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Abstract. In this paper we discuss the problem of calculating the reach-
able states of a dynamical system defined by ordinary differential equa-
tions or inclusions. We present a prototype system for approximating
this set and demonstrate some experimental results.

1 Introduction

One of the main activities in verifying a discrete system consists in finding the
set of system states which are reachable, via the transition relation, from a given
initial set of states (control synthesis for discrete-event systems [RW89] can ul-
timately be reduced to some variant of reachability analysis [AMP95-b]). For
small finite-state systems this is done using simple graph algorithms which ma-
nipulate set-theoretical representations of the reachable sets. For systems which
are very large, or even infinite, symbolic methods are used, that is, the set of
states reachable after k steps of the system is represented by some formula rather
than being enumerated explicitly.

Some of this technology has been exported to certain classes of hybrid systems
which deserve to be termed piecewise-trivial dynamical systems. These systems,
such as timed automata [AD94] or PCD systems' [ACH*95], [AMP95-a] exhibit
a trivial dynamics in the continuous phase, and all their complexity is due to
the interaction between this dynamics and the discrete transitions. For such
systems, given some initial polyhedral subset of the state-space, the sets of all
its successors via the continuous dynamics can be calculated by straightforward
linear algebraic calculation. Even with this simplicity, the reachability problem
for such systems is undecidable or even worse ([HKPV95], [AM95]). A practical
conclusion from the experience with this class of systems is not to look for fully-
automatic decision procedures but rather for more modest goals while trying to
analyze continuous systems.

In this paper we discuss the problem of extending the methodology of cal-
culating reachable sets to systems with non-trivial continuous dynamics and
no discrete dynamics at all,> namely systems defined by ordinary differential

* This research was supported in part by the European Community project HYBRID
EC-US-043. VERIMAG is a joint laboratory of CNRS and UJF.

! Dynamical systems with piecewise-constant derivatives; The term Linear Hybrid Au-
tomata used in [ACH"95] is unfortunate and causes confusion with linear systems.

2 Discrete transitions can later be incorporated naturally into the continuous tech-
niques, if and when such techniques are established.



equations. We formulate the problem and describe a technique, suggested by M.
Greenstreet [G96], for over-approximating reachable sets. We then introduce a
variation on this technique which can be applied more easily to more than two
dimensions. Finally we show the results obtained by an experimental implemen-
tation of the algorithm for both linear and non-linear systems.

2 Statement of the Problem

2.1 Deterministic Systems

Definition 1 [Dynamical System. | A differential dynamical system is S =
(X, f) where X = IR"™ is the Euclidean space and f : X — X is a continu-
ous function (vector field). A behavior of S starting from a point zo € X is a
trajectory & : Ry — X satisfying £[0] = xo and for every t,

dg[t]/dt = f(E[t])-
People less pedantic than the average formal methodologists would simply say:

z = f(x).

It can also be expressed in a somewhat more operational manner:

t
€t =ao+ [ Fielrar.
0
The set of states reachable by the system from zq is defined as
Reach(zo, f) = {&[t] : t > 0}.

Typically when we want to prove safety properties of such a system we would
like to show that Reach(zg, f) N Q = 0 for some @ C X. Except for the rare
case when Reach(zo, f) has a closed-form solution, such as {zoe : t € Ry}
for linear systems, the common way to achieve that goal is to use numerical
integration to calculate an approximation of Reach(zo, f) incrementally. This
means starting from £[0] = zo and applying some iteration

£l(n +1)A] = ¢[nA] + g(£[nA])

where A is the discretization step and g is supposed to be a good approximation
of the integral.

According to the strict standards of discrete verification, this approach is far
from being satisfactory: first, we compute £ only for a small subset of time points,
and we might miss a visit of the system in @ at some t, nA < t < (n + 1)A.
Secondly, even for points of the form t = nA, we compute only an approximation
of £[t]. And finally, the calculation is not guaranteed to terminate (and if it
terminates, it is not always for a good reason). Termination of the calculation



of Reach(zo, f) means that the trajectory becomes periodic,® i.e. £[t] = £[t']
for some t' > ¢, which may sometimes happen numerically only because we
approximate the ideal mathematical reals by a finite subset of the rationals.
Nevertheless, generations of mathematicians, pure and applied, assure us that
given reasonable f and @, we can find A and g such that we need not worry
about the first two problems. As for the third one, we should accept it as a sad
fact of life, as do all engineers who use simulation methods.

To summarize, given a system (X, f), an inital state zo and a set of bad
states ), we have a methodoloy, or a semi-algorithm (modulo some numerological
conditions) for verifying that from x¢ you never reach Q:

Ry :={zo};
repeat 1=1,2...
Ri = Ri—l U Ne:vt(Ri_l)
until (R; = Ri—1) V(R;NQ # D) V (The user gives up)

Here, Next(R;) means just integrating numerically starting from the last element
of R;. Up to this point this is nothing but rephrasing, in a somewhat awkward
manner, the common practice of simulation.

2.2 Non-deterministic Systems

In many situations we cannot be sure of the initial conditions nor of the dynamics
of the system. In most cases we will have an equation of the form

&= f(z,u).

where u is some unobserved external disturbance, about which we know only
some constraints.* The behavior of the system resulting from interaction with
any admissible input u can be characterized using differential inclusion [AC84]
of the form

i € F(z),

where F : X — 2% is roughly

U f(@,w).

This is the continuous analogue of a non-deterministic transition system. Such a
system, when started at some initial state xg, usually produces dense bundles of
trajectories (solutions), which we denote by L(F,zo). The set of states reachable
from z( at time ¢ (which was simply {{[t] : t € IR+ } in deterministic systems) is
defined as

Reachy(xg, F) = U &[t].

E€L(F,xo)

% Which is always the case in finite-state systems.
* Things get even more complicated in control synthesis problems whose generic form
is 2 = f(x,u,v) where u and v are two different types of external inputs.



The set of all states visited during the interval [0, ] is

Reachyg (2o, F) = U Reach(xq, F)
T€[0,¢]

and the set of all reachable states is
Reach(xo, F') = Reachyp oc)(z0, F).

In order to apply the symbolic verification methodology we would like to have
a diverging sequence tg, 1, - . . of time points and calculate a sequence Ry, R; . ..
such that Ry = {xo} and for every i, R; = Reachjo (w0, F'). As in the case of
numerical integration of a single trajectory, the calculation of R;;; will be based
on f and R;, and from a computational viewpoint, the main novel feature here
is the calculation of differential successors of a set of points rather than that of a
single point. This motivates us to attack first a slightly more restricted version of
the problem: calculating the reachable states of a deterministic system starting
from a set P C X, namely to find

Reach(P, f) = U Reach(x, f).
zeEP

This problem already exhibits the major computational difficulty associated with
representing and simulating a set of trajectories (see figure 1 for an illustration
of the above notions).

Reach(zo, f Reach(zo, F) Reach(P, f)

WXS

Fig. 1. Calculating reachable states for: 1) A deterministic system starting at a point,
2) A non-deterministic system starting at a point and 3) A deterministic system starting
at a set.

3 The Face Lifting Approach

We assume from now on that everything takes place inside a bounded subset of
X in which f is Lipschitz.



3.1 Arbitrary Polyhedra

The first ingredient of any solution is a formalism for representing subsets of X.
Not being computer algebraists, we restrict ourselves to polyhedral sets. These
are sets which can be written as boolean combinations of linear inequalities.’
Polyhedral sets come in two major varieties, convex and non-convex. Those of
the former type can be written as conjunctions of inequalities (intersections of
half-spaces) and they are uniquely determined by their sets of vertices.

If the initial set P is convex and f preserves convexity (as in the case of
linear systems), we are lucky because for every ¢ we have

Reachi(conv(xy, ..., xn), f) = conv(Reachy(x1, f), ..., Reachi(xy, f))

where conv denotes the convex hull. With this property it would have been
sufficient to simulate a finite number of trajectories starting at the vertices.
However, in the case of arbitrary differential systems, the approximation of a
non-convex polyhedron by its convex hull is usually useless. Just consider what
such an approximation gives when P contains a bifurcation point.

The treatment of non-convex polyhedra poses enormous problems in terms
of representation, normal forms (which are important to detect the condition
Riy1 = R;), etc. In the sequel we present a technique, due to M. Greenstreet
[G96], which we call face lifting. In the abstract sense, face lifting can be applied
to systems in any dimension, but concretely, its practical application to 3 or
more dimensions is not at all evident.

The approach is based, first of all, on the following basic observation concern-
ing continuous trajectories: if some point y € Reachs(x, f) — P for an interior
point = € P, then there exists a point 2’ € bd(P) (the boundary of P) and t' < ¢
such that y € Reachy (z', f). In other words,

Reachyg (P) = P U Reachyg 4 (bd(P)).

Hence, when coming to calculate R;+; from R; it is sufficient to look at the
boundary of the latter (the union of its faces in the case of polyhedral sets and,
in particular, its edges in 2-dim).

Consider a face e of a polyhedron such that it is included in the set charac-
terized by the linear equality a -z = b. Let fe(x) denote the outward component
of f(z) relative to e, that is, the projection of f(z) on the normal to e, and let
f(e) denote its maximum over z € N(e), where N(e) is some neighborhood of
e. Clearly, if f (e) is negative, the face does not contribute new reachable states
which cannot be reached from other faces. Otherwise, for every A, one can find
an ¢ such that all the points reachable from e in time A satisfy

a-x<b+A-fle)+e.

Geometrically speaking, this amounts to lifting the face e outward by A- f(e)+e
(see figure 2). (We omit some details concerning the relation between A,N(e),

5 If you want to impress non-logicians, you can say they are possible models of sen-
tences in the first order theory of (IR, +, <) or something.



€ and the Lipschitz constant of f, which guarantees the desired property of
the approximation). This gives the following procedure for over-approximating
Reachyo, A)(P, f):

Calculate f(e) for every face e of P. Based on these find the appropriate €
and push every e whose f(e) is positive by A - f(e) + ¢ to obtain P'.

Fig. 2. A 2-dimensional example of the approach: a polyhedron P and a sample of the
values of f on its edges. Only edges e1, e2 and e3 have a positive outward component
of f and they are pushed into €', e5 and ej. The vertices {v1,...,vs} are replaced by

{vl,...,va}..

By construction, we have Reachjo A](P, f) € P'. It can be shown that locally,
you can make the difference between the reachable set and its approximation as
small as you like, by taking smaller A. Better approximation can be achieved
by cutting a face into sub-faces whenever f has a large variation over the face.
However, there are cases where, in the long run, the method will produce un-
boundedly large over-approximations of Reach(P, f), as shown in figure 3.

We have implemented the method for dimension 2 and obtained results sim-
ilar to those obtained by other means (see section 4 for experimental results).
However the extension to more than two dimensions is difficult as the special
properties of the plane no more hold. In IR?, an ordered set of vertices always
defines a unique polygon® and the abstract operation of identifying a face can
be realized by picking a pair of neighboring vertices. Similarly, the face lifting
operation can ultimately be realized by replacing vertices in a list.

This is not true in more than two dimensions, where even convex polyhedra
can exhibit a complicated structure with degeneracy which makes face recogni-
tion very hard. Consequently, we have tried another approach, slightly inspired

5 In fact, if we do not insist on connected polygons, it defines either the polygon or its
complement.



Fig. 3. A bad example: consider an axes-parallel rectangle and a constant vector field
f with non-zero components in both dimensions. The reachable set lies between the
two dotted diagonal lines, but the method will produce the whole upper-left orthant.

by the basic ideas underlying the numerical solution of PDEs.

3.2 Griddy and Isothetic Polyhedra

Consider the sub-class of polyhedra which can be obtained by boolean combi-
nations of inequalities of the form x; < ¢ where x; is a component of z and
c is an integer constant.” In other words, we partition the space into uniform
hyper-rectangles and consider all polyhedra which can written as unions of those
(see figure 4-a). We call these griddy polyhedra.

Since such polyhedra are “finitely generated” (in a bounded sub-space) they
admit a very simple representation using n-dimensional 0 — 1 matrices. It is also
easy to determine whether an (n — 1)-dimensional hypercube is indeed part of
the face of the polyhedron, and there is a systematic simple way to enumerate
all the faces and calculate f, which is now always parallel to one of the axes (see
figure 4-a). With such a representation we can apply, in principle, face lifting in
any dimension.

Techniques developed for griddy polyhedra can be adapted to the more
general class of isothetic polyhedra, generated by arbitrary axes-parallel hyper-
rectangles. These can be represented by a non-uniform grid depending on the
represented polyhedron. The set of grid coordinates in any dimension consists
of all projections of vertices of the polyhedron (see figure 4-b) and may change
during the computation. The non-uniform grid has two main advantages over
the uniform one:

1. Space: a griddy polyhedron which can be decomposed into few large rectan-
gles can be represented more succinctly. However, when this method is used
to represent, say, an approximation of a circle, the grid becomes very dense
and this advantage is lost.

" Of course, ¢ can belong to the set of integer multiples of some rational constant as
well.



Fig. 4. (a) A Griddy Polygon. Some of the faces are annotated by their corresponding
outward directions. (b) An isothetic polygon and its associated non-uniform grid. Face
lifting can cause a refinement of the grid.

2. Expressive power and accuracy: with a fixed grid we need to push every face
further to the next integer value, which sometimes creates an unnecessary
over-approximation, beyond what is inherent in face lifting alone (see exam-
ple in the next section). With a variable grid we can push faces as little as
we want.

Both methods are not very space efficient and we are currently investigating
a canonical and much more succinct representation of these polyhedra.

4 Experimental Results

We have implemented griddy face lifting in 2 and 3 dimensions using the above-
mentioned representation methods. For the uniform grid we use simply an n-
dimensional array. For the non-uniform grid we use a linked list representation
which currently consumes much more computation time.

In both methods we decompose every face into elementary hyper-rectangular
elements and apply the basic operation of numerical optimization of f to every
such element. This is, of course, less efficient than a coarser decomposition of
the face into larger hyper-rectangles, an approach we intend to implement in the
future. On the other hand, this is better in terms of accuracy. All the results
described below, except for the 3-dimensional example, were obtained using the
fixed grid implementation.

4.1 Linear Systems in IR?

In figure 5 we demonstrate the behavior of the algorithm on various classes of
linear systems of the form & = Az (see [HS74] for the classification). We treat
the following cases:



Type A Initial set
Center (g:g _g:8> [—0.25,0.25] x [—0.25,0.25]
Node <_g:8 _g:8> [0.2,0.5] x [0.2,0.4]
Saddle <_g:8 2:8) [0.0,0.4] x [~0.0,0.4]
Sink <_§:8 :;’:8) [~0.1,0.3] x [0.1,0.3]

Sometimes, the use of a fixed grid generates an over-approximation which
covers all the space. This is evident in the case of a center where every edge will
have a non-zero outward component in some dimension.® Consequently we have
changed in these cases the rounding rule to obtain the desired result, that is, we
push a face to the nearest grid unit and not necessarily outward. The price is
in not being an over-approximation anymore. Using a variable grid is another
way to solve this problem. Note that optimization of a linear f is much cheaper
computationally in the linear case.

4.2 Mixing Tank

This example, taken from [SKE97], is a typical non-linear equation encountered
in chemical engineering. The variables z;, 2 denote, respectively, the height and
the concentration of liquid in a mixing tank with two inlets (with different rates
and concentrations) and one outlet. The equation is

i’l = a1 — a24/T1

1
azxrq

i‘z = (]. — 041'2)

With our choice of parameters, (1.322,1.652) is an equilibrium state of the sys-
tem. In figure 6 the states reachable from an initial set [1.12 x 1.17] x[1.56 % 1.68]

are depicted, and one can see the convergence to the equilibrium.

8 At least, this case is not generic.
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Fig. 5. Reachable sets of linear systems of type: 1) Center, 2) Node, 3) Saddle and 4)
Sink. The white rectangles denote the initial sets.

4.3 Airplane Safety

The next example is taken from [LTS97]. The state variables 1, z2 represent,
respectively, the velocity and the flight path angle. Their evolution is governed
by

. aDac2 . u

T = ——1 —gsinzy + -+

. arzi(l—cz
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Fig. 6. Mixing Tank

The problem is to determine the safe subset of the state-space, i.e. the states
from which the system does not leave the envelope P defined as the rectangle
[Vinins Vmaz] X [@mins Omaz]- This is equivalent to calculating the complement
of the set of states reachable from X — P by the reverse system. The results,
depicted in figure 7 correspond to specific choices of values for parameters and
for the controls w1 = Opmin, s = Thas (left) and uy = 000, us = Thnin (right).
The results are consistent with those obtained in [LTS97].

0.0
1840
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00” 2380 vim/s) 2400

Fig. 7. Airplane Safety



4.4 Linear Systems in IR3

In figure 8 one can see the reachable set of a 3—dimensional system with

1 it apup
I

Fig. 8. Reachable states (left) starting from an initial region (right) for a 3-dimensional
linear system.

5 Relation to other Work

There are various works concerning the calculation of reachable sets for differen-
tial inclusions. Many of these works are numerical analytic in nature, concerned
mostly with calculation of abstract error bounds and less with the crucial ques-
tions of data-structures for high dimensional sets.

The problem of calculating Reach(P, f) can be rephrased as a PDE?

%—f = —grad(p) - f
where ¢ : X x IRy — {0, 1} is defined as ¢(z,t) = 1 iff x € Reachjo (P, f) and
in particular ¢(x,0) = 1 iff x € P. Sometime a “continualized” version of ¢ is

® We owe this insight to P. Caspi [C93]. See also [TPS98] for a PDE-based approach.



used, namely a function ¢ : X x IRy — IR such that p(z,0) = 0 exactly when x
is on the boundary of P and f(z,0) > 0 if = is inside P. Various methods exist
for tracking the evolution of ¢, see, e.g. [S96]. So far we have found no special
computational nor didactic advantage in viewing the problem as a PDE instead
of a direct ODE formulation, but this might change in the future.

In [PBV96] an alternative approach was suggested based on cutting the state-
space into cubes, and associating with every cube a rectangular differential in-
clusion which is a differential inclusion of the form ¢; < &; < d; for every 1,
with constants ¢; and d;. The reachability problem is decidable for this class
of systems [PV94], and the idea here is to do ezact calculations on an approz-
imate model, where the bounds on f are calculated in a preprocessing stage.
Similar to face lifting, this approach can guarantee, by refining the grid, error
bounds only for a finite time horizon. This approach has been applied to several
examples in [HW96] and in [SKE97]. Some of the ideas underlying face lifting
appear already in [KM91] where the authors try to prove a homomorphism from
a transistor-level differential model into an automaton. While doing so they also
cut the space into a grid and try to calculate the reachability relation among
cubes.

Finally, in [G96], [GM98], the authors try to extend face lifting to higher

dimensions using another strategy. They restrict themselves to polyhedra which
can be written as intersections of cylindrifications of two-dimensional (arbitrary)
polygons. This way all the operations are performed on the two-dimensional
projections of the polyhedron. There are obvious advantages and shortcomings
of this approach compared to the grid-based one, and only time will tell their
relative performances in practice.
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