On some Relations between Dynamical Systems
and Transition Systems*

Eugene Asarin® and Oded Maler?

! Tnstitute for Information Transmission Problems, 19 Ermolovoy st., Moscow,
Russia, asarin@ippi.msk.su
2 SPECTRE — VERIMAG, Miniparc-ZIRST, 38330 Montbonnot, France,
Oded.Maler@imag.fr

Abstract. In this paper we define a precise notion of abstraction rela-
tion between continuous dynamical systems and discrete state-transition
systems. Our main result states that every Turing Machine can be re-
alized by a dynamical system with piecewise-constant derivatives in a
3-dimensional space and thus the reachability problem for such systems
is undecidable for 3 dimensions. A decision procedure for 2-dimensional
systems has been recently reported by Maler and Pnueli. On the other
hand we show that some non-deterministic finite automata cannot be re-
alized by any continuous dynamical system with less than 3 dimensions.

1 Introduction

There has been recently an increasing interest in models of hybrid systems, i.e.,
systems that combine intercommunicating discrete and continuous components
(see [9], [12], [3]). The introduction of these models is motivated by a real prac-
tical concern: more and more computers (discrete transition systems) are nowa-
days embedded within real-world control loops such as in avionics, process con-
trol, robotics and consumer products — to mention a few application areas. The
analysis and prediction of the combined behavior of these embedded systems
require formal tools that cut across existing disciplinary boundaries: the real-
world is usually modeled by control engineers as a continuous dynamical system
while computer scientists investigate the dynamics of discrete systems.

This line of research raises interesting theoretical problems concerning the
relations between these two types of dynamics, and concerning the applicabil-
ity of various techniques, originating in program verification, to the automatic
analysis of dynamical systems. In this paper we give a precise definition of ab-
straction of a continuous dynamical system by a discrete transition system. Then

* This research was supported in part by the France-Israel project for cooperation in
Computer Science, by the European Community ESPRIT Basic Research Action
Projects REACT (6021) and by Research Grant #93-012-884 of the Russian Foun-
dation of Fundamental Research. VERIMAG is a joint laboratory of CNRS, INPG, UJF
and VERILOG SA. SPECTRE is a project of INRIA. The final version was prepared
while the first author was visiting the Dept. of Mathematics of the University Paris
12 - Val de Marne.

we introduce a class of hybrid systems that has attracted most of the attention
within hybrid systems research, namely systems with piecewise-constant deriva-
tives (PCD systems). We show that such systems, even without explicit discrete
“jumps” (i.e., the trajectories are continuous but not smooth) can simulate in
a reasonable sense every effective transition system and hence their reachabil-
ity problem is in general undecidable. This fact should be compared with the
decision procedure introduced in [10] for such systems with 2 dimensions.

The rest of the paper 1s organized as follows: In section 2 we give the neces-
sary preliminary definitions. In section 3 we show how PCD systems can realize
deterministic finite and push-down automata. For non-deterministic automata
we show in section 4 that three dimensions are necessary and sufficient for their
realization by dynamical systems. In section 5 we show how to realize every Tur-
ing machine by a 3-dimensional and thus prove our main undecidability result.
Finally we discuss some related work.

2 Preliminaries

Let @ be a set of “states”. A state sequence 1s a function ¢ : N — Q. A
transition system without input is a pair A = (@,) where @ is a set of states
and § C) x Q is a transition relation. We say that A is deterministic if § is
a function from @ to @ and call A an automaton when @) is finite. A run of
such a system starting at some ¢ € @ is a (finite or infinite) state sequence
o = o[l],c[2],...such that o[1] = q and for every i > 1, (¢[i], o[i + 1]) € é. The
set of all possible runs starting at ¢ is denoted by L(A, ¢), and the set of possible
runs starting at some ¢ € Qo C @ is denoted by L(A, Qo).

Let Q1 and ()2 be two sets of states, and let ¥ : ()1 —)2 be a surjective
(possibly partial) function called the state-abstraction function. Then for every
sequence o € QTUQRY, its abstract image is ¢(0) = 7 € Q5UQRY defined by r[i] =
¢(o[ji]) where jo = 0 and for every ¢ > 1, jy = min{j : j > ji—1 Ay¥(c[j]) # L}
Note that if ¢ is total than j; = ¢ and [¢] is simply ¥(o[i]).

Definition 1 (Abstraction of Transition Systems) Let A; = (Q1,61) and
Az = (Q2,82) be two transition systems. We say that As is an abstraction of Ay
(or that Ay realizes As) via some function ¢ : Q1 — Q2 if

(Vg2 € Q2)(Va1 € ™1 (g2))(0 € L(A1,q1) = ¥(0) € L(Az, ¢2)) (1)
and
(Vg2 € Q2)(Voz € L(A2,42))(3q1 € Q1)(For € L(Ar, q1)) 02 = ¥(01) (2)
This fact is denoted by Ay <y A1 or simply Ay < Ay .

The first condition says that the concrete system 4; can produce a sequence
only if its abstract image is allowed in the abstract system A,. The second con-
dition says that every abstract sequence is realized by some concrete sequence.

A time segment is any interval [0, r] C IR including IRY itself. The dynamical
systems we consider are over X = IR? considered as a d-dimensional Euclidean?®
space. In other words we have d state-variables ranging over the reals. Points (or
vectors) in X are denoted by boldface letters, e.g., x. An open (closed) half-space
is a set of points x € X satisfyinga-x < b (a-x < b). A convex polyhedral set
1s a finite intersection of half-spaces.

A trajectory in X 1s a continuous function & : 7' — X where T is a time
interval. The first step in establishing some connection between trajectories and
state-sequences is to map points of X into states.

Definition 2 (Convex State Abstraction) A convex state abstraction is a
partial function ¢ : X — @Q such that for every ¢ € Q, »~1(q) is a convex
relatively-open® set.

The @-abstract trajectory of £ is a function n : T — @Q U {L} defined as
n(t) = (&(t)). After having discretized space we discretize time:

Definition 3 (Signature) Let & be a trajeclory, and lel n be ils p-abstract
trajectory for a state abstraction p. The (timed) @-signature of £ is a sequence
7 = (q[1], (1], w(1]), (q[2], 2], ul2]), . . . where for every i, [i] = (q[], (I[i], uli]))

uf

LA =inf{t >uli —1]:n(t) # L} (u[0]=0)
2. ulf] = int{t > {[i]] : n(¢) = L}
3. n(t) = q[i] for some (and every) t € (I[4], u[i])

The sequence 0 € Q* UQ™ obtained by projecting away the temporal intervals is
called the (untimed) @-signature of & and is denoted by p(&).

The fact that regions do not intersect implies that every state-transition must
involve a passage through an undefined region. The generators of trajectories are
dynamical systems:

Definition 4 (Dynamical System) An (autonomous) dynamical system is H =
(X, f) where X is the state-space and f is a partial function from X to X such

that d:lr_tx = f(x) is the differential equation governing the evolution of x. A tra-
jectory of H starting at some xg € X is a function & : T — X such that £() is
a solution of the equation with initial condition x = xq, i.e., £(0) = x¢ and for
every t, f(E(t)) is defined and is equal to the right derivative of £(t).

We denote the set of all trajectories starting at some x € X by M(H,x). A
differential equation has a uniqueness property if for every x there is at most
one solution. In this case the system is said to be deterministic.

® We assume familiarity with elementary topological and geometrical notions, such as
connectedness, closure, interior, boundary, relative boundary and convexity — see [5]
for a readable introduction.

* A set R is relatively-open if every point has a neighborhood such that its intersection
with the affine hull of R is contained in R. Points and open intervals, for example,
are relatively-open but not open in a d-dimensional space, d > 2.

Having defined dynamical systems and abstractions of trajectories into se-
quences we can define the proper notion of abstraction between dynamical sys-
tems and transition systems.

Definition 5 (A <, H) A transition system A is an abstraction of a dynamical
system H (H realizes A) via a state-abstraction @ if

(Vg € Q)(¥x € 9™ ()€ € M(H,x) = (&) € L(A,) (3)

and

(Vg € Q)(Yo € L(A,9))(Fx € ™ ()3 € M(H,x)) 10 = (&) (4)
This fact is denoted by A <, H.

The first condition says that the signature of every trajectory of H is a sequence
of A. The second conditions means that every sequence of A is a signature of
some trajectory in H. This definition 1s almost identical to definition 1, except
for the fact that here we needed additional machinery for going from a dense
time domain to a discrete one.

A variant of dynamical systems we are going to employ are systems with
piecewise-constant (and thus discontinuous) derivatives.

Definition 6 (PCD System) A piecewise-constant derivative (PCD) system
is a dynamical system H = (X, f) where f is a (possibly partial) function from
X to X such that the range of f is a finite set of vectors C' C X, and for every
ceC, f~1(c) is a finite union of convex polyhedral sets.

In other words, a PCD system consists of partitioning the space into convex
polyhedral sets (“regions”), and assigning a constant derivative ¢ (“slope”) to all
the points sharing the same region. The trajectories of such systems are broken
lines, with the breakpoints occurring on the boundaries of the regions. PCD
systems are deterministic. An example of a PCD system appears in figure 1.

Fig.1. A 2-dimensional PCD system. The slopes are depicted in dark lines, while the
dashed line indicates a sample trajectory.

Given an effective description of dynamical system H, the reachability prob-
lem for H, denoted by Reach(H,x,x’) is the following: Given x,x’ € X, are
there £ € M(H,x) and t > 0 such that £(t) = x'? For PCD systems with 2
variables (described by linear inequalities and slope vectors) this problem has
been proven decidable in [10].

3 Realization of Finite and Push-down Automata

First we show how every finite-state deterministic automaton can be realized by
a 3-dimensional PCD system (a deterministic finite automaton without input
is a rather trivial object and the construction is presented here just because it
underlies the more complicated constructions for infinite-state machines).

Claim 1 (Realization of Finite Automata) For every finile deterministic
automaton A there is a 3-dimensional PCD system H such that A <H.

Proof: Suppose the automaton has n states. The realizing system is defined over
the subset [1,n] x [0, 1] x [0, n] of IR3. Tt consists of the following regions (we call
the state variables z, y, and z):

Region Defining conditions Derivative
F (z=0)A(y<1) r=0,y=1,2=0
Ui; (x=DAy=1)A(z<})) z=0,y=0,z=1
Bij |G=PDA(e+(l-dy=)Ny>0)g=j—iy=-1,2=0
D (z>0)A(y=0) t=0,y=0,2=-1

The regions U;; and B;; are defined for every 4, j such that §(¢;) = ¢;. As a state-
abstraction we take p(z,y,2) = ¢; if (x =) A(y = 2=10), and p(z,y,2) = L
otherwise. An example of this construction appears in figure 2. It can be verified
that the system goes from (4,0,0) to (4,0,0) iff 6(¢;) = ¢;: At F the system
advances y until (7,1,0), then at U;; it goes “up” until it reaches the surface
z=jat (i,1,7). On that surface in region B;; it goes diagonally to (4,0, j) and
finally in D it goes down to (4, 0,0). Note that all the regions leading to (j, 0, j)
are located on the same surface. o
Remark: This technique can be applied to the realization of non-deterministic
automata by non-deterministic PCD systems. All we have to do is to modify the
definition of a PCD system to allow non-determinism on the (relative) boundaries
of the regions. Then if both (¢;,¢;) and (g;, ¢x) are possible transitions, j < k,
the system will bifurcate in (4,1, j) between B;; (going to ¢;) and U (going
up until z = k and then to B;;). But, as we will show later, non-deterministic
automata can be realized by deterministic PCD systems.

The results concerning infinite-state transition-systems will be based on stack
machines. A stack is an element of 2% where ¥ = {0,...,k— 1}. We define the
following two functions: PUSH: X x X% — X% and pop: X% — X x X% as
PUSH(v, S) = v - S and poP(v - S) = (v, 5).

Definition 7 (PDAs) A deterministic pushdown-automaton (PDA) is a tran-
sition system A = (Q x X%, &) for some Q@ = {qu,...qn} such that é is defined
using a finite collection of statements of one of the following two forms:
qi: S :=PUSH(v, S); qi: (v, S) :=PoP(S);
GOTO ¢; IF v =0 GOTO ¢;,;

IFv=4k—1GOTO ¢;,_,;

z=3
°
/L/] Lz =02
o 1 !
s e
S b vz =11
o« — :
: A . A
S z y
s s 7 a= i
0,0,0 z
() q1 q2 q3

Fig.2. Simulating a 3-state automaton with 6(¢1) = 6(¢2) = ¢1 and 6(¢3) = ¢o.

The contents of a stack is denoted by S = s1s5 ... where s; is the top of the stack.
We define an encoding function r : X% — [0, 1] as r(S) = S_:2 | s;k~". We assume
that & — 1 appears only finitely many times in the stack, hence r is injective.
It is easily verified that the stack operations have arithmetic counterparts that

operate on the representation:

S" = pusH(v, S) iff 7(S") = (r(S) +v)/(k)
(S",v) = pop(S)iff r(S") = kr(S) —v

Claim 2 (Realization of PDAs) FEvery PDA can be realized by a 3-dimensional
PCD system.

Sketch of Proof: For simplicity we assume k = 2 and ¥ = {0, 1}. Consider the
three planar sub-systems depicted in figure 3 and a trajectory segment starting
at x = (2,0), x € [0,1] and ending at x’ = (#’,1). Tt can be verified that either:

¥ =(x+1)/2 PrusHl
' =x/2 PUSH 0
' =2z—-1/2 pop

Thus if z = »(S) at the “input port” (y = 0) of a PUSH element, then 2’ = r(5")
at the “output port” (y = 1) of that element where S’ is the resulting stack.

1/2 1/2 —1/2 1/2 3/2

0o 10 1 0 /2 1
PUSH 1 PUSH 0 POP

Fig. 3. The basic elements.

For the POP element we have two output ports —1/2 < 2 < 1/2 and 1/2 <
x < 3/2. If the top of the stack was 0 the trajectory reaches the left port with
¥ = r(S") — 1/2, otherwise it goes to the right port with ' = r(S") 4+ 1/2.
In both cases the value of & (relative to the port’s “origin”) encodes the new
content of the stack. Thus all that remains to do is to take for every ¢; an
element corresponding to its stack operation, place it with the origin in position,
say, (2¢,0,0) and use the third dimension in order to connect the output ports
back to the input ports according to the GoTO’s (see figure 4). This is similar
to the previous construction except for the fact that the connections are via
two-dimensional “bands” and thus two families of trajectories going to the same

state ¢; cannot be merged on the same plane (z = j) but only while going
“down”. Finally the state-abstraction function is defined as ¢(z,y,2) = (¢;,5)
ify=2=0,2i<z<2i+1and S =r"Yz—2i). o

4 Realizing Non-Deterministic Automata

In this section we show that every non-deterministic automaton can be re-
alized by a 3-dimensional deterministic PCD system, and that certain non-
deterministic automata cannot be realized using less than 3 dimensions.

Claim 3 (Transitivity of Abstraction) Let H = (X, f) be a PCD system
and let Ay = (Q1,61), As = (Q2,82) be two transition systems such that Ay <,
H, As <y A1, and Yo : Q1 — X is convex. Then Ay <yop H.

Proof: Follows from the definitions. o

Claim 4 Let A = (Q,6) be a non-deterministic automaton. Then there exists a

PDAD = (Q x X¥, A) and a mapping ¢ : Q x Z¥ — Q such that A <y D.

Proof: Assume Q = {q1,...,qx}, and let ¥ = {0,... k}. Define A as a collection
of statements of the form:

qi: (v, S) :=PoOP(S);
IF (¢;,qy) € § GOTO ¢,

P LA

- 1

— [[!

SR ‘

3 | RN R |

| | N |

: L ! ‘e ;

| ! A T S)
| f 1 : 2 Y

; ; } | /
T
(0,0,0) 71 q2

Fig.4. Simulating a PDA with 2 states, defined by: ¢1 : S :=PUsH(1,S5); ¢
(v,5) :=poP(S5); If v = 1 THEN GOTO ¢z ELSE GOTO ¢;. Note the place where the
two GOTOs to g1 merge.

One can see that if ((¢;,,51), (¢i,, S2)) € A then (g4,,¢i,) € 6, and that for every
run ¢, qi,, ... of A there is a stack Sy such that (¢;,, S1), (¢iy, S2),... 18 a run
of D. Hence by letting ¥(.5, ¢) = ¢ for every ¢ € @ we have A <, D. o

Corollary 5 Every non-deterministic finite automaton can be realized by a 3-
dimensional PCD system.

Remark: The initial stack configuration contains information concerning all
the future non-deterministic choices.> “Finite” stacks over X, i.e., sequences
from {1, ..., k}*0%, encode finite runs of .A. The corresponding trajectory of the
realizing PCD system will be “stuck” at the 0 output port of the last state.

Claim 6 (Planar PCD = Planar Graph) A non-deterministic automaton
can be realized by a 2-dimensional dynamical system only if its transition graph
s planar.

Proof: Consider a deterministic automaton A = (Q, §) (see figure 5-a) realized
by a 2-dimensional system H via a convex state-abstraction function ¢. We ig-
nore self-loops in the transition graph of A since they do not affect planarity.
For every ¢; € Q we let R; = ¢~ !(q;). For every pair of states g;, ¢; such that
(¢i,q;) € 6 we pick two points x;; € R; and y;; € R; and a trajectory & of H,
such that a “segment” of ¢ (denoted by ¢;;) joins the points x;; and y;; without

° A reminiscent of the “prophecy” of [1].

passing through any other Ry (see figure 5-b). Note that because H is determin-
istic, if &; and &x; have a common point, they coincide after this point (e.g.,
the point z in figure 5-b). For every R; we take a closed bounded convex subset
R containing all the abovementioned points x;; and yz; (the closed curves in
figure 5-b). Then we choose a point v; € R} and define a continuous transfor-
mation that maps all points in R} into v;, and is one-to-one on all points not
belonging to any Rj (see figure 5-c). We denote the trajectory from v; to v; by
Z’»J». Finally, for every 2, we let R; be the set of all points that belong to two or
more trajectories 5]’2 and &, (for example, R» is the trajectory segment from z

to vy in figure 5-¢). Once again, by continuous transformation we map R; to v;
and get an embedding of the transition graph of A into the plane (figure 5-d)).

(a) (b)
d)

Vi
o Vo

Vi
. v
V4 : \/
&
V3 V3
Vi Va4
(¢)

(

Fig.5. (a) An automaton. (b) Trajectories in a realizing planar system. (c¢) Mapping
all regions into representative points. (d) An embedding of the transition graph in the
plane.

Corollary 7 (Necessity of 3 Dimensions) Some non-deterministic automata
cannot be realized by deterministic dynamical system of dimensionality smaller

than 3.

5 Realization of Two-stack and Turing Machines

The construction of claim 2 generalizes naturally to automata having two stacks
(2PDAs). We can define an encoding function 7 : X% x X% — [0,1] x [0, 1]

by letting 7(S1, S2) = (r(S1),7(S2)). This way every configuration of the two
stacks can be encoded by a point x = (#1,#2,0) in a two-dimensional input
port. The elements that simulate the stack operations (PUsH(v, .S), PUSH(v, S3),
POP(S1) and POP(S3)) operate on the appropriate dimension (according to the
stack involved) and leave the other dimension intact. As an example, an element
corresponding to PUSH(0, S1) appears in figure 6. From this we can immediately
conclude:

METRE xiﬁ Yy
. r1

Fig.6. An element simulating the operation PUSH(0, S1)

Claim 8 FEvery 2PDA (and hence any Turing machine) can be realized by «a
4-dimensional PCD system.

Proof: As in claim 2 we pick n elements, arrange them along a line and con-
nect output ports to input ports. The connections should now “carry” two-
dimensional information about the configuration, and thus consist of three-
dimensional “tubes”. The merging of several tubes going to the same state can
be done by employing a fourth dimension (no figure), in the same way as two-
dimensional “bands” were merged in the case of one-stack PDAs. o

But we can do better. First, recall from the standard proof of the equivalence
of Turing machines and 2PDAs that some constraints can be imposed on the type

of 2PDAs used.

Definition 8 (Normal 2PDA) Let ¥ = {0,1,2}. A configuration (S1,52) €
X¥ x X% 4s normal if both Sy and Sy belong to {1,2}*0%. A 2PDA is normal if
it never pushes 0 to any of the stacks.

It can be easily verified that normality of the configurations is preserved by
normal 2PDAs and that normal 2PDAs can realize Turing machines.

Let Cy € @ x X% x X% be aset of configurations. We denote by S(Cl, i, j) the
set {(S1,52) € Z¥x X% : (Fo € L(A, Cy))(Fk > 0)(o[k] = (¢, S}, Sh)Aolk+1] =
(¢5,51,52)}. In other words, S(Cl, ¢, j) is the set of all 2-stack configurations
with which a transition from ¢; to ¢; can take place in any run starting from Cj.
The set of tops of theses stacks, T(Cy,1, j) is defined as T(Cy, 1, j) = {(v1,v2) :
3(51,52) s.t. (1}151, 1}252) S S(CQ, Z,j)}

Definition 9 (Separated and Flat States) Let Cy be a set of 2PDA config-
urations. A stale qp of the 2PDA is Cy-separated if for every ¢; # ¢; € Q,
T(Co, i, k) NT(Co,j, k) = 0. A state qi of a 2PDA is Co-flat if for every j,
S(Co,j, k) C {0} x Z¥. A 2PDA is Cy-regular if each of its states is either
Cy-separated or Cy-flat.

In other words, ¢; 1s separated if, upon entering gz, the values on the tops of
the stacks are sufficient to tell whether we come from ¢; or ¢;. A state is flat if
it 1s always entered with the first stack empty.

Claim 9 Any regular 2PDA can be realized® in 3 dimensions.

Proof: The only obstacle was the need to merge two or more “tubes” entering
the same input port of a state ¢. If ¢ is separated these tubes do not overlap
on the input port and the connections can be made. If ¢ is flat, the relevant
information at the input port of ¢ is one-dimensional and all incoming “bands”
can be glued together (see figure 7). o

S 1

Fig. 7. Realizing entrances to input ports of separated (left) and flat (right) states.

What we are going to show is, informally speaking, that every normal 2PDA
can be transformed into a regular 2PDA. The idea is simple: each time after
performing a stack operation, we empty one stack while pushing its contents
into the other. Then we perform the GoTO’s, that is, merge several “bands”
that contain one-dimensional information. Before entering the new input port
we decode the one-dimensional representation back into two stacks.

We for every i,j € {1,...,n}, we define a machine Encoder;; and a machine
Decoder;. An encoder takes two normal stack configurations S7 = x1,...2;0¢
and S2 = y1,...ym0 (#;,y; € {1,2}) and converts them into S; = 0 (“empty”
stack) and Sy = ;... 210y1 ... ym0¥. The decoder does the reverse operation.
These two machines are described below:

6 To be more precise, a weaker notion of realization is required which refers only to
trajectories starting at Cp.

Encoder;; Decoder;

E-Entry;;: S» :=pUsH(0, S2) D-Entry;: 5S¢ :=pusH(0,.51)

GoTO E-Loop;; GoTo D-Loop;
E-Loop;;: (Si,v) :=POP(S1) D-Loop;: (S2,v) :=POP(S>)

Ir v = 0 GoTo E-Exit;; Ir v = 0 goTo D-Exit;

IF v =1 GoTo E-Movl;; IF v =1 goTo D-Movl;

IF v =2 GOTO E-Mov2;; IF v = 2 GoTOo D-Mov2;
E-Movl,;: pUsH(1, S2) D-Movl;: pusH(1, S1)

GoTO E-Loop;; GoTo D-Loop;
E-Mov2;;: PUSH(2, S2) D-Mov2;: pPUSH(2, 51)

GoTO E-Loop;; GoTo D-Loop;
E-Exit;;: GoTo D-Entry; D-Exit;: GoTO ¢

Claim 10 Let A = (Qx X% x X% §) be a normal 2PDA and let N be the set of all
normal configurations. Then there is an N-regular 2PDA A" = (Q'x X% x X, §")
that realizes A.

Proof: We let ()’ be the union of @ and the set of states of the corresponding
encoders and decoders. The transition function is the union of the transitions
of the encoders and decoders with the following variation of é: every original
A-statement of the form ¢; ...G0OTO ¢; is replaced by ¢; ...GoT0 E-Entry;;.
It can be easily verified that every ¢; is now separated (it is entered only from
D-Exit;), that E-Entry,; is separated (it is entered only from ¢;) and that D—
Entry; is N-flat (all trajectories starting with a normal configuration will enter
the encoder with a normal configuration and will leave the encoder with one stack
empty). The other states of the decoders and encoders are obviously separated.
By defining ¢ : @' x Z¥ — Q x 2% as ¢(¢,5) = (¢, 5) iff ¢ € @ and S is normal,
we obtain the desired abstraction. This construction is drawn schematically in
figure 8. o

Corollary 11 (Main Result) Any 2PDA can be realized by a 3-dimensional
PCD system.

Corollary 12 (Undecidability) The reachability problem for 3-dimensional
PCD systems is undecidable.

Proof: Otherwise we could translate every reachability problem of a Turing ma-
chine, into a reachability problem between two rational points in a 3-dimensional
realizing system, and solve the halting problem. o

6 Discussion

We have shown several interesting connections between topological properties
of dynamical systems and their computational expressiveness. We have demon-
strated a class of simple low-dimensional dynamical systems the trajectories of

q3 Q

Fig. 8. Augmenting a 2PDA with encoders and decoders.

which can be effectively and precisely computed (given a rational initial condi-
tion) and yet their reachability problem is undecidable.

There have been other works on simulation of transition systems by dynami-
cal systems. For example, in [7] the boolean transition function of an automaton,
defined over {0, 1}™, is realized by its continuous extension to [0, 1]™ using arith-
metical operations. Similarly stacks have been simulated by rational arithmetic
in [6]. In these works, however, the simulating system is already defined over dis-
crete time, i.e., using iterated maps of the form z,, 41 = f(#,). Our construction,
on the other hand, uses continuous-time systems.

There have been various undecidability results for other variants of hybrid
systems with piecewise-constant derivatives (timed automata [2] or integration
graphs [8]), but those were obtained in a richer model where a transition between
regions is accompanied by a discrete change, and the trajectories are discontin-
uous. In [4] automata were simulated (without a precise formal definition of this
term) by smooth dynamical systems defined over a state-space of certain sym-
metric matrices. Those systems have high dimensionality that grows with the
size of the automaton.

The closest work to ours has been reported in [13] where stack machines were
constructed from optical elements such as mirrors and lenses. These construc-
tions were used to prove undecidability of the ray tracing problem. It should be
noted, however, that optical systems, as well as billiard models, require a richer
model, where the phase-space is 2n-dimensional (the direction in each spatial
dimensions is also a state variable) and the trajectories are discontinuous in this
phase-space (the direction or the velocity goes through an abrupt change). Hence
the equivalence between our PCD results and theirs 1s an optical illusion.

Finally Putnam [11], while attempting to prove the thesis every open physical
system realizes every automaton, uses a notion of abstraction we find implausible.

Consider, for example a deterministic automaton without input, generating the
sequence (¢1¢2)*. Then the system % = 1 (or any other system with a non-cyclic
behavior) realizes the automaton by letting ¢(z) = ¢1 when 2i < x < 2i + 1,
and ¢(z) = g2 when 2+ 1 < # < 2i 4+ 2 for any integer ¢ > 0. This abstraction
works only if we consider a fixed initial state (otherwise we need a different
abstraction for each state) and, moreover, ¢ is topologically rather complex:
©~1(q) is a union of infinitely many disconnected sets, which contradicts our
intuition concerning abstractions.

Acknowledgements

A. Bouajjani contributed to an earlier undecidability result for 6 dimensions that
inspired the current construction. The comments of anonymous referees helped
in improving the presentation.

References

1. M. Abadi and L. Lamport, On the existence of refinement mappings, in Proc. of
the Third Annual Symposium on Logic in Computer Science, pages 165-175. IEEE
Computer Society Press, 1988.

2. R. Alur and D.L. Dill, Automata for modeling real-time systems, In M.S. Paterson,
editor, Proc. of ICALP’90, Lect. Notes in Comp. Sci. 443, pages 322335, Springer-
Verlag, 1993.

3. R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho, Hybrid automata: An algo-
rithmic approach to the specification and analysis of hybrid systems. In A. Ravn
and H. Rischel, editors, Workshop on Hybrid Systems, Lect. Notes in Comp. Sci.
Springer-Verlag, 1993.

4. R.W. Brockett, Smooth dynamical systems which realize arithmetical and logical
operations, In H. Nijmeijer and J.M. Schumacher, editors, Three Decades of Math-
ematical Systems Theory, pages 19-30, Lect. Notes in Control and Information Sci-
ences, Springer-Verlag, 1989.

5. A. Brondsted, An Introduction to Convex Polytopes, Springer-Verlag, New-York,
1983.

6. M. Cosnard, M. Garzon and P. Koiran, Computability properties of low-
dimensional dynamical systems, In P. Enjalbert, A. Finkel and K.W. Wagner, ed-
itors, Proc. of the 10th Ann. Symp. on Theoretical Aspects of Computer Science,
pages 365-373, Lect. Notes in Comp. Sci. 665, Springer-Verlag, 1993.

7. R.A. DeMillo and R.J. Lipton, Defining software by continuous smooth functions,
IEEE Trans. on Software Engineering, Vol. 17, No. 4, 1991.

8. Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine, Integration graphs: A class of de-
cidable hybrid systems, In A. Ravn and H. Rischel, editors, Workshop on Hybrid
Systems, Lect. Notes in Comp. Sci. Springer-Verlag, 1993.

9. O. Maler, Z. Manna, and A. Pnueli, From timed to hybrid systems, In J.W.
de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proceedings of
the REX Workshop ”Real-Time: Theory in Practice “, volume 600 of Lect. Notes in
Comp. Sci., pages 447-484. Springer-Verlag, 1992.

10. O. Maler and A. Pnueli, Reachability analysis of planar multi-linear systems, In
C. Courcoubetis, editor, Proc. of the 5th Workshop on Computer-Aided Verification,
Elounda, Greece, volume 697 of Lect. Notes in Comp. Sci., pages 194-209. Springer-
Verlag, 1993.

11. H. Putnam. Representation and Reality, MIT Press, Cambridge, MA, 1988.

12. X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, An approach to the description
and analysis of hybrid systems, In A. Ravn and H. Rischel, editors, Workshop on
Hybrid Systems, Lect. Notes in Comp. Sci. Springer-Verlag, 1993.

13. J.H. Reif, J.D. Tygar, and A. Yoshida, The computability and complexity of op-
tical beam tracing, in Proc. 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, 106-114, IEEE Press 1990.

