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Abstract� In this paper we de
ne a precise notion of abstraction rela�
tion between continuous dynamical systems and discrete state�transition
systems� Our main result states that every Turing Machine can be re�
alized by a dynamical system with piecewise�constant derivatives in a
��dimensional space and thus the reachability problem for such systems
is undecidable for � dimensions� A decision procedure for ��dimensional
systems has been recently reported by Maler and Pnueli� On the other
hand we show that some non�deterministic 
nite automata cannot be re�
alized by any continuous dynamical system with less than � dimensions�

� Introduction

There has been recently an increasing interest in models of hybrid systems� i�e��
systems that combine intercommunicating discrete and continuous components
�see ���� ��	�� �
��� The introduction of these models is motivated by a real prac�
tical concern
 more and more computers �discrete transition systems� are nowa�
days embedded within real�world control loops such as in avionics� process con�
trol� robotics and consumer products � to mention a few application areas� The
analysis and prediction of the combined behavior of these embedded systems
require formal tools that cut across existing disciplinary boundaries
 the real�
world is usually modeled by control engineers as a continuous dynamical system
while computer scientists investigate the dynamics of discrete systems�

This line of research raises interesting theoretical problems concerning the
relations between these two types of dynamics� and concerning the applicabil�
ity of various techniques� originating in program veri�cation� to the automatic
analysis of dynamical systems� In this paper we give a precise de�nition of ab�
straction of a continuous dynamical system by a discrete transition system� Then
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we introduce a class of hybrid systems that has attracted most of the attention
within hybrid systems research� namely systems with piecewise�constant deriva�
tives �PCD systems�� We show that such systems� even without explicit discrete
�jumps� �i�e�� the trajectories are continuous but not smooth� can simulate in
a reasonable sense every e�ective transition system and hence their reachabil�
ity problem is in general undecidable� This fact should be compared with the
decision procedure introduced in ���� for such systems with 	 dimensions�

The rest of the paper is organized as follows
 In section 	 we give the neces�
sary preliminary de�nitions� In section 
 we show how PCD systems can realize
deterministic �nite and push�down automata� For non�deterministic automata
we show in section � that three dimensions are necessary and su�cient for their
realization by dynamical systems� In section � we show how to realize every Tur�
ing machine by a 
�dimensional and thus prove our main undecidability result�
Finally we discuss some related work�

� Preliminaries

Let Q be a set of �states�� A state sequence is a function � 
 IN � Q� A
transition system without input is a pair A � �Q� �� where Q is a set of states
and � � Q � Q is a transition relation� We say that A is deterministic if � is
a function from Q to Q and call A an automaton when Q is �nite� A run of
such a system starting at some q � Q is a ��nite or in�nite� state sequence
� � ����� ��	�� � � � such that ���� � q and for every i � �� ���i�� ��i� ��� � �� The
set of all possible runs starting at q is denoted by L�A� q�� and the set of possible
runs starting at some q � Q� � Q is denoted by L�A� Q���

Let Q� and Q� be two sets of states� and let � 
 Q� � Q� be a surjective
�possibly partial� function called the state�abstraction function� Then for every
sequence � � Q�

��Q
�
� � its abstract image is ���� � � � Q�

��Q
�
� de�ned by � �i� �

����ji�� where j� � � and for every i � �� ji � minfj 
 j � ji�� � ����j�� �� 	g�
Note that if � is total than ji � i and � �i� is simply ����i���

De�nition � �Abstraction of Transition Systems� Let A� � �Q�� ��� and
A� � �Q�� ��� be two transition systems� We say that A� is an abstraction of A�

�or that A� realizes A�� via some function � 
 Q� � Q� if

�
q� � Q���
q� � ����q����� � L�A�� q��� ���� � L�A�� q��� ���

and

�
q� � Q���
�� � L�A�� q�����q� � Q������ � L�A�� q��� 
 �� � ����� �	�

This fact is denoted by A� 
� A� or simply A� 
 A��

The �rst condition says that the concrete system A� can produce a sequence
only if its abstract image is allowed in the abstract system A�� The second con�
dition says that every abstract sequence is realized by some concrete sequence�



A time segment is any interval ��� r� � IR� including IR� itself� The dynamical
systems we consider are over X � IRd considered as a d�dimensional Euclidean�

space� In other words we have d state�variables ranging over the reals� Points �or
vectors� inX are denoted by boldface letters� e�g�� x� An open �closed� half�space
is a set of points x � X satisfying a � x 	 b �a � x � b�� A convex polyhedral set
is a �nite intersection of half�spaces�

A trajectory in X is a continuous function 
 
 T � X where T is a time
interval� The �rst step in establishing some connection between trajectories and
state�sequences is to map points of X into states�

De�nition � �Convex State Abstraction� A convex state abstraction is a
partial function � 
 X � Q such that for every q � Q� ����q� is a convex
relatively�open� set�

The ��abstract trajectory of 
 is a function � 
 T � Q � f	g de�ned as
��t� � ��
�t��� After having discretized space we discretize time


De�nition � �Signature� Let 
 be a trajectory� and let � be its ��abstract
trajectory for a state abstraction �� The �timed� ��signature of 
 is a sequence
� � �q���� l���� u����� �q�	�� l�	�� u�	��� � � � where for every i� � �i� � �q�i�� �l�i�� u�i���
i�

�� l�i� � infft � u�i� �� 
 ��t� �� 	g �u��� � ��
	� u�i� � infft � l�i� 
 ��t� � 	g

� ��t� � q�i� for some �and every� t � �l�i�� u�i��

The sequence � � Q� �Q� obtained by projecting away the temporal intervals is
called the �untimed� ��signature of 
 and is denoted by ��
��

The fact that regions do not intersect implies that every state�transition must
involve a passage through an unde�ned region� The generators of trajectories are
dynamical systems


De�nition � �Dynamical System� An �autonomous� dynamical system is H �
�X� f� where X is the state�space and f is a partial function from X to X such

that d
�x
dt

� f�x� is the di�erential equation governing the evolution of x� A tra�
jectory of H starting at some x� � X is a function 
 
 T � X such that 
�� is
a solution of the equation with initial condition x � x�� i�e�� 
��� � x� and for
every t� f�
�t�� is de�ned and is equal to the right derivative of 
�t��

We denote the set of all trajectories starting at some x � X by M �H�x�� A
di�erential equation has a uniqueness property if for every x there is at most
one solution� In this case the system is said to be deterministic�

� We assume familiarity with elementary topological and geometrical notions� such as
connectedness� closure� interior� boundary� relative boundary and convexity � see ���
for a readable introduction�

� A set R is relatively�open if every point has a neighborhood such that its intersection
with the a�ne hull of R is contained in R� Points and open intervals� for example�
are relatively�open but not open in a d�dimensional space� d � ��



Having de�ned dynamical systems and abstractions of trajectories into se�
quences we can de�ne the proper notion of abstraction between dynamical sys�
tems and transition systems�

De�nition 	 �A 
� H� A transition system A is an abstraction of a dynamical
system H �H realizes A� via a state�abstraction � if

�
q � Q��
x � ����q���
 �M �H�x�� ��
� � L�A� q�� �
�

and

�
q � Q��
� � L�A� q����x � ����q����
 �M �H�x�� 
 � � ��
� ���

This fact is denoted by A 
� H�

The �rst condition says that the signature of every trajectory of H is a sequence
of A� The second conditions means that every sequence of A is a signature of
some trajectory in H� This de�nition is almost identical to de�nition �� except
for the fact that here we needed additional machinery for going from a dense
time domain to a discrete one�

A variant of dynamical systems we are going to employ are systems with
piecewise�constant �and thus discontinuous� derivatives�

De�nition 
 �PCD System� A piecewise�constant derivative �PCD� system
is a dynamical system H � �X� f� where f is a �possibly partial� function from
X to X such that the range of f is a �nite set of vectors C � X� and for every
c � C� f���c� is a �nite union of convex polyhedral sets�

In other words� a PCD system consists of partitioning the space into convex
polyhedral sets ��regions��� and assigning a constant derivative c ��slope�� to all
the points sharing the same region� The trajectories of such systems are broken
lines� with the breakpoints occurring on the boundaries of the regions� PCD
systems are deterministic� An example of a PCD system appears in �gure ��

Fig� �� A ��dimensional PCD system� The slopes are depicted in dark lines� while the
dashed line indicates a sample trajectory�

Given an e�ective description of dynamical system H� the reachability prob�
lem for H� denoted by Reach�H�x�x�� is the following
 Given x�x� � X� are
there 
 � M �H�x� and t � � such that 
�t� � x�� For PCD systems with 	
variables �described by linear inequalities and slope vectors� this problem has
been proven decidable in �����



� Realization of Finite and Push�down Automata

First we show how every �nite�state deterministic automaton can be realized by
a 
�dimensional PCD system �a deterministic �nite automaton without input
is a rather trivial object and the construction is presented here just because it
underlies the more complicated constructions for in�nite�state machines��

Claim � �Realization of Finite Automata� For every �nite deterministic
automaton A there is a 
�dimensional PCD system H such that A 
 H�

Proof
 Suppose the automaton has n states� The realizing system is de�ned over
the subset ��� n�� ��� ��� ��� n� of IR�� It consists of the following regions �we call
the state variables x� y� and z�


Region De�ning conditions Derivative
F �z � �� � �y 	 �� �x � �� �y � �� �z � �
Uij �x � i� � �y � �� � �z 	 j� �x � �� �y � �� �z � �
Bij �z � j� � �x� �j � i�y � j� � �y � �� �x � j � i� �y � ��� �z � �
D �z � �� � �y � �� �x � �� �y � �� �z � ��

The regions Uij and Bij are de�ned for every i� j such that ��qi� � qj� As a state�
abstraction we take ��x� y� z� � qi if �x � i� � �y � z � ��� and ��x� y� x� � 	
otherwise� An example of this construction appears in �gure 	� It can be veri�ed
that the system goes from �i� �� �� to �j� �� �� i� ��qi� � qj
 At F the system
advances y until �i� �� ��� then at Uij it goes �up� until it reaches the surface
z � j at �i� �� j�� On that surface in region Bij it goes diagonally to �j� �� j� and
�nally in D it goes down to �j� �� ��� Note that all the regions leading to �j� �� j�
are located on the same surface�
Remark
 This technique can be applied to the realization of non�deterministic
automata by non�deterministic PCD systems� All we have to do is to modify the
de�nition of a PCD system to allow non�determinismon the �relative� boundaries
of the regions� Then if both �qi� qj� and �qi� qk� are possible transitions� j 	 k�
the system will bifurcate in �i� �� j� between Bij �going to qj� and Uik �going
up until z � k and then to Bik�� But� as we will show later� non�deterministic
automata can be realized by deterministic PCD systems�

The results concerning in�nite�state transition�systems will be based on stack
machines� A stack is an element of 
� where 
 � f�� � � � � k� �g� We de�ne the
following two functions
 push
 
 � 
� � 
� and pop
 
� � 
 � 
� as
push�v� S� � v � S and pop�v � S� � �v� S��

De�nition � �PDAs� A deterministic pushdown�automaton �PDA� is a tran�
sition system A � �Q � 
� � �� for some Q � fq�� � � � qng such that � is de�ned
using a �nite collection of statements of one of the following two forms


qi
 S 
�push�v� S��
goto qj

qi
 �v� S� 
�pop�S��
if v � � goto qi��
� � �
if v � k � � goto qik�� �
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z

z � 	
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Fig� �� Simulating a ��state automaton with ��q�� � ��q�� � q� and ��q�� � q��

The contents of a stack is denoted by S � s�s� � � �where s� is the top of the stack�
We de�ne an encoding function r 
 
� � ��� �� as r�S� �

P
�

i�� sik
�i� We assume

that k � � appears only �nitely many times in the stack� hence r is injective�
It is easily veri�ed that the stack operations have arithmetic counterparts that
operate on the representation


S� � push�v� S� i� r�S�� � �r�S� � v���k�

�S�� v� � pop�S� i� r�S�� � kr�S� � v

Claim � �Realization of PDAs� Every PDA can be realized by a 
�dimensional
PCD system�

Sketch of Proof
 For simplicity we assume k � 	 and 
 � f�� �g� Consider the
three planar sub�systems depicted in �gure 
 and a trajectory segment starting
at x � �x� ��� x � ��� �� and ending at x� � �x�� ��� It can be veri�ed that either


x� � �x� ���	 push �
x� � x�	 push �
x� � 	x� ��	 pop

Thus if x � r�S� at the �input port� �y � �� of a push element� then x� � r�S��
at the �output port� �y � �� of that element where S� is the resulting stack�



	

��� ������ ��� ����

� 	 � 	 ��� �
push � push � pop

Fig� �� The basic elements�

For the pop element we have two output ports ���	 � x 	 ��	 and ��	 �
x 	 
�	� If the top of the stack was � the trajectory reaches the left port with
x� � r�S�� � ��	� otherwise it goes to the right port with x� � r�S�� � ��	�
In both cases the value of x� �relative to the port�s �origin�� encodes the new
content of the stack� Thus all that remains to do is to take for every qi an
element corresponding to its stack operation� place it with the origin in position�
say� �	i� �� �� and use the third dimension in order to connect the output ports
back to the input ports according to the goto�s �see �gure ��� This is similar
to the previous construction except for the fact that the connections are via
two�dimensional �bands� and thus two families of trajectories going to the same
state qi cannot be merged on the same plane �z � j� but only while going
�down�� Finally the state�abstraction function is de�ned as ��x� y� z� � �qi� S�
i� y � z � �� 	i � x 	 	i � � and S � r���x� 	i��

� Realizing Non�Deterministic Automata

In this section we show that every non�deterministic automaton can be re�
alized by a 
�dimensional deterministic PCD system� and that certain non�
deterministic automata cannot be realized using less than 
 dimensions�

Claim � �Transitivity of Abstraction� Let H � �X� f� be a PCD system
and let A� � �Q�� ���� A� � �Q�� ��� be two transition systems such that A� 
�

H� A� 
� A�� and � � � 
 Q� � X is convex� Then A� 
��� H�

Proof
 Follows from the de�nitions�

Claim � Let A � �Q� �� be a non�deterministic automaton� Then there exists a
PDA D � �Q �
� ��� and a mapping � 
 Q� 
� � Q such that A 
� D�

Proof
 AssumeQ � fq�� � � � � qkg� and let 
 � f�� � � � � kg� De�ne� as a collection
of statements of the form


qi
 �v� S� 
�pop�S��
if �qi� qv� � � goto qv



z

�	� 	� 	� q� q�
x

y

Fig� �� Simulating a PDA with � states� de
ned by� q� � S ��push���S�� q� �
�v� S� ��pop�S�� If v � � then goto q� else goto q�� Note the place where the
two gotos to q� merge�

One can see that if ��qi� � S��� �qi�� S��� � � then �qi�� qi�� � �� and that for every
run qi� � qi�� � � � of A there is a stack S� such that �qi�� S��� �qi�� S��� � � � is a run
of D� Hence by letting ��S� q� � q for every q � Q we have A 
� D�

Corollary 	 Every non�deterministic �nite automaton can be realized by a 
�
dimensional PCD system�

Remark
 The initial stack con�guration contains information concerning all
the future non�deterministic choices�� �Finite� stacks over 
� i�e�� sequences
from f�� � � � � kg���� encode �nite runs of A� The corresponding trajectory of the
realizing PCD system will be �stuck� at the � output port of the last state�

Claim 
 �Planar PCD � Planar Graph� A non�deterministic automaton
can be realized by a 	�dimensional dynamical system only if its transition graph
is planar�

Proof
 Consider a deterministic automaton A � �Q� �� �see �gure ��a� realized
by a 	�dimensional system H via a convex state�abstraction function �� We ig�
nore self�loops in the transition graph of A since they do not a�ect planarity�
For every qi � Q we let Ri � ����qi�� For every pair of states qi� qj such that
�qi� qj� � � we pick two points xij � Ri and yij � Rj and a trajectory 
 of H�
such that a �segment� of 
 �denoted by 
ij� joins the points xij and yij without

� A reminiscent of the �prophecy� of ����



passing through any other Rk �see �gure ��b�� Note that because H is determin�
istic� if 
ij and 
kj have a common point� they coincide after this point �e�g��
the point z in �gure ��b�� For every Ri we take a closed bounded convex subset
R�

i containing all the abovementioned points xij and yki �the closed curves in
�gure ��b�� Then we choose a point vi � R�

i and de�ne a continuous transfor�
mation that maps all points in R�

i into vi� and is one�to�one on all points not
belonging to any R�

i �see �gure ��c�� We denote the trajectory from vi to vj by


�ij� Finally� for every i� we let �Ri be the set of all points that belong to two or

more trajectories 
�ji and 
�ki �for example� �R� is the trajectory segment from z

to v� in �gure ��c�� Once again� by continuous transformation we map �Ri to vi
and get an embedding of the transition graph of A into the plane ��gure ��d���

�c� �d�

q� q�

q� q�

z

���

�a� �b�

R�

R�R�

R�

z
v�

v�
v�

v�

��

��

v�

v�
v�

v�

Fig� �� �a� An automaton� �b� Trajectories in a realizing planar system� �c� Mapping
all regions into representative points� �d� An embedding of the transition graph in the
plane�

Corollary � �Necessity of � Dimensions� Some non�deterministic automata
cannot be realized by deterministic dynamical system of dimensionality smaller
than 
�

� Realization of Two�stack and Turing Machines

The construction of claim 	 generalizes naturally to automata having two stacks
�	PDAs�� We can de�ne an encoding function �r 
 
� � 
� � ��� �� � ��� ��



by letting �r�S�� S�� � �r�S��� r�S���� This way every con�guration of the two
stacks can be encoded by a point x � �x�� x�� �� in a two�dimensional input
port� The elements that simulate the stack operations �push�v� S��� push�v� S���
pop�S�� and pop�S��� operate on the appropriate dimension �according to the
stack involved� and leave the other dimension intact� As an example� an element
corresponding to push��� S�� appears in �gure �� From this we can immediately
conclude


yx�

x�
�x�� x��

�x�

�� x��

Fig� �� An element simulating the operation push�	� S��

Claim � Every 	PDA �and hence any Turing machine� can be realized by a
��dimensional PCD system�

Proof
 As in claim 	 we pick n elements� arrange them along a line and con�
nect output ports to input ports� The connections should now �carry� two�
dimensional information about the con�guration� and thus consist of three�
dimensional �tubes�� The merging of several tubes going to the same state can
be done by employing a fourth dimension �no �gure�� in the same way as two�
dimensional �bands� were merged in the case of one�stack PDAs�

But we can do better� First� recall from the standard proof of the equivalence
of Turing machines and 	PDAs that some constraints can be imposed on the type
of 	PDAs used�

De�nition � �Normal �PDA� Let 
 � f�� �� 	g� A con�guration �S�� S�� �

� �
� is normal if both S� and S� belong to f�� 	g���� A 	PDA is normal if
it never pushes � to any of the stacks�

It can be easily veri�ed that normality of the con�gurations is preserved by
normal 	PDAs and that normal 	PDAs can realize Turing machines�

Let C� � Q�
��
� be a set of con�gurations� We denote by S�C�� i� j� the
set f�S�� S�� � 
��
� 
 ��� � L�A� C�����k � �����k� � �qi� S��� S

�

�����k��� �
�qj � S�� S��g� In other words� S�C�� i� j� is the set of all 	�stack con�gurations
with which a transition from qi to qj can take place in any run starting from C��
The set of tops of theses stacks� T �C�� i� j� is de�ned as T �C�� i� j� � f�v�� v�� 

��S�� S�� s�t� �v�S�� v�S�� � S�C�� i� j�g�



De�nition 
 �Separated and Flat States� Let C� be a set of 	PDA con�g�
urations� A state qk of the 	PDA is C��separated if for every qi �� qj � Q�
T �C�� i� k� � T �C�� j� k� � �� A state qk of a 	PDA is C���at if for every j�
S�C�� j� k� � f��g � 
�� A 	PDA is C��regular if each of its states is either
C��separated or C���at�

In other words� qk is separated if� upon entering qk� the values on the tops of
the stacks are su�cient to tell whether we come from qi or qj� A state is �at if
it is always entered with the �rst stack empty�

Claim 
 Any regular 	PDA can be realized	 in 
 dimensions�

Proof
 The only obstacle was the need to merge two or more �tubes� entering
the same input port of a state q� If q is separated these tubes do not overlap
on the input port and the connections can be made� If q is �at� the relevant
information at the input port of q is one�dimensional and all incoming �bands�
can be glued together �see �gure  ��

Fig� 	� Realizing entrances to input ports of separated �left� and �at �right� states�

What we are going to show is� informally speaking� that every normal 	PDA
can be transformed into a regular 	PDA� The idea is simple
 each time after
performing a stack operation� we empty one stack while pushing its contents
into the other� Then we perform the goto�s� that is� merge several �bands�
that contain one�dimensional information� Before entering the new input port
we decode the one�dimensional representation back into two stacks�

We for every i� j � f�� � � � � ng� we de�ne a machine Encoderij and a machine
Decoderj � An encoder takes two normal stack con�gurations S� � x�� � � �xl��

and S� � y�� � � � ym�� �xi� yi � f�� 	g� and converts them into S� � �� ��empty�
stack� and S� � xl � � � x��y� � � � ym��� The decoder does the reverse operation�
These two machines are described below


� To be more precise� a weaker notion of realization is required which refers only to
trajectories starting at C	�



Encoderij Decoderj

E�Entryij 
 S� 
�push��� S�� D�Entryj
 S� 
�push��� S��
goto E�Loopij goto D�Loopj

E�Loopij
 �S�� v� 
�pop�S�� D�Loopj
 �S�� v� 
�pop�S��
if v � � goto E�Exitij if v � � goto D�Exitj
if v � � goto E�Mov�ij if v � � goto D�Mov�j
if v � 	 goto E�Mov	ij if v � 	 goto D�Mov	j

E�Mov�ij
 push��� S�� D�Mov�j
 push��� S��
goto E�Loopij goto D�Loopj

E�Mov	ij
 push�	� S�� D�Mov	j
 push�	� S��
goto E�Loopij goto D�Loopj

E�Exitij
 goto D�Entryj D�Exitj
 goto qj

Claim �� Let A � �Q�
��
� � �� be a normal 	PDA and let N be the set of all
normal con�gurations� Then there is an N �regular 	PDA A� � �Q��
��
� � ���
that realizes A�

Proof
 We let Q� be the union of Q and the set of states of the corresponding
encoders and decoders� The transition function is the union of the transitions
of the encoders and decoders with the following variation of �
 every original
A�statement of the form qi � � �goto qj is replaced by qi � � �goto E�Entryij �
It can be easily veri�ed that every qj is now separated �it is entered only from
D�Exitj�� that E�Entryij is separated �it is entered only from qi� and that D�
Entryj is N ��at �all trajectories starting with a normal con�guration will enter
the encoder with a normal con�guration and will leave the encoder with one stack
empty�� The other states of the decoders and encoders are obviously separated�
By de�ning � 
 Q��
� � Q�
� as ��q� S� � �q� S� i� q � Q and S is normal�
we obtain the desired abstraction� This construction is drawn schematically in
�gure !�

Corollary �� �Main Result� Any 	PDA can be realized by a 
�dimensional
PCD system�

Corollary �� �Undecidability� The reachability problem for 
�dimensional
PCD systems is undecidable�

Proof
 Otherwise we could translate every reachability problem of a Turing ma�
chine� into a reachability problem between two rational points in a 
�dimensional
realizing system� and solve the halting problem�

� Discussion

We have shown several interesting connections between topological properties
of dynamical systems and their computational expressiveness� We have demon�
strated a class of simple low�dimensional dynamical systems the trajectories of



q�

q�

q�q� q�

q� q� q�

E�� E�� E��

D�D�

Fig� 
� Augmenting a �PDA with encoders and decoders�

which can be e�ectively and precisely computed �given a rational initial condi�
tion� and yet their reachability problem is undecidable�

There have been other works on simulation of transition systems by dynami�
cal systems� For example� in � � the boolean transition function of an automaton�
de�ned over f�� �gm� is realized by its continuous extension to ��� ��m using arith�
metical operations� Similarly stacks have been simulated by rational arithmetic
in ���� In these works� however� the simulating system is already de�ned over dis�
crete time� i�e�� using iterated maps of the form xn�� � f�xn�� Our construction�
on the other hand� uses continuous�time systems�

There have been various undecidability results for other variants of hybrid
systems with piecewise�constant derivatives �timed automata �	� or integration
graphs �!��� but those were obtained in a richer model where a transition between
regions is accompanied by a discrete change� and the trajectories are discontin�
uous� In ��� automata were simulated �without a precise formal de�nition of this
term� by smooth dynamical systems de�ned over a state�space of certain sym�
metric matrices� Those systems have high dimensionality that grows with the
size of the automaton�

The closest work to ours has been reported in ��
� where stack machines were
constructed from optical elements such as mirrors and lenses� These construc�
tions were used to prove undecidability of the ray tracing problem� It should be
noted� however� that optical systems� as well as billiard models� require a richer
model� where the phase�space is 	n�dimensional �the direction in each spatial
dimensions is also a state variable� and the trajectories are discontinuous in this
phase�space �the direction or the velocity goes through an abrupt change�� Hence
the equivalence between our PCD results and theirs is an optical illusion�

Finally Putnam ����� while attempting to prove the thesis every open physical
system realizes every automaton� uses a notion of abstraction we �nd implausible�



Consider� for example a deterministic automaton without input� generating the
sequence �q�q��

� � Then the system dx
dt

� � �or any other system with a non�cyclic
behavior� realizes the automaton by letting ��x� � q� when 	i 	 x 	 	i � ��
and ��x� � q� when 	i� � 	 x 	 	i � 	 for any integer i � �� This abstraction
works only if we consider a �xed initial state �otherwise we need a di�erent
abstraction for each state� and� moreover� � is topologically rather complex

����q� is a union of in�nitely many disconnected sets� which contradicts our
intuition concerning abstractions�

Acknowledgements

A� Bouajjani contributed to an earlier undecidability result for � dimensions that
inspired the current construction� The comments of anonymous referees helped
in improving the presentation�

References

�� M� Abadi and L� Lamport� On the existence of re
nement mappings� in Proc� of

the Third Annual Symposium on Logic in Computer Science� pages �
������ IEEE
Computer Society Press� �����

�� R� Alur and D�L� Dill� Automata for modeling real�time systems� In M�S� Paterson�
editor� Proc� of ICALP���� Lect� Notes in Comp� Sci� ���� pages �������� Springer�
Verlag� �����

�� R� Alur� C� Courcoubetis� T� Henzinger� and P� Ho� Hybrid automata� An algo�
rithmic approach to the speci
cation and analysis of hybrid systems� In A� Ravn
and H� Rischel� editors� Workshop on Hybrid Systems� Lect� Notes in Comp� Sci�
Springer�Verlag� �����

�� R�W� Brockett� Smooth dynamical systems which realize arithmetical and logical
operations� In H� Nijmeijer and J�M� Schumacher� editors� Three Decades of Math�

ematical Systems Theory� pages ����	� Lect� Notes in Control and Information Sci�
ences� Springer�Verlag� �����

�� A� Brondsted� An Introduction to Convex Polytopes� Springer�Verlag� New�York�
�����


� M� Cosnard� M� Garzon and P� Koiran� Computability properties of low�
dimensional dynamical systems� In P� Enjalbert� A� Finkel and K�W� Wagner� ed�
itors� Proc� of the ��th Ann� Symp� on Theoretical Aspects of Computer Science�
pages �
������ Lect� Notes in Comp� Sci� 

�� Springer�Verlag� �����

�� R�A� DeMillo and R�J� Lipton� De
ning software by continuous smooth functions�
IEEE Trans� on Software Engineering� Vol� ��� No� �� �����

�� Y� Kesten� A� Pnueli� J� Sifakis� and S� Yovine� Integration graphs� A class of de�
cidable hybrid systems� In A� Ravn and H� Rischel� editors� Workshop on Hybrid

Systems� Lect� Notes in Comp� Sci� Springer�Verlag� �����

�� O� Maler� Z� Manna� and A� Pnueli� From timed to hybrid systems� In J�W�
de Bakker� C� Huizing� W�P� de Roever� and G� Rozenberg� editors� Proceedings of
the REX Workshop �Real�Time	 Theory in Practice
� volume 
		 of Lect� Notes in
Comp� Sci�� pages �������� Springer�Verlag� �����



�	� O� Maler and A� Pnueli� Reachability analysis of planar multi�linear systems� In
C� Courcoubetis� editor� Proc� of the �th Workshop on Computer�AidedVeri�cation�
Elounda� Greece� volume 
�� of Lect� Notes in Comp� Sci�� pages �����	�� Springer�
Verlag� �����

��� H� Putnam� Representation and Reality� MIT Press� Cambridge� MA� �����
��� X� Nicollin� A� Olivero� J� Sifakis� and S� Yovine� An approach to the description

and analysis of hybrid systems� In A� Ravn and H� Rischel� editors� Workshop on

Hybrid Systems� Lect� Notes in Comp� Sci� Springer�Verlag� �����
��� J�H� Reif� J�D� Tygar� and A� Yoshida� The computability and complexity of op�

tical beam tracing� in Proc� 
�st Annual Symposium on Foundations of Computer

Science� St� Louis� Missouri� �	
����� IEEE Press ���	�


