
Fast and Flexible Difference Constraint

Propagation for DPLL(T)

Scott Cotton and Oded Maler

Verimag, Centre Équation
2, Avenue de Vignate
38610 Gières, France

{Scott.Cotton,Oded.Maler}@imag.fr

Abstract. In the context of DPLL(T), theory propagation is the process
of dynamically selecting consequences of a conjunction of constraints
from a given set of candidate constraints. We present improvements to a
fast theory propagation procedure for difference constraints of the form
x− y ≤ c. These improvements are demonstrated experimentally.

1 Introduction

In this paper, theory propagation refers to the process of of dynamically select-
ing consequences of a conjunction of constraints from a given set of constraints
whose truth values are not yet determined. The problem is central to an emerg-
ing method, known as DPLL(T) [10, 17, 3, 18] for determining the satisfiability
of arbitrary Boolean combinations of constraints. We present improvements to
theory propagation procedure for difference logic whose atomic constraints are
of the form x − y ≤ c. Our contribution is summarized below:

1. We introduce flexibility in the invocation times and scope of constraint prop-
agation in the DPLL(T) framework. This feature is theory independent and
is described in more detail in [4].

2. We identify conditions for early termination of single source shortest path
(SSSP) based incremental propagation. These conditions allow us to ignore
nodes in the constraint graph which are not affected by the assignment of
the new constraint.

3. We implement a fast consistency check algorithm for difference constraints
based on an algorithm presented in [9]. As a side effect, the performance
of subsequent theory propagation is improved. We present an adaptation of
Goldberg’s smart-queue algorithm [11] for the theory propagation itself.

4. We show that incremental complete difference constraint propagation can be
achieved in O(m+n log n+ |U |) time, where m is the number of constraints
whose consequences are to be found, n the number of variables in those
constraints, and U the set of constraints which are candidates for being
deduced. This is a major improvement over the O(mn) complexity of [17].

The rest of this paper is organized as follows. In Section 2 we describe the
context of theory propagation in DPLL(T) and review difference constraint prop-
agation in particular. In Section 3, we present a simplified consistency checker
which also speeds up subsequent propagation. Our propagation algorithm in-
cluding the early termination feature is presented in Section 4; experimental
evidence is presented in Section 5; and we conclude in Section 6.

2 Background

Propagation in DPLL(T) The Davis-Putnam-Loveland-Logemann (DPLL)
satisfiability solver is concerned with propositional logic [6, 5]. Its input formula
ϕ is assumed to be in conjunctive normal form. Given such a formula, a DPLL
solver will search the space of truth assignments to the variables by incrementally
building up partial assignments and backtracking whenever a partial assignment
falsifies a clause. Assignments are extended both automatically by unit prop-

agation and by guessing truth values. Unit propagation is realized by keeping
track of the effect of partial assignments on the clauses in the input formula. For
example, the clause x ∨ ¬y is solved under an assignment including y 7→ false

and is reduced to the clause x under an assignment which includes y 7→ true

but which contains no mapping for x. Whenever a clause is reduced to contain
a single literal, i.e. it is in the form v or the form ¬v, the DPLL engine extends
the partial assignment to include the truth value of v which solves the clause. If
a satisfying assignment is found, the formula is satisfiable. If the procedure ex-
hausts the (guessed) assignment space without finding a satisfying assignment,
the formula is not satisfiable.

DPLL(T) is a DPLL-based decision procedure for satisfiability modulo the-
ories. The DPLL(T) framework extends a DPLL solver to the case of a Boolean
combination of constraints which are interpreted with respect to some back-
ground theory T . An external theory-specific solver called SolverT is invoked at
each assignment extension in the DPLL procedure. SolverT is responsible for
checking the consistency of the assignment with respect to the theory T . If an
assignment is inconsistent, the DPLL procedure backtracks just as it would if
an empty clause were detected. In addition, a central feature of DPLL(T) is
that SolverT may also find T -consequences of the assignment and communicate
them to the DPLL engine. This latter activity, called theory propagation, is in-
tended to help guide the DPLL search so that the search is more informed with
respect to the underlying theory. Theory propagation is thus interleaved with
unit propagation and moreover the two types of propagation feedback into one
another. This quality gives the resulting system a strong potential for reducing
the guessing space of the DPLL search. Consequently, DPLL(T) is an effective
framework for satisfiability modulo theories [10, 3, 17].

Flexible Propagation We define an interface to SolverT which allow it to
interact with the DPLL engine along any such interleaving of unit propagation
and theory propagation. Below are three methods to be implemented by SolverT ,
which can be called in any sequence:

SetTrue. This method is called with a constraint c every time the DPLL engine
extends the partial assignment A with c. SolverT is expected to indicate
whether or not A∪{c} is T -consistent. If consistent, an empty set is returned.
Otherwise, an inconsistent subset of A ∪ {c} is returned.

TheoryProp. This method returns a set C of T -consequences of the current
assignment A. A set of reasons Rc ⊆ A is associated with each c ∈ C,
satisfying Rc |= c. Unlike the original DPLL(T) of [10], the method is entirely
decoupled from SetTrue.

Backtrack. This method simply indicates which assigned constraints become
unassigned as a result of backtracking.

The additional flexibility of the timing of occurences of calls to SetTrue

in relation to occurences of calls to TheoryProp allows the system to propa-
gate constraints either eagerly or lazily. Eager propagation follows every call to
SetTrue with a call to TheoryProp. Lazy propagation calls TheoryProp only
after a sequence of calls to SetTrue, in particular when unit propagation is not
possible.

Whatever the sequence of calls, it is often convenient to identify the source of
an assignment in the method SetTrue. At the same time, it is the DPLL engine
which calls these methods and we would like to minimize its responsibilities
to facilitate using off-the-shelf DPLL solvers along with the host of effective
optimizations associated with them. Hence, we do not require that the DPLL
engine keep track of the source of every assignment. Rather we allow it to treat
constraints more or less the same way it treats propositional literals, and put
the burden on SolverT instead.

Towards this end, we have SolverT associate an annotation αc with each
constraint (or its negation) which appears in a problem. In addition to tracking
the origin of constraints passed to SetTrue, the annotation is used to keep
track of a set of assigned constraints whose consequences have been found. The
annotation can take any value from {Π, Σ, ∆, Λ} with the following intended
meanings.

Π : Constraints whose consequences have been found (propagated constraints).
∆: Constraints which have been identified as consequences of constraints la-

belled Π .
Σ: Constraints which have been assigned, but whose consequences have not

been found yet.
Λ: Unassigned constraints.

For convenience, we use the labels Π, ∆, Σ and Λ interchangeably with the set
of constraints which have the respective label.

It is fairly straightforward to maintain labels with these properties via the
methods SetTrue, TheoryProp, and Backtrack. Whenever a constraint is passed
to SetTrue which is labelled Λ we label it Σ and perform a consistency check.
Whenever TheoryProp is called, constraints labelled Σ are labelled Π one at a
time. After each such relabelling, all the constraints in Σ ∪ Λ which are con-
sequences of constraints labelled Π are re-labelled ∆. Whenever backtracking

occurs, all constraints which become unassigned together with all consequences
which are not yet assigned are labelled Λ.

As explained at length in [4] for the more general context of theory de-
composition, such constraint labels provide for a more flexible form of theory
propagation which, in particular, exempts constraints labelled ∆ from consis-
tency checks and from participating as antecedents in theory propagation. This
feature reduces the cost of theory propagation without changing its outcome,
and is independent of the theory and propagation method used.

2.1 Difference Constraints and Graphs

Difference constraints can express naturally a variety of timing-related problems
including schedulability, circuit timing analysis, and bounded model checking
of timed automata [16, 3]. In addition, difference constraints can be used as an
abstraction for general linear constraints and many problems involving general
linear constraints are dominated by difference constraints. Difference constraints
are also much more easily decided than general linear constraints, in particular
using the following convenient graphical representation.

Definition 1 (Constraint graph). Let S be a set of difference constraints and

let G be the graph comprised of one weighted edge x
c
→ y for every constraint

x − y ≤ c in S. We call G the constraint graph of S.

The constraint graph may be readily used for consistency checking and constraint
propagation, as is indicated in the following well-known theorem.

Theorem 1. Let Γ be a conjunction of difference constraints, and let G be the

constraint graph of Γ . Then Γ is satisfiable if and only if there is no negative

cycle in G. Moreover, if Γ is satisfiable, then Γ |= x − y ≤ c if and only if y

is reachable from x in G and c ≥ dxy where dxy is the length of a shortest path

from x to y in G.

As the semantics of conjunctions of difference constraints are so well char-
acterized by constraint graphs, we refer to sets of difference constraints inter-
changeably with the corresponding constraint graph. In this way, we also further
abuse the notation associated with constraint labels introduced in section 2. In
particular, the labels Π, Σ, ∆, and Λ are used not only to refer to the set of
difference constraints with the respective label, but also to the constraint graph
induced by that set of constraints. We also often refer to a difference constraint
x − y ≤ c by an edge x

c
→ y in a constraint graph and vice versa.

3 Consistency Checks

In accordance with Theorem 1, one way to show that a set of difference con-
straints Γ is consistent is to show that Γ ’s constraint graph G contains no
negative cycle. This in turn can be accomplished by establishing a valid po-

tential function, which is a function π on the vertices of a graph satisfying
π(x) + c − π(y) ≥ 0 for every edge x

c
→ y in G. A valid potential function

may readily be used to establish lower bounds on shortests path lengths be-
tween arbitrary vertices (v1, vn):

Σn−1

i=1
π(vi) + ci − π(vi+1) ≥ 0

π(v1) − π(vn) + Σn−1

i=1
ci ≥ 0

Σn−1

i=1
ci ≥ π(vn) − π(v1)

If one considers the case that v1 = vn, it follows immediately that the existence
of a valid potential function guarantees that G contains no negative cycles. In
addition, a valid potential function for a constraint graph G defines a satisfying
assignment for the set Γ of difference constraints used to form G. In particular, if
π is a valid potential function for G, then the function v 7→ −π(v) is a satisfying
assignment for Γ .

In the DPLL(T) framework, consistency checks occur during calls to SetTrue,

when a constraint u
d
→ v is added to the set of assigned constraints. If the con-

straint is labelled ∆, then there is no reason to perform a consistency check.
Otherwise, the constraint is labelled Σ. In this latter case, SetTrue must per-
form a consistency check on the set Π∪Σ. To solve this problem, we make use of
an incremental consistency checking algorithm based largely on an incremental
shortests paths and negative cycle detection algorithm due to Frigioni1 et al [9].
Before detailing this algorithm, we first formally state the incremental consis-
tency checking problem in terms of constraint graphs and potential functions:

Definition 2 (Incremental Consistency Checking). Given a directed graph

G with weighted edges, a potential function π satisfying π(x) + c − π(y) ≥ 0 for

every edge x
c
→ y, and an edge u

d
→ v not in G, find a potential function π′ for

the graph G′ = G ∪ {u
d
→ v} if one exists.

The complete algorithm for this problem is given in pseudocode in Figure
1. The algorithm maintains a function γ on vertices which holds a conservative
estimate on how much the potential function must change if the set of constraints
is consistent. The function γ is refined by scanning outgoing edges from vertices
for which the value of π′ is known.

3.1 Proof of Correctness and Run Time

Lemma 1. The value min(γ) is non-decreasing throughout the procedure.

Proof. Whenever the algorithm updates γ(z) to γ′(z) 6= γ(z) for some vertex z,
it does so either with the value 0, or with the value π′(s) + c − π(t) for some

edge s
c
→ t in G such that t = z. In the former case, we know γ(z) < 0 by

the termination condition, and in the latter we have γ′(z) = π′(s) + c − π(t) =
(π(s) + c − π(t)) + γ(s) ≥ γ(s), since π(s) + c − π(t) ≥ 0. ⊓⊔

1 The algorithm and its presentation here are much simpler primarily because Frigioni
et al. maintain extra information in order to solve the fully dynamic shortests paths
problem, whereas this context only demands incremental consistency checks. In par-
ticular, we do not compute single source shortests paths, but rather simply use a
potential function which reduces the graph size.

γ(u)← π(u) + d− π(v)
γ(w)← 0 for all w 6= v

while min(γ) < 0 ∧ γ(u) = 0
s← argmin(γ)
π′(s)← π(s) + γ(s)
γ(s)← 0

for s
c
→ t ∈ G do

if π′(t) = π(t) then

γ(t)← min{γ(t), π′(s) + c− π(t)}

Fig. 1. Incremental consistency checking algorithm, invoked by SetTrue for a con-

straint u
d
→ v labelled Λ. If the outer loop terminates because γ(u) < 0, then the set

of difference constraints is not consistent. Otherwise, once the outer loop terminates,
π′ is a valid potential function and −π′ defines a satisfying assignment for the set of
difference constraints.

Lemma 2. Assume the algorithm is at the beginning of the outer loop. Let z

be any vertex such that γ(z) < 0. Then there is a path from u to z with length

L(z) = π(z) + γ(z) − π(u).

Proof. (sketch) By induction on the number of times the outermost loop is exe-
cuted. ⊓⊔

Theorem 2. The algorithm correctly identifies whether or not G′ contains a

negative cycle. Moreover, when there is no negative cycle the algorithm estab-

lishes a valid potential function for G′.

Proof. We consider the various cases related to termination.

– Case 1. γ(u) < 0. From this it follows that L(u) < 0 and so there is
a negative cycle. In this case, since the DPLL engine will backtrack, the
original potential function π is kept and π′ is discarded.

– Case 2. min(γ) = 0 and γ(u) = 0 throughout.
In this case we claim π′ is a valid potential function. Let γi be the value
of γ at the beginning of the ith iteration of the outer loop. We bserve that
∀v . π′(v) ≤ π(v) and consider the following cases.
• For each vertex v such that π′(v) < π(v), π′(v) = π(v) + γi(v) for

some refinement step i. Then for every edge v
c
→ w ∈ G, we have that

γi+1(w) ≤ π′(v) + c − π(w) and so π′(w) ≤ π(w) + γi+1(w) ≤ π(w) +
π′(v) + c − π(w) = π′(v) + c. Hence π′(v) + c − π′(w) ≥ 0.

• For each vertex v such that π′(v) = π(v), we have π′(v) + c − π′(w) =

π(v) + c − π′(w) ≥ π(v) + c − π(w) ≥ 0 for every v
c
→ w ∈ G

We conclude π′ is a valid potential function with respect to all edges in G′.

In all cases, the algorithm either identifies the presence of a negative cycle,
or it establishes a valid potential function π′. As noted above, a valid potential
function precludes the existence of a negative cycle. ⊓⊔

Theorem 3. The algorithm runs in time2 O(m + n log n).

Proof. The algorithm scans every vertex once. If a Fibonacci heap is used to
find argmin(γ) at each step, and for decreases in γ values, then the run time is
O(m + n log n). ⊓⊔

3.2 Experiences and Variations

For simplicity, we did not detail how to identify a negative cycle if the set of
constraints is inconsistent. A negative cycle is a minimal inconsistent set of
constraints and is returned by SetTrue in the case of inconsistency. Roughly
speaking, this can be accomplished by keeping track of the last edge x

c
→ y

along which γ(y) was refined for every vertex. Then every vertex in the negative
cycle will have such an associated edge, those edges will form the negative cycle
and may easily recovered.

In practice we found that the algorithm is much faster if we maintain for
each vertex v a bit indicating whether or not its new potential π′(v) has been
found. With this information at hand, it is straightforward to update a single
potential function rather than keeping two. In addition, this information can
readily be used to skip the O(n) initialization of γ and to keep only vertices v

with γ(v) < 0 in the priority queue. We found that the algorithm ran faster with
a binary priority queue than with a Fibonacci heap, and also a bit faster when
making use of Tarjan’s subtree-enumeration trick [20, 1] for SSSP algorithms.
Profiling benchmark problems each of which invokes hundreds of thousands of
consistency checks indicated that this procedure was far less expensive than
constraint propagation in the DPLL(T) context, although the two have similar
time complexity.

4 Propagation

The method TheoryProp described in Section 2 is responsible for constraint
propagation. The procedure’s task is to find a set of consequences C of the
current assignment A, and a set of reasons Rc for each consequence c ∈ C. For
difference constraints, by Theorem 1, this amounts to computing shortests paths
in a constraint graph.

We present a complete incremental method for difference constraint propa-
gation which makes use of the constraint labels Π, Σ, ∆, and Λ. The constraint
propagation is divided into incremental steps, each of which selects a constraint
c labelled Σ, relabels c with Π , and then finds the consequences of those con-
straints labelled Π from the set Σ ∪ Λ, labelling them ∆. A single step may
or may not find unassigned consequences. On every call to TheoryProp, these
incremental steps occur until either there are no constraints labelled Σ, or some
unassigned consequences are found. Any unassigned consequences are returned
to the DPLL(X) engine for assignment and further unit propagation. We state

2 Whenever stating the complexity of graph algorithms, we use n for the number of
vertices in the graph and m for the number of edges.

the problem of a single incremental step in terms of constraint graphs and short-
ests paths below.

Definition 3 (Incremental complete difference constraint propagation).

Let G, H be two edge disjoint constraint graphs, and let x
c
→ y ∈ H be a distin-

guished edge. Suppose that for every edge u
d
→ v ∈ H, the length of a shortest

path from u to v in G exceeds d. Let G′ = G ∪ {x
c
→ y} and H ′ = H \ {x

c
→ y}.

Find the set of all edges u
d
→ v in H ′ such that the length of a shortest path from

u to v in G′ does not exceed d.

The preconditions relating the graphs G and H are a result of labelling and
complete propagation. If all consequences of G are found and removed from H

prior to every step, then no consequnces of G are found in H and so the length

of a shortest path from x to y in G exceeds the weight of any edge u
d
→ v ∈ H .

As presented by Nieuwenhuis et al. [17], this problem may be reduced to
solving two SSSP problems. First, for the graph G′, the SSSP weights δ→y from
y are computed and then SSSP weights δ←x to x are computed, the latter being
accomplished simply by computing δ→x in the reverse graph. Then for any con-

straint u
d
→ v ∈ H ′, the weight of the shortests path from u to v passing through

x
c
→ y in G′ is given in constant time by δ←x (u) + c + δ→y (v). In accordance with

Theorem 1, the weight of this path determines whether or not the constraint

u
d
→ v is implied, in particular by the condition δ←x (u) + c + δ→y (v) ≤ d. It then

suffices to check every constraint in H ′ in this fashion. We now present several
improvements to this methodology.

4.1 Completeness, Candidate Pruning, and Early Termination

A slight reformulation of the method above allows for early termination of the
SSSP computations under certain conditions. That is, nodes for which it becomes
clear that their minimal distance will not be improved due to the insertion of
x

c
→ y to the constraint graph will not be explored. We introduce the idea

of relevancy below to formalize how we can identify such vertices and give an
example in Figure 2. For a new edge x

c
→ y, relevancy is based on shortest path

distances δ→x (from x) and δ←y (to y), in contrast to the formulation above. Under

this new formulation, if the shortest path from u to v passes through x
c
→ y,

then the path length is δ←y (u) + δ→x (v) − c.

Definition 4 (δ-relevancy with respect to x
c
→ y). A vertex z is δ→x -

relevant if every shortest path from x to z passes through x
c
→ y; similarly, a

vertex z is δ←y -relevant if every shortest path from z to y passes through x
c
→ y.

A constraint u
d
→ v is δ-relevant if both u is δ←y -relevant and v is δ→x -relevant.

A set C of constraints is δ-relevant if every u
d
→ v ∈ C is δ-relevant.

Lemma 3. The solution set for complete incremental difference constraint prop-

agation is δ-relevant.

YX Z

Fig. 2. An example graph showing δ-relevant vertices with respect to the edge (x, y).
For simplicity, all edges are assumed to have weight 1. The relevant vertices are white
and the irrelevant vertices are shaded. As an example, the vertex z is not δ→x -relevant
because there is a shortest path from x to z which does not pass through y. As a result,

any constraint u
d
→ z ∈ H ′ is not member of the incremental complete propagation

solution set.

Proof. Let x
c
→ y be the new edge in G, and suppose for a contradiction that

some constraint u
d
→ v ∈ H ′ in the solution set is not δ-relevant. Then the

length of a shortest path from u to v in G′ does not exceed d. By definition of
δ-relevancy, some path p from u to v in G′ which does not pass through x

c
→ y is

at least as short as the shortest path from u to v passing through x
c
→ y. Observe

that p is a path in G. By the problem definition, u
d
→ v 6∈ H and H ′ ⊂ H . Hence

u
d
→ v 6∈ H ′, a contradiction. ⊓⊔

Corollary 1 (Early Termination). It suffices to check every δ-relevant mem-

ber of H ′ for membership in the solution set. As a result, each SSSP algorithm

computing δ ∈ {δ→x , δ←y } need only compute correct shortests path distances for

δ-relevant vertices.

Early termination is fairly easy to implement with most SSSP algorithms
in the incremental constraint propagation context. First, for δ ∈ {δ→x , δ←y }, we
maintain a label for each vertex indicating whether or not it is δ-relevant. We
then define an order ≺ over shortest path distances of vertices in a way that
favors irrelevancy:

δ(u) ≺ δ(v) ⇐⇒ δ(u) < δ(v) or







δ(u) = δ(v)
u is δ-irrelevant
v is δ-relevant

Since the new constraint x
c
→ y is a unique shortest path, we initially give y the

label δ→x -relevant and x the label δ←y -relevant. During the SSSP computation of

δ, whenever an edge u
d
→ v is found such that δ(u) ≺ δ(v) + d, the distance to v

is updated and we propagate u’s δ-relevancy label to v. If at any point in time
all such edges are not δ-relevant, then the algorithm may terminate.

To facilitate checking only δ-relevant constraints in H ′, one may adopt a trick
described in [17] for checking only a reachable subset of H ′. In particular, one

may maintain the constraint graph H ′ in an adjacency list form which allows
iteration over incoming and outgoing edges for each vertex as well as finding
the in- and out-degree of each vertex. If the sets of δ→x -relevant and δ←y -relevant
vertices are maintained during the SSSP algorithm, the smaller of these two sets,
measured by total in- or out-degree in H ′, may be used to iterate over a subset
of constraints in H ′ which need to be checked.

4.2 Choice of Shortests Path Algorithm

There are many shortest path algorithms, and it is natural to ask which one is
best suited to this context. An important observation is that whenever shortests
paths δ→x or δ←y are computed, the graph G has been subject to a consistency
check. Consistency checks establish a potential function π which can be used to
speed up the shortests path computations a great deal. In particular, as was first
observed by Johnson [13], we can use π(x)+c−π(y) as an alternate, non-negative

edge weight for each edge x
c
→ y. This weight is called the reduced cost of the

edge. The weight w of path p from a to b under reduced costs is non-negative and
the original weight of p, that is, without using reduced costs, is easily retrieved
as w + π(b) − π(a). Our implementation of constraint propagation exploits this
property by using an algorithm for shortests paths on graphs with non-negative

edge weights. The most common such algorithm is Dijkstra’s [7], which runs
in O(m + n log n) time. This is an improvement over algorithms which allow
arbitrary edge weights, the best of which run in O(mn) time [2]. A direct result
follows.

Theorem 4. Complete incremental difference constraint propagation can be ac-

complished in O(m + n log n + |H ′|) time where m is the number of assigned

constraints, n the number of variables occuring in assigned constraints, and H ′

is the set of unassigned constraints.

Proof. The worst case execution time of finding all consequences over a se-
quence of calls to SetTrue and TheoryProp, is O(m + n logn + |H ′|) per call
to TheoryProp and O(m + n logn) per call to SetTrue. Thus if every call to
SetTrue is followed by a call to TheoryProp, then the combined time for both
calls is O(m + n logn + |H ′|). ⊓⊔

4.3 Adaption of a Fast SSSP Algorithm

In order to fully exploit the use of the potential function in constraint propa-
gation, we make use of a state-of-the-art SSSP algorithm for a graph with non-
negative edge weights. In particular, we implemented (our own interpretation
of) Goldberg’s smart-queue algorithm [11]. The application of this algorithm to
difference constraint propagation context is non-trivial because it makes use of
a heuristic requiring that we keep track of some information for each vertex as
the graph Π and its potential function changes. Even in the face of the extra
book-keeping the algorithm turns out to run significantly faster than standard
implementations of Dijkstra’s algorithm with a Fibonacci heap or a binary pri-
ority queue.

The smart-queue algorithm is a priority queue based SSSP algorithm for
a graph with non-negative edge weights which maintains a priority queue on
vertices. Each vertex is prioritized according to the shortest known path from
the source to it. The smart-queue algorithm also makes use of the caliber heuristic

which maintains for each vertex the minimum weight of any edge leading to it.
This weight is called the caliber of the vertex. After removing the minimum
element of distance d from the priority queue, d serves as a lower bound on the
distance to all remaining vertices. When scanning a vertex, we know the lower
bound d, and if we come accross a vertex v with caliber cv and tentative distance
dv, we know that the distance dv is exact if d+ cv ≥ dv. Vertices whose distance
is known to be exact are not put in the priority queue, and may be removed
from the priority queue prematurely if they are already there. The algorithm
scans exact vertices greedily in depth first order. When no exact vertices are
known it backs off to use the priority queue to determine a new lower bound.
The priority queue is based on lazy radix sort, and allows for constant time
removal of vertices. For full details, the reader is referred to [11].

In this context, the caliber of a vertex may change whenever either the graph
Π or its potential function changes. This in turn requires that the graph Π

be calibrated before each call to TheoryProp. Calibration may be accomplished
with linear cost simply by traversing the graph Π once prior to each such call.
However, we found that if, between calls to TheoryProp, we keep track of those
vertices whose potential changes as well as those vertices which have had an edge
removed during backtracking, then we can reduced the cost of recalibration. In
particular, the recalibration associated with each call to TheoryProp can then be
restricted to the subgraph which is reachable in one step from any such affected
vertex.

5 Experiments

We present various comparisons between different methods for difference con-
straint propagation. With one exception, the different methods are implemented
in the same basic system: a Java implementation of DPLL(T) which we call Jat.
The underlying DPLL solver is fairly standard with two literal watching [14],
1UIP clause learning and VSID+stack heuristics [12] as in the current version
of ZChaff [15], and conflict clause minimization as in MiniSat [8]. Within this
fixed framework, we present a comparison of reachability-based and relevancy-
based early termination in Figure 3 as well as a comparison of lazy and eager
strategies in Figure 4. These comparisons are performed on scheduling problems
encoded as difference logic satisfiability problems on a 2.4GHz intel based box
runnning linux. The scheduling problems are taken from standard benchmarks,
predominately from the SMT-LIB QF RDL section [19]. In Figure 5, we also
present a comparison of our best configuration, implemented in Java, against
BarceLogicTools (BCLT) which is implemented in C and which, in 2005, won
the SMT competition for difference logic.

Job-shop scheduling problems encoded as difference logic satisfiability prob-
lems, like the ones used in our experiments, are strongly numerically constrained
and weakly propositionally constrained. These problems are hence a relatively

Fig. 3. A comparison of relevancy based early termination and reachability based early
termination. The relevancy based early termination is consistently faster and the speed
difference is roughly proportional to the difficulty of the underlying problem.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180 200

R
ea

ch
ab

ili
ty

Relevancy, time in seconds

Relevancy vs. Reachability for early termination

x
"jo-jne.dat"

Fig. 4. A comparison of lazizess and eagerness in theory propagation for difference
logic. Both lazy and eager implementations use relevancy based early termination and
the same underlying SSSP algorithm. The lazy strategy is in general significantly faster
than the eager strategy. This difference arises because the eager strategy performs
constraint propagation more frequently.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100 120 140 160 180 200

E
ag

er
 p

ro
pa

ga
tio

n

Lazy propagation, time in seconds

Lazy vs. Eager

x
"jo-je2.dat"

pure measure of the efficiency of difference constraint propagation. While it

Fig. 5. Jat with lazy propagation and relevancy based early termination compared with
BarceLogicTools [17] on job-shop scheduling problems. The Jat propagation algorithm
uses consistency checks and Goldberg’s smart-queue SSSP algorithm as described in
this paper, and is implemented in Java. Assuming BarceLogicTools hasn’t changed since
[17], it uses no consistency checks, eager propagation, a depth first search SSSP based
O(mn) propagation algorithm, and is implemented in C. The Jat solver is generally
faster.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160

B
C

LT
 (

C
)

Jat (Java) time in seconds

Jat vs. BCLT on scheduling problems

x
"jo-blt.dat"

seems that our approach outperforms the others on these types of problems3,
this is no longer the case when Boolean constraints play a stronger role. In fact,
BCLT is several times faster than Jat on many of the other types of difference
logic problems in SMT-LIB. Upon profiling Jat, we found that on all the non-
scheduling problems in SMT-LIB, Jat was spending the vast majority of its time
doing unit propagation, whereas in the scheduling problems Jat was spending
the vast majority of its time doing difference constraint propagation. Although
it is at best difficult to account for the difference in implementations and pro-
gramming language, this suggests that the techniques for difference constraint
propagation presented in this paper are efficient, in particular for problems in
which numerical constraints play a strong role.

6 Conclusion

We presented several improvements for difference constraint propagation in SMT
solvers. We show that lazy constraint propagation is faster than eager constraint
propagation, and that relevancy based early termination is helpful. We pre-
sented adaptations of state-of-the-art shortest paths algorithms to the difference

3 Although we have few direct comparisons, this is suggested by the fact that BCLT
did outperform the others in a recent contest on scheduling problems, and that our
experiments indicate that our approach outperforms BCLT on the same problems.

constraint propagation context in the DPLL(T) framework. We showed exper-
imentally that these improvements taken together make for a fast difference
logic solver which is highly competitive on problems dominated by numerical
constraints.

References

1. Boris V. Cherkassky and Andrew V. Goldberg. Negative-cycle detection algo-
rithms. In ESA ’96: Proceedings of the Fourth Annual European Symposium on

Algorithms, pages 349–363, London, UK, 1996. Springer-Verlag.
2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algo-

rithms. MIT Press, 1990.
3. S. Cotton. Satisfiability checking with difference constraints. Master’s thesis, Max

Planck Institute, 2005.
4. S. Cotton and O. Maler. Satisfiability modulo theory chains with DPLL(T). In Ver-

imag Technical Report http://www-verimag.imag.fr/TR/TR-2006-4.pdf, 2006.
5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.

In Communications of the ACM, volume 5(7), pages 394–397, 1962.
6. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-

nal of the ACM, 7(1):201–215, 1960.
7. E. W. Dijkstra. A note on two problems in connexion with graphs. In Numer.

Math., volume 1, pages 269–271, 1959.
8. N. Eèn and N. S orensson. Minisat – a sat solver with conflict-clause minimization.

In SAT 2005, 2005.
9. D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic shortest paths

and negative cycles detection on digraphs with arbitrary arc weights. In European

Symposium on Algorithms, pages 320–331, 1998.
10. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):

Fast decision procedures. In CAV’04, pages 175–188, 2004.
11. A. V. Goldberg. Shortests path algorithms: Engineering aspects. In Proceedings

of the Internation Symposium of Algorithms and Computation, 2001.
12. E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT solver, 2002.
13. D.B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. Assoc.

Comput. Mach., 24:1, 1977.
14. J. P. Marquez-Silva and K. A. Sakallah. Grasp – a new search algorithm for

satisfiability. In CAV’96, pages 220–227, November 1996.
15. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-

neering an Efficient SAT Solver. In DAC’01, 2001.
16. P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, O. Maler, and N. Jain. Verifica-

tion of timed automata via satisfiability checking. In Lecture Notes in Computer

Science, volume Volume 2469, pages 225 – 243, Jan 2002.
17. R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation

and its Application to Difference Logic. In CAV’05, volume 3576 of LNCS, pages
321–334, 2005.

18. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and abstract DPLL
modulo theories. In LPAR’04, volume 3452 of LNCS, pages 36–50. Springer, 2005.

19. S. Ranise and C. Tinelli. The SMT-LIB format: An initial proposal. In PDPAR,
July 2003.

20. R. E. Tarjan. Shortest paths. In AT&T Technical Reports. AT&T Bell Laborato-
ries, 1981.

