
Optimal 2D Data Partitioning for DMA Transfers
on MPSoCs

Selma Saidi∗†, Pranav Tendulkar∗, Thierry Lepley†, Oded Maler∗
∗VERIMAG Lab (CNRS,University of Grenoble), France

†STMicroelectronics Grenoble, France

Abstract—Reducing the effects of off-chip memory access
latency is a key factor in exploiting efficiently embedded multi-
core platforms. We consider architectures that admit a multi-core
computation fabric, having its own fast and small memory to
which the data blocks to be processed are fetched from external
memory using a DMA (direct memory access) engine, employing
a double- or multiple-buffering scheme to avoid processor idling.
In this paper we focus on application programs that process two-
dimensional data arrays and we determine automatically the size
and shape of the portions of the data array which are subject to a
single DMA call, based on hardware and applications parameters.
When the computation on different array elements are completely
independent, the asymmetry of memory structure leads always to
prefer one-dimensional horizontal pieces of memory, while when
the computation of a data element shares some data with its
neighbors, there is a pressure for more “square” shapes to reduce
the amount of redundant data transfers. We provide an analytic
model for this optimization problem and validate our results by
running a mean filter application on the CELL simulator.

Index Terms—Data parallelization, Direct Memory Access
(DMA), CELL Processor, Double Buffering.

I. INTRODUCTION

Multiprocessor system on chip (MPSoC) such as the CELL
processor [5] or the more recent Platform2012 [1] are hetero-
geneous multi-core architectures, with a powerful host pro-
cessor and a computation fabric consisting of several smaller
cores whose intended role, somewhat similar to graphics
processing units (GPUs) [12], is to replace dedicated hardware
accelerator. Computation-intensive (and parallelizable) parts of
the application are offloaded to the multi-cores for execution.
Theses parts of the application are often data intensive, operat-
ing on large arrays of data initially stored in a remote off-chip
memory whose access time is about 100 times slower than
that of the cores local memory. A major characteristic of the
CELL and P2012 is a software controlled local storage rather
than a hidden cache mechanism. Indeed, the local scratch-
pad memory is the only memory directly available to each
core, and to access data in the off-chip memory a processor
must issue explicit Direct Memory Access (DMA) requests.
This simplifies hardware design but at the cost of a greater
program complexity for managing explicit memory transfers
through the memory hierarchy. To handle these issues new
programming models have been introduced such as Sequoia
and Cellgen [4], [16], [17]. DMA can transfer large amounts of
data between memory locations without processor intervention
hence it offers another level of parallelism by overlapping

computations and data prefetching [5], [15]. However, to ex-
ploit efficiently these new capabilities, the programmer has to
make decisions about the granularity of data transfers and the
way they are scheduled to achieve optimal performance. This
paper is part of an effort to provide tools that help developers
in making such decisions, and ultimately, to automate the
whole process of data parallelization for such platforms.

We focus on data parallel applications that exhibit a reg-
ular computation and data transfer pattern for which explicit
control of data transfers can be more efficient than implicit
unpredictable low granularity caching mechanisms [14]. In
[13] optimal data transfer granularity for programs that work
on one-dimensional arrays of data has been derived. In this
paper we tackle the more challenging case of two-dimensional
arrays which is common in applications such as video/image
processing and certain types of scientific computations. As
we explain below, when the computations on array elements
are mutually independent, the structure of memories dictates a
solution similar to the one-dimensional case. Hence we move
on to the situation where the computation for one data block
depends also on data from its neighbors. We assume that this
shared data is replicated and sent to all processors that process
array elements that need it. We compute optimal size and shape
for these data transfers.

While a lot of work has been done in the past to successfully
parallelize such applications such as [2], [3], [9], contemporary
heterogeneous architectures with a limited on-chip memory
and a high latency main memory change the formulation and
parameters of the problem and call for new solutions in order
to achieve high performance on these platforms.

The rest of the paper is organized as follows. In Section II
we define the applications, the double buffering technique, the
DMA cost model and the problem of optimal granularity. In
Section III we solve the problem for completely independent
computations on a single processor. The solution is extended
to multi-processors and shared data in Section IV and then val-
idated experimentally on a simulator of the CELL architecture
in Section V. A discussion of this work and its continuations
closes the paper.

II. PRELIMINARIES

A. Software Pipelining

Consider the sequential algorithm (Program 1) for com-
puting Y = f(X) which uniformly applies f to a two-



s2

s1

n1

n2

X(i1, i2)

m2

s1

s2

m1
X(j1, j2)

Fig. 1. Basic blocks X(i1, i2) and super blocks X(j1, j2) (logical view).

dimensional input array X of n1 × n2 elements to produce
an output array Y of the same dimension. Array X is stored
initially in the off-chip memory and Y is to be written on this
memory after computation.

Program 1 (Sequential):
for i1 := 1 to n1 do

for i2 := 1 to n2 do
Y (i1, i2) := f(X(i1, i2))

od
od

We assume that an array element represents the minimal
granularity for which the computation of f can be carried
out. In image processing it can be a pixel, a block or a
macroblock. We refer to such granularity as a basic block.
For the moment we talk only on the logical structure of the
array and defer the discussion of the physical memory layout
to the sequel. One could handle data transfers at the basic
block level by putting explicit DMA calls get and put before
and after the computation in the main program loop. However,
as is common with other slow memories such as disks, these
transfers are applied on a coarser granularity by clustering
together several array elements which are brought into a buffer
via a single DMA call. We call such clusters super blocks and
assume they are rectangular blocks consisting each of s1× s2
basic blocks, see Figure 1. One can view the super blocks as
arranged in an m1 ×m2 array X (and Y) with m1 = n1/s1
and m2 = n2/s2. We use

X(j1, j2) =
{
X(i1, i2) :

(j1 − 1)s1 + 1 ≤ i1 ≤ j1s1
(j2 − 1)s2 + 1 ≤ i2 ≤ j2s2

}
to denote the set of basic blocks associated with a super block
indexed by (j1, j2). It is sometimes more convenient to view
two-dimensional arrays as one-dimensional and this is done
by a flattening function φ : [1..m1] × [1..m2] → [1..m], for
m = m1m2. We will sometime refer to super block X(j1, j2)
as X(j) for j = φ(j1, j2). We use buffers Bx and By for input
and output super blocks and rewrite Program 1 as follows.

R1 R2 R3 R4 Rm

C1 C2 C3

W1 W2

Cm−1 Cm

Wm−1 WmWm−2· · ·

· · ·

· · ·

Fig. 2. A schematic description of a pipeline: Read, Compute, Write.

Program 2 (Buffering):
for j := 1 to m do

get(Bx,X(j)); read super block
for i1 := 1 to s1 do

for i2 := 1 to s2 do compute for all blocks
By(i1, i2) := f(Bx(i1, i2)) in super block j

od
od
put(By,Y(j)); write super block

od

In the following, we use comp(j) as a shorthand for the inner
double loop.

In program 2, data transfers and computations are performed
sequentially and the processor is idle during reading and
writing. Using double buffering for input and output blocks
Bx[0], Bx[1], By[0] and By[1], the processor can work on a
super-block j residing in one buffer while the DMA brings in
parallel the super-block j + 1 to the other buffer. Program 3
defines a software pipeline with 3 stages: input of super block
(j+1), computation on super block j and output of super block
(j−1), see Figure 2. Reading the first block and writing back
the last block are, respectively, the prologue and epilogue of
the pipeline.

Program 3 (Double Buffering):
c := 0; c′ := 1;
get(Bx(0),X(1)); first read
get(Bx(1),X(2)) ‖ comp(1);
for j := 2 to m− 1 step 1 do

get(Bx(c),X(j + 1)) ‖ comp(j) ‖ put(By(c′),Y(j − 1));
c := c⊕ 1; c′ := c′ ⊕ 1;

od
comp(m) ‖ put(By(0),Y(m− 1));
put(By(1),Y(m)); last write

To reason about the optimal granularity of data transfers
we need first to analyze the performance of the pipeline and
to this end we need to refine the qualitative description of
Figure 2 which describes the obvious precedences between
the computations and data transfers but tells us nothing about
their relative durations.

Without loss of generality we assume that a basic (input and
output) block consists of a contiguous chunk of b bytes1, that

1The model can be easily adapted to the case where it is a b1×b2 rectangle.



· · ·

· · ·

Rm· · ·

Cm

Wm−2 Wm−1 Wm

· · ·

Cm−1

W1

R2 R3 R4

C1 C2 C3

W2

R1 R1 R2 R3 R4

C1 C2 C3

W1 W2

· · ·

· · ·

· · ·

Rm

Cm−1 Cm

Wm−2 Wm−1 Wm

· · ·

(a) Computation regime (b) Transfer regime

Fig. 3. Pipelined execution using double buffering for one processor in both regimes

the array is organized contiguously in a lexicographic order
and that transfer costs in both directions are identical. We
denote the transfer time and computation time per super block
by T and C, respectively. Based on the balance between T and
C, the behavior of the software pipeline splits into two cases:
the computation regime, where C > T and the transfer regime
when C < T , illustrated in Figures 3-(a) and (b), respectively.
It is not hard to see that the total execution time is:

m · C + 2T when C > T
(m+ 1) · T when C < T

(1)

The relation between the computation time of a super block
and its transfer time is not fixed but can be controlled to some
extent by varying the size and shape of the super block. To
this end we need to characterize the DMA behavior. In the
following we detail the DMA command flow in the CELL
architecture on which we base our experiments and derive a
model of its performance.

B. DMA Performance Model

We start with features that are common to most DMA
mechanisms. To copy data from one memory location to
another, a processor issues a command to the DMA which
takes charge of the transfer. Such a command typically consists
of a source address, a destination address and a block size. The
command execution decomposes into two major phases:

1) Command initialization phase: including the command
issue time, the time to write the command in the queue
and potentially some address translations. Note that this
phase is independent of the amount of data to transfer.

2) Data transfer phase: when a command is ready, data
transfer begins and the block is divided into smaller
packets that travel from source to destination through
an interconnect (bus, NoC). The duration of this phase
is proportional to the amount of data.

The initialization cost is typically significant and is amortized
when the blocks are large. This makes the DMA more attrac-
tive for coarse data granularity than for load/store instructions.
For one-dimensional data arrays the super blocks are stored as
contiguous memory segments but this is no more the case for
two-dimensional data arrays that require usually rectangular
data block transfers. Bringing non-contiguous (but regularly
structured) pieces of data is possible using strided DMA
commands that in addition to the source and destination
address specify the stride which is an offset to access the

next contiguous block in memory. Strided transfers are more
expensive than contiguous transfers of the same size.

In the CELL architecture, a strided DMA command is
implemented using a DMA list, that is, one DMA command
composed of a list of contiguous transfers. It can be viewed as
an array whose entries are pairs consisting of a main memory
address and a contiguous transfer size. Each list element can
refer to a different location in the external memory. However,
all elements of the list move data in the same direction (get or
put) and the transferred data should form a contiguous block
in local memory.

The cost of transferring a super block of s1×s2 basic blocks
(physically a rectangular chunk of memory of s1 lines and b·s2
columns) can be approximated by the affine function

T (s1, s2) = I0 + I1 · s1 + α (b · s1 · s2) (2)

This function assumes a fixed initialization cost I0, indepen-
dent of the size and form of the super block, an additional
initialization cost I1 associated with each element (contiguous
line) in the DMA list, and the transfer itself which is propor-
tional to the size (area) of the super block. Note that in this
model we assume a fixed transfer latency α. This assumption
is imprecise for two major reasons:
• We do not model the characteristics of the external

DRAM memory such as the scheduling policy of the
memory controller, the effect of page misses and data
refreshment latencies.

• The speed of transfer in the interconnect, especially in a
multi-processor setting, depends crucially on the number
of simultaneous transfer requests from the processors.

The first issue is too complex to handle precisely as memory
controllers vary among vendors. We can assume, however, that
page misses are distributed more or less evenly and their effect
does not favor or disfavor a specific choice of granularity.
Moreover, the preference to contiguous blocks captured by
our cost model holds also on the memory controller side.
As for the influence of demand patterns on the latency of
the interconnect, we will use later a model where α is
parameterized by the number p of active processors with
αp < αp′ whenever p < p′.

We assume the algorithm for computing f to have a fixed
(data independent) computation time ω per basic block, once
the block is in local memory. This is the time to perform one
iteration in Program 1. The cost of computing a super block
is therefore

C(s1, s2) = ωs1s2 (3)



In the next section, based on (2) and (3), we derive optimal
granularity for super blocks in Program 3.

III. INDEPENDENT COMPUTATIONS, SINGLE PROCESSOR

As mentioned previously we can control to some extent the
relation between T and C by controlling the size and shape
of super blocks, but which relation is preferred? The answer
depends on which resource is more stressed by the application,
computation or communication, a fact characterized by

ψ = ω − αb.

Condition ψ < 0 means that regardless of the choice of data
granularity, transfer time always dominates computation time.
In this case we prefer large data blocks (which corresponds to
the maximal buffer size allowed by the local store capacity)
to amortize the DMA initialization time and fully utilize the
interconnect bandwidth. In the sequel, we focus on the other
case where ψ ≥ 0, that is, more computation than transfer. In
this case we opt for a shape that yields a computation regime.

Assuming ψ > I1, the dependence of T and C on their
arguments is illustrated in Fig. 4. The intersection of these
two surfaces separates the domain of (s1, s2) into two sub-
domains, the computation domain T ≤ C where the compu-
tation of a super block dominates the transfer of the next one
and the transfer domain where T ≤ C, see Fig. 5-(a).

Computation regime yields a better performance because the
processor does not stall, waiting for data, between two itera-
tions. Therefore we orient the super block selection towards
(s2, s2) such that C(s1, s2) ≥ T (s1, s2) and m · C(s1, s2) +
2T (s1, s2) is minimal. Since the processor is always busy,
all shapes satisfying T < C admit roughly the same total
computation time m · C(s1, s2) w ωn1n2. Hence, it remains
to optimize the length of the prologue and epilogue 2T (s1, s2)
with computation regime viewed as a constraint. Obvious
additional constraints state that a super block is somewhere
between a basic block and the full image, provided its size
does not exceed the maximum local buffer size M imposed
by the local store limited capacity. This leads to the following
constrained optimization problem.

min T (s1, s2) s.t.

T (s1, s2) ≤ C(s1, s2)
(s1, s2) ∈ [1, n1]× [1, n2]
b · s1 · s2 ≤M

(4)

Since the computation domain is convex, the candidates for
optimality are restricted2 to the the intersection T = C. These
points are of the form (s1, H(s1)) where

H(s1) = (1/ψ)(I1 + I0/s1)

and their transfer time is expressed as a function of the number
of clustered horizontal blocks s1:

T (s1, H(s1)) = c (I0 + I1s1)

2Because for any point s inside the domain, we can always find another
point s′ (s′2 = s2 and s′1 < s1) on the boundary with a smaller transfer time.

Fig. 4. The dependence of computation C and transfer T on granularity
(s1, s2).

Transfer Domain

Computation Domain

T < C

T > C

T = C

I1/ψ

n1

s1

s2

n2 H(1)

s∗

M/(s2b)

M/b

H

1

n1

s1

s2

n2

Fig. 5. (a) Computation and transfer domains, (b) Optimal granularity and
local memory constraint.

where c is the constant 1+(αb/ψ). Since T is linear and mono-
tone in s1, the optimal shape is s∗ = (s∗1, H(s∗1)) = (1, H(1)),
a contiguous block of one line of the physical data array.
This is not surprising as the asymmetry between dimensions
in memory access prefers “flat” super blocks with s1 = 1.
Without data sharing and memory size constraints the problem
becomes similar to the one-dimensional case [13] where it is
only the size of the super block that needs to be optimized. The
memory size constraint s2s2b ≤M excludes solutions which
are above the hyperbola shown in Fig. 5-(b). If the optimal
shape (1, s∗2) does not satisfy this constraint it is replaced
by (1,M/b). Note that in addition to these constraints, each
specific DMA engine imposes additional constraints on the
range possible values of s1 and s2.

IV. SHARED DATA

So far we considered data independent applications. In
the rest of this paper we focus on applications where the
computation for each block involves additional input data from
neighboring blocks. In other words, the computation in the
inner loop of Program 1 is replaced by

Y (i1, i2) = f(V (i1, i2))

where V (i1, i2) denotes a set of basic blocks consisting of
X(i1, i2) and it neighbors. Without loss of generality, we



n2

n1

(s1, s2) = (1, 4)

k/2

k/2

n1

(s1, s2) = (2, 2)

n2

k/2

k/2

Fig. 6. A flat and a square super blocks of the same area. The shaded area
represents replicated data overhead for k = 2.

assume V (i1, i2) to be a square around X(i1, i2), that is,

V (i1, i2) =
{
X(j1, j2) :

(i1 − k/2 ≤ j1 ≤ i1 + k/2
(i2 − k/2 ≤ j2 ≤ i2 + k/2

}
We assume that shared data is replicated at each transfer to
the local memory. In the sequel we explain how the shape
of the block and its replicated area influence the transfer cost
and then derive optimal granularity for shared data considering
first one processor and then multiple processors.

A. Replicated Area and Transfer Cost

To process a super block of shape s1 × s2, one needs to
load

R(s1, s2) = (s1 + k)× (s2 + k)

basic blocks. In other words, the overhead of replicated
external data3 is k(s1 + s2) + k2 which, among all the super
blocks of the same area, is minimal for square super blocks as
illustrated in Figure 6. This fact is in conflict with the DMA
issue overhead, optimized for flat blocks and there is a balance
to be found between the two.

The DMA transfer cost under sharing becomes

T (s1 + k, s2 + k) = I0 + I1(s1 + k) + αb ·R(s1, s2) (5)

Figure 7 illustrates this function for a fixed value of δ = s1×s2
along with the DMA issue time overhead optimized for flat
block transfer (s1 = 1) and the replicated data transfer over-
head optimized for square shapes (

√
δ,
√
δ). Among all combi-

nations (s1, s2) satisfying s1×s2 = δ, the transfer cost is min-
imal for the point (s∗1, δ/s

∗
1) where s∗1 =

√
αbkδ/(I1 + αbk).

This point represents the balance between initialization phase
overhead (number of lines) and transfer phase cost (amount
of replicated data). In the following section we derive optimal
granularity for shared data applications taking this fact into
account.

B. Optimal Granularity for Shared Data Applications

1) Single Processor: With data replication, the constrained
optimization problem 4 becomes

3The dark perimeter around the super blocks in Figure 6.

s1

Time

s∗1

T (s1 + k, δ/s1 + k)

1 δ
√
δ

R(s1, δ/s1)

I1(s1 + k)

Fig. 7. DMA transfer cost with replicated area as we increase number of
lines in a block for a given δ = s1 × s2.

min T (s1 + k, s2 + k) s.t.

T (s1 + k, s2 + k) ≤ C(s1, s2)
(s1, s2) ∈ [1, n1]× [1, n2]
b · (s1 + k) · (s2 + k) ≤M

(6)

As for independent computations, candidates for optimal
granularity are restricted to the points (s1, H(s1)) satisfying
the equality T = C and the problem is reduced to minimizing
T (s1 + k,H(s1)) where

H(s1) = (c2s1 − c3)/(ψs1 − c1)

c1, c2 and c3 are positive integer constants that depend on I0,
I1, α, b and k such that, c1 = αbk

c2 = c1 + I1
c3 = I0 + I1k + αbk2

T (s1, H(s1)) is a second order function with one variable. By
computing the derivative, we get one negative point that is not
interesting for us and another positive point that is the optimal.
To simplify the reading of the formulas, let ∆ = (c1/ψ)[1+D]
where D =

√
c3α/c1c2, then{

s∗1 = ∆ + (c1/ψ)(1/D)
s∗2 = ∆ + (I1/ψ)(1 +D)

Fig. 8-(a) illustrates the evolution of the computation do-
main and the optimal granularity while considering shared
data. As discussed in the previous section, we can clearly see
that optimal granularity is somewhere between a flat and a
square block as s∗1 and s∗2 are both equal to ∆ plus a different
offset each.

2) Multiple Processors: Given p identical processors hav-
ing the same processing speed and the same local store capac-
ity, we assume for a given granularity that data blocks are al-
located to the processors in a cyclic way. Since shared data are
replicated among processors, the computations are completely
independent. On the other hand, when the shared interconnect
receives simultaneous transfer requests from several processors
(contentions), it solves them on a packet by packet basis,
serving the processors in a round robin fashion. Increase in
number of processors does not influence the initialization



s∗

s∗k

H(1)

c1/ψ

HkH

c2/ψ

n1

n2

s1

s2

Hk,4

Hk,2

Hk,1

s∗k,2

s∗k,1

s∗k,4

n1

n2

s1

s2

(a) One processor (b) Multiple processors
Fig. 8. Computation domain and optimal granularity for shared data.

phase as we assume a distributed DMA system, where each
processor has its own DMA engine. However, contentions on
shared resources induce a significant overhead that we model
by parameterizing the transfer cost per byte α with the number
of active processors such that αp increases monotonically with
p. We use Tp to denote (5) with αp replacing α. 4 The total
execution time of the pipeline becomes,

m/p · C + 2Tp when C ≥ Tp
(m/p+ 1) · Tp when C < Tp

The reasoning is similar to previous sections where function
H becomes Hp(s1) yielding an optimal shape for each p.

Figure 8-(b) illustrates the evolution of computation domain
and optimal granularity as we increase number of processors.
Note that the difference between computation and transfer time
represented by ω/p−bαp decreases as we increase p, reducing
the computation domain. Note that optimal super block size
increases with the number of processors because more data
needs to be brought to each processor to keep it busy during
the time it takes to fetch its next super block as well as the
next super block of each of the other processors.

Table I summarizes the notations for the considered hard-
ware and software parameters.

V. EXPERIMENTS

We validate our results on the the CELL processor whose
architecture is shown in Figure 9. It is by now a decade
old architecture, still favorable for streaming applications. The
main features of the architecture include a powerful general
purpose processor (PPU-Power Processing Unit) along with 8
accelerators (SPU - Synergistic Processing Unit). Each SPU
has a local scratchpad memory which is the only memory
directly accessible using load/store instructions. Data in main
memory and other processors memory is accessed using DMA.
For more information about the architecture we refer to [6]–
[8], [10].

4Architectures that have a centralized DMA can avoid this overhead by
literally scheduling the transfer at the super block level.

n1, n2 Array height and width in number of basic blocks
s1, s2 super block height and width in number of basic blocks
b width of a basic block
k shared neighboring data
ω computation time per basic block
p number of active processors
I0 DMA initialization cost
I1 DMA initialization overhead to issue a DMA list element
α transfer cost in time per byte
αp transfer cost in time per byte of p concurrent requests
T (s1, s2) transfer time of a super block
C(s1, s2) computation time of a super block
M Max local buffer size imposed by the local store capacity

TABLE I
PARAMETERS NOTATION

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

PPU

MMU

L2

XDR DRAM

Interface

I/O

Interface

Interface

Coherent

EIB

Fig. 9. The CELL Processor Architecture

As an application we use a mean filter algorithm that
works on a bitmap image of 512 × 512 pixels. Each pixel is
characterized by its intensity ranging over 0..255. The output
for a pixel is the average of the value of its neighborhood
defined as a square (mask) centered around it. We have
experimented with different mask sizes and focus on the
presentation of the results for a 9× 9 mask, that is, k = 8. In
order to use SIMD operations to optimize the implementation
of the code, we encode a pixel as an integer (b = 4 bytes).
Based on profiling information, we are able to derive the
DMA parameter values: fixed initialization cost I0 = 108 and
initialization cost per line I1 = 50 cycles. The transfer cost
per byte for p processors varies due to packet-level arbitration



αp
p min max avg
1 1.13 14.00 2.57
2 1.78 29.98 4.13
4 3.97 47.23 11.07
8 5.43 87.86 18.82

TABLE II
THE TRANSFER TIME PER BYTE AS A FUNCTION OF THE NUMBER OF

PROCESSES.

8 16 32 64 12
8

25
6

1

1.2

1.4

·105

Block Height s1, s2 = 4096/s1

D
M

A
Tr

an
sf

er
tim

e

Super block with replicated data transfer time

Fig. 10. Influence of block shape and its replicated data on the transfer time.

between request of different processors as well is reading and
writing of the same processor. The minimal, maximal and
average values of αp are shown in Tab. II and we use the
average value in our model. The computation workload per
basic block is roughly ω = 62 cycles (see remarks at the end
of the section).

Note that due to the characteristics of the CELL not all
combinations are possible. Indeed a DMA list can hold up
to 2K transfer elements. Each element is a contiguous block
transfer with maximum size 16KBytes (which corresponds in
our case to s2 = 4096). Furthermore, the CELL has a strict
alignment requirements on 16-byte boundary for both DMA
transfers and SPU vector instructions for which the processor
is optimized. If this is not taken care of, the DMA engine
aligns the data by itself causing erroneous results.

Figure 10 illustrates the influence of the shape of the block
(and its implied replicated area) on the transfer time as ex-
plained in section IV. We consider in this plot different feasible
combinations of (s1, s2) so that s1 × s2 = 4096. A shape
(s1, s2) yields a block of s1 +8 lines, each line corresponding
to a contiguous transfer of b · (s1 + 8) bytes. As argued in
section IV, the optimal transfer time is obtained neither for
square (64, 64) nor the flattest possible (8, 512) super blocks
and the best trade-off in this case is (s1, s2) = (32, 128).

Finally we evaluate the effect of the size and shape of
the super blocks and the total execution time of the pipeline
for different numbers of processors. Fig. 11-(a) compares

2 8 32 128

4

4.5

5

5.5

·106

meas s∗
pred s∗

Block Height s1

Pi
pe

lin
e

To
ta

l
E

xe
cu

tio
n

tim
e

meas s1 × s2 = 4K
meas s1 × s2 = 2K
meas s1 × s2 = 1K

Fig. 12. Observed optimal granularity s∗ = (4, 256) and predicted optimal
granularity s∗ = (64, 32).

the predicted and measured performance for different block
shapes where s1s2 = 1024 while Fig. 11-(b) does the same
for s1s2 = 2048. As one can see, the distance between the
predicted and measured values is rather small except for large
values of s1.

The major reason for the discrepancy between the model
and the reality is that C(s1, s2) has non negligible component
that depends on s1 for two reasons. The first is due to the
overhead at each computation iteration related to the setting
required between the outer loop and the inner loop like
adjustment of the pointers for every row, pre-calculation of
sums of borders etc. Secondly, the creation of list elements
occupies the processor and this overhead is also added to the
overall execution time.

Fig. 12 combines the measured results for different super
block sizes. The measured optimum is obtained for (4, 256)
while our calculation yield (56, 33) whose nearest feasible
value is (64, 32) whose measured overall performance is
less than 10% above the performance for the optimum. The
discrepancy can be attributed to the reasons stated above,
namely the dependence of C on s1.

VI. DISCUSSION

Adapting array-processing algorithms to multi-core archi-
tectures is an activity that will occupy a lot of programmers
time in the coming future and it is highly desirable to make it
as transparent as possible. Efficient use of the memory hierar-
chy is crucial for performance on this new class of execution
platforms. In this work we have demonstrated how the problem
can be approached in a systematic manner for the CELL
architecture. Starting from an abstract logical description of
the application and the DMA specifications, we could build
a model that captures the influence of the size and shape of
buffered super blocks on performance. In particular, our model
captures the tension between preference of flat super blocks
(due to asymmetrical transfer cost) and square super blocks
(due to the nature of the application).



2 4 8 16 32 64

4

4.5

5

·106

Block Height s1

Pi
pe

lin
e

To
ta

l
E

xe
cu

tio
n

tim
e

measured
predicted

4 8 16 32 64 128

4

4.5

5

5.5

·106

Block Height s1

Pi
pe

lin
e

To
ta

l
E

xe
cu

tio
n

tim
e

measured
predicted

(a) (b)
Fig. 11. Predicted and measured values for different combinations of s1 × s2

We are of course aware of the fact that each real program
and each architecture will have its own particularity, more
complex and richer in parameters than the model we have
built but we believe that this is a first step toward making
such decisions more systematic than by pure trial and error.

Our major observation the experience is that for this type
of “collaborative” applications where a large computational
task is split, executed and then merged, it is preferable to
have a centralized DMA mechanism that can schedule data
transfers at the super block rather than the packet level.
This way, useless contentions between sub tasks of the same
application can be avoided. At least in terms of predictability,
such policies, used for example in the context of hard real-
time systems such as in automotive control [11] will be
much simpler. In the future we intend to refine the model
and make it more accurate. Then we plan to replicate this
work for applications currently being developed for the P2012
architecture where the DMA is more centralized, and the local
memory is shared between all the cores that reside in the same
cluster.

REFERENCES

[1] Platform 2012: a many core programmable accelerator for ultra efficient
embedded computing in nanometer technology, 2010.

[2] A. Agarwal, D. Kranz, and V. Natarajan. Automatic partitioning of paral-
lel loops and data arrays for distributed shared memory multiprocessors.
IEEE Trans. Parallel Distributed Systems, 6:943–962, 1995.

[3] T. Altilar and Y. Paker. Minimum overhead data partitioning algorithms
for parallel video processing. In Proceedings Domain Decomposition
Methods Conference, pages 25125–8, 2001.

[4] K. Fatahalian, D. Horn, T. Knight, L. Leem, M. Houston, J. Park,
M. Erez, M. Ren, A. Aiken, W. Dally, et al. Sequoia: Programming the
memory hierarchy. In Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, pages 83–es. ACM, 2006.

[5] M. Gschwind. The cell broadband engine: exploiting multiple levels of
parallelism in a chip multiprocessor. International Journal of Parallel
Programming, 35(3):233–262, 2007.

[6] IBM. Cell SDK 3.1. https://www.ibm.com/developerworks/power/cell/.
[7] IBM. Cell Simulator. http://www.alphaworks.ibm.com/tech/

cellsystemsim, June 2009.

[8] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49:589–604, July 2005.

[9] C. kin Lee and M. Hamdi. Parallel image processing applications on a
network of workstations. Parallel Computing, 21(1):137 – 160, 1995.

[10] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communica-
tion network: Built for speed. Micro, IEEE, 26(3):10 –23, 2006.

[11] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings
of the IEEE, 91(1):112–126, 2003.

[12] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips.
Gpu computing. Proceedings of the IEEE, 96(5):879 –899, may 2008.

[13] S. Saidi, P. Tendulkar, T. Lepley, and O. Maler. Optimizing explicit data
transfers for data parallel applications on the cell architecture. ACM
Trans. Archit. Code Optim., 8(4):37:1–37:20, Jan. 2012.

[14] J. Sancho and D. Kerbyson. Analysis of double buffering on two
different multicore architectures: Quad-core Opteron and the Cell-
BE. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1–12. IEEE.

[15] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis. Quantifying
the potential benefit of overlapping communication and computation in
large-scale scientific applications. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, SC ’06, New York, NY, USA, 2006.
ACM.

[16] S. Schneider, J. Yeom, and D. Nikolopoulos. Programming multiproces-
sors with explicitly managed memory hierarchies. Computer, 42(12):28–
34, 2009.

[17] S. Yeom, B. Rose, J. Linford, A. Sandu, and D. Nikolopoulos. A
Comparison of Programming Models for Multiprocessors with Explicitly
Managed Memory Hierarchies. 2009.


