself a result of backward compatibility with hardware relay technology� Essen�
tially what you want to write in LD are relations between the values of current state and input
variable and the values of next state and output variables� plus some suggestions on the order
of evaluation of the conditions involved� The technology of Boolean expressions and Binary

�In MatrixX�Xmath� a popular block diagram package for control engineers� the delay operator z for discrete
time signals is distinct from the delay operator on sequences which is called there �shift register� although
their functionality is the same�

�

Decision Diagrams 	BDD
 seems to me much more suitable for this purpose then the language
of relays� In fact� relays resemble transistors� which are semantically more complicated than
Boolean gates� The use of transistors is justi�ed in the design of digital circuits where they
are closer to the physical implementation medium than their Boolean abstraction� But as a
metaphor for decision making� which is later to be compiled into software� there is no real
reason to use the anachronistic relay metaphor� which can be encoded using Boolean block
diagrams� Of course� this is a subjective opinion and the death of this dialect can be a very
slow process���

����� Function Block Diagrams � FBD

Function block diagram 	FBD
 is a graphical language for composing simple function blocks
together to form larger ones� The interaction between function blocks is represented by
�wires� connecting output variables of one block with an input variable of another block� A
composition of several blocks can be encapsulated into one big block� encouraging a modular
and hierarchical style of program development� There are� however� certain programming
constructs which are not comfortably expressible using graphical notation� These include
FOR�loops and operations on arrays� interrupts which lead to abortion and complex algo�
rithms in general�

Function blocks diagrams resemble very much the data��ow language Lustre which un�
derlies the programming environment Scade� used in avionics and nuclear plant control� Due
to the safety�critical aspects of these applications� Lustre is based on a very precise semantics
	functional equations on sequences
 and goes through a compilation process which includes
checking whether the program is well�de�ned 	no causal loops
 and a generation of an opti�
mized C code which runs all the program as a single loop 	no multi�tasking
� Although many
applications of PLC systems are not as safety�critical nor time�critical as �ight control�� we
believe that some of the insights gained in the Lustre experience� such as simple sequence�
based semantics� few primitives or explicit delay operator� can contribute to the development
of future versions of FBD and their corresponding semantics� On the other hand� the IEC
idea of allowing certain blocks to be written in a well�behaving subset of an imperative lan�
guage� directly in the programming environment 	unlike connection to C routine in the linking
phase
 might be useful as an extension to Lustre in cases where the data��ow formalism is
not adequate�

����� Sequential Function Charts � SFC

Sequential function charts constitute a formalism which combines sequential and parallel op�
erations� Whether is should be considered as a �fth IEC language or as more high�level
structuring tool is a question of terminology� SFC is based on Grafcet which can be roughly
characterized as a synchronous and labeled variant of Petri nets� There are many incompat�
ible interpretations of this important formalism 	again� the standard is rigorous about the
orientation of connecting lines� but less so concerning the operational semantics
 and we will
try to give the main principles�

A basic entity in SFC is the step� In fact� it is not easy to understand and explain this
notion without having a clear distinction between the state of the PLC system and that of

�On some popular packages for PLC programming� such programs are run via an interpreter� and certain
applications are slow enough to run even on Windows NT	

�

the environment� Roughly� from the point of view of the PLC� a step is part of its state 	when
there is no parallelism� the step is the state
� When a PLC program is in a step� it typically
implies that certain output variables controlled by the program 	what is called �actions�� see
below
 are kept in a certain value� For example� a step �heat� in a PLC program might mean
that a a certain Boolean variable� whose value is actuated into the heating device� is in a
state ON� The actual physical process which underlies the step might be more complicated
and include lower�level feed�back loops� but at the level of the SFC it is represented by one
or more variables which stay constant during the period in which the step is active� This
is similar� to a certain extent� to the layered architecture used in communication networks�
where what is viewed as a �transmit �le� step at one layer is realized by a complex dynamic
process in a lower layer� Steps are represented graphically by rectangular boxes�

Two consecutive steps are separated by a transition� which is essentially a condition over
input variables 	the condition can be written using various IEC languages� but this is not the
important point
� When the transition condition is true� the �rst step terminates and the
next state starts� In the heating example� a condition might be �temperature more than ���
which refers to a sensor reading of a variable in�uenced by the step 	of course� from the PLC
point of view the two variables are unrelated � it is only through the physical environment
that they become related
� A transition condition can be any other external event triggered�
for example� by the operator� The termination of the �rst step is accompanied by �undoing�
some of what has been done by the �rst step� for example� turning the heater OFF� What
is reset and what is retained depends on the quali�ers of the actions which constitute the
step � see later� Graphically� a transition is a bold horizontal line crossing the vertical line
connecting the two steps 	see Figure �a
�

There are two special variables associated with every step� One is a Boolean variable
indicating whether the step is active or not 	whether it has a token� in the Petri net termi�
nology
� The other is a timer which measures the time elapsed since activation� This variable
can appear in transitions like any other variable and allows to specify time�bounded behavior
such as �heat for � minutes��

So far we have described �straight�line programs� without choice� The mechanism to
implement choice is to use divergent paths� that is� to split the line leaving a step into two
or more lines� each with its associated transition condition and next step� The conditions
need not be mutually exclusive and they are evaluated using a default or a user�de�ned order
to decide which branch will be taken�� The notation is somewhat unfortunate because the
bifurcation of the lines takes place before the competing conditions and it may lead to some
confusion with parallelism�

The parallel composition operator is represented graphically by a horizontal double line�
from which several parallel sequences can emanate� In that case the state of the system is
the set of the states of the parallel processes which proceed independently until they merge
again� Such a �synchronization� is represented by another horizontal double line to which
all the last steps of the involved processes converge� and the transition following that line
terminates these steps 	see Figure �c
�

Using parallelism it is very easy to produce bugs and meaningless programs� One pos�
sibility is to modify the same variable in two or more concurrent branches of the program�
Another possibility is to �synchronize� two branches which are exclusive 	not concurrent
�

�Of course� it is theoretically trivial to convert an ordered set of conditions into an equivalent unordered
and mutually exclusive set� but some users might prefer this ELSE��IF construct�

�

Heat

Stir

T � ��
P�P�

S�S�

S

S�

S�

S�

S�

�b��a�

�c�

Figure � Examples of SFC constructs� 	a
 sequence� 	b
 choice and 	c
 parallelism�

�

This will cause a deadlock� Other forms of unsafe programming might create an unbounded
number of parallel steps� Most of these problems can be avoided by a discipline of program�
ming which restricts the syntax of programs which are accepted by the program development
environment�

So far we have avoided a discussion of the semantics of SFCs� At the theoretical level� the
appropriate objects are continuous�time signals� most of which are discrete�valued and the
rest are clocks� Assuming a non�Zeno behavior 	values of external variables and conditions do
not change in�nitely many times in a �nite interval
� SFC programs can be viewed as signal
transducers� In order to avoid ambiguity� one can assume that no two events happen at the
same time� and that every condition is �red as soon as it is true� This ideal semantics is
approximated by an implementation where the input variables are sampled periodically� Here
two events can happen at the same cycle� one making a condition true and the other falsifying
it� The interpretation rules of Grafcet are supposed to give an unambiguous semantics to such
cases�

As mentioned above� steps can be contain a sequence of actions which can have various
quali�ers determining the duration of an action during the step lifetime� Some actions can be
active during the whole step� some can be �done�	 only at the beginning or the end of a step�
some may be delayed� etc� Personally� I feel this could be done more elegantly using fewer
types of action quali�ers and more steps� Some implementations allow hierarchical design
where an SFC is regarded as a step by a higher�level SFC and there is no reason why steps
with multiple action quali�ers cannot be broken into sequences of steps�

To summarize� SFC is a powerful formalism which seems to be natural for processes
which combine sequential and parallel aspects� I cannot avoid remarking that in theoretical
computer science� Petri nets are considered part of the theory of concurrency while from the
control point of view they are viewed as sequential� and indeed they are� compared to block
diagrams�

� Potential Contributions of the Consortium

The contribution of the reactive systems community�
 to the enterprise of programming in�
dustrial computers can be in the following inter�related domains�

� Giving a precise semantics to PLC programs and their physical environments� Concur�
rent and distributed systems have been investigated by computer scientists for years
and exposing the useful essence�� of this knowledge 	mutual exclusion� synchrony vs�
asynchrony� causality and so on
 can do good for both communities� More recent re�
search on timed and hybrid systems may clarify subtle issues concerning the interaction
of the computer with its environment�

�� In�uencing the development of design methodologies� language standards and program�
ming environment toward the more rigorous side� This e�ort should be based on the
accumulated experience of developing and studying various languages and tools 	such

	There is some confusion already in the name �action�
 is keeping the heater ON an action in the same
sense that incrementing a counter is�

�
This broad term refers to computer scientists working on the semantics� veri�cation and programming
methodologies for computers that interact with an external environment�

��That is� around � of the publications�

as Lustre�Scade� StateCharts and Esterel
 for other application domains� General com�
puter science know�how� such as compilation technology� which is not speci�c to the
reactive systems community can be useful as well�

The question of whether such a contribution is possible via interaction with users�
technical committees� hardware or software vendors is an empirical one� Hopefully it
will be answered by the end of the project�

�� Development of veri�cation technology for PLC programming� Controllers written in
a well�de�ned language can be subject to formal veri�cation which is equivalent to
exhaustive testing of the program in front of all admissible behaviors of the external
environment� For program properties which do not require modeling of the environment�
�classical� discrete veri�cation is already applicable� as witnessed by some work on case�
studies and �� Transforming programs written in well�behaving subsets of the IEC
languages into formats used by existing veri�cation tools is a standard exercise�

For time�dependent properties� the new technology of timed automata 	Kronos� Uppaal

can be applied� although a lot is still to be done in terms of modeling principles and
more e�cient veri�cation algorithms� More intricate properties require modeling of
the environment� Whether a heating step� whose termination condition is that the
temperature passes a certain threshold� indeed terminates� depends on the fact that
the temperature is monotonically increasing and diverging 	at least in a certain range

when heat is on� More detailed properties� such as quantitative estimation of step
durations� require �ner levels of modeling� Finding the most abstract description level
of the external physical dynamics which is still su�cient for veri�cation of interesting
properties is a major challenge for the rest of the project�

� Conclusions

The programming of industrial computers is still shaped by languages used for old technology
and backward compatibility� but the �rst signs of an evolution toward a more structured and
high�level discipline of programming are already visible�
Acknowledgements� The views of the author on the implementation of controllers and
real�time programs were mostly shaped by numerous discussions with Paul Caspi� Stefan
Kowalewski helped in understanding some IEC���� concepts� Discussions and exchanges
with S� Engell� J��M� Flaus� J� Camand� P� Niebert� Y� Giroud and E� van der Wal contributed
to increase the correspondence betwee this report and reality� Excessive opinions and factual
inaccuracy should be attributed to the author�

�

