
Microprocessors and Microsystems 37 (2013) 848–857
Contents lists available at SciVerse ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
Optimizing two-dimensional DMA transfers for scratchpad Based
MPSoCs platforms
0141-9331/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2013.04.006

⇑ Corresponding author at: VERIMAG Lab (CNRS, University of Grenoble), 2
Avenue de Vignate, Gieres, France. Tel.: +33 637401143.

E-mail address: Selma.Saidi@imag.fr (S. Saidi).

1 In [9], the size of shared data is always fixed, regardless of the granularit
due to the one-dimensional geometry of the array.
Selma Saidi a,b,⇑, Pranav Tendulkar a, Thierry Lepley b, Oded Maler a

a VERIMAG Lab (CNRS, University of Grenoble), 2 Avenue de Vignate, Gieres, France
b STMicroelectronics, 12 rue Horowitz, Grenoble, France

a r t i c l e i n f o
Article history:
Available online 17 May 2013

Keywords:
Data parallelization
Direct memory access (DMA)
Double buffering
Cell processor
MPSoCs
a b s t r a c t

Reducing the effects of off-chip memory access latency is a key factor in exploiting efficiently embedded
multi-core platforms. We consider architectures that admit a multi-core computation fabric, having its
own fast and small memory to which the data blocks to be processed are fetched from external memory
using a DMA (direct memory access) engine, employing a double- or multiple-buffering scheme to avoid
processor idling. In this paper we focus on application programs that process two-dimensional data
arrays and we determine automatically the size and shape of the portions of the data array which are sub-
ject to a single DMA call, based on hardware and applications parameters. When the computation on dif-
ferent array elements are completely independent, the asymmetry of memory structure leads always to
prefer one-dimensional horizontal pieces of memory, while when the computation of a data element
shares some data with its neighbors, there is a pressure for more ‘‘square’’ shapes to reduce the amount
of redundant data transfers. We provide an analytic model for this optimization problem and validate our
results by running a mean filter application on the CELL simulator.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction of parallelism by overlapping computations and data prefetching
Multiprocessor systems on chip (MPSoCs) such as the CELL pro-
cessor [1] or the more recent Platform2012 [2] are heterogeneous
multi-core architectures, with a powerful host processor and a
computation fabric consisting of several smaller cores whose in-
tended role, somewhat similar to graphics processing units (GPUs)
[3], is to replace dedicated hardware accelerator. Computation-
intensive (and parallelizable) parts of the application are offloaded
to the multi-cores for execution. Theses parts of the application are
often data intensive, operating on large arrays of data initially
stored in a remote off-chip memory whose access time is about
100 times slower than that of the cores local memory. A major
characteristic of the CELL and P2012 is a software controlled local
storage rather than a hidden cache mechanism. Indeed, the local
scratchpad memory is usually the only memory directly available
to each core, and to access data in the off-chip memory a processor
must issue explicit Direct Memory Access (DMA) requests. This
simplifies hardware design but at the cost of a greater program
complexity for managing explicit memory transfers through the
memory hierarchy. To handle these issues new programming mod-
els have been introduced such as Sequoia and Cellgen [4–6].

DMA can transfer large amounts of data between memory loca-
tions without processor intervention hence it offers another level
[1,7]. However, to exploit efficiently these new capabilities, the
programmer has to make decisions about the granularity of data
transfers and the way they are scheduled to achieve optimal per-
formance. This paper is part of an effort to provide tools that help
developers in making such decisions, and ultimately, to automate
the whole process of data parallelization for such platforms.

We focus on data parallel applications that exhibit a regular com-
putation and data transfer pattern for which explicit control of data
transfers can be more efficient than implicit unpredictable low gran-
ularity caching mechanisms [8]. In [9] optimal data transfer granu-
larity for programs that work on one-dimensional arrays of data has
been derived. In this paper we tackle the more challenging case of
two-dimensional arrays which is common in applications such as vi-
deo/image processing and certain types of scientific computations
and where the transfer using DMA of non-contiguous data blocks
is usually required. We extend the DMA performance model defined
in [9] to characterize the transfer cost of such blocks. As we explain
below, when the computations on array elements are mutually inde-
pendent, the structure of memories dictates a solution similar to the
one-dimensional case. Hence we move onto the situation where the
computation for one data block depends also on data from its neigh-
bors. We assume that this shared data is replicated and sent to all
processors requiring it for computations. Unlike [9] where the size
of replicated data is fixed1, we capture how the shape of the block
y choice,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2013.04.006&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2013.04.006
mailto:Selma.Saidi@imag.fr
http://dx.doi.org/10.1016/j.micpro.2013.04.006
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

S. Saidi et al. / Microprocessors and Microsystems 37 (2013) 848–857 849
influence the size of replicated data and thus the transfer time. We
compute optimal size and shape for these data transfers.

While a lot of work has been done in the past to successfully
parallelize such applications such as [10–12], contemporary heter-
ogeneous architectures with a limited on-chip memory and a high
latency main memory change the formulation and parameters of
the problem and call for new solutions in order to achieve high
performance on these platforms.

The rest of the paper is organized as follows. In Section 2 we
define the applications, the double buffering technique, the
DMA cost model and the problem of optimal granularity. In
Section 3 we solve the problem for completely independent
computations on a single processor. The solution is extended
to multi-processors and shared data in Section 4 and then
validated experimentally on a simulator of the CELL architecture
in Section 5. A discussion of this work and its continuations
closes the paper.

2. Preliminaries

2.1. Software pipelining

Consider the sequential algorithm (Program 1) for computing
Y = f(X) which uniformly applies f to a two-dimensional input array
X of n1 � n2 elements to produce an output array Y of the same
dimension. Array X is stored initially in the off-chip memory and
Y is to be written on this memory after computation.

Program 1. Sequential
2 The model can be easily adapted to the case, where it is a b1 � b2 rectangle.
for i1 :¼ 1to n1 do

for i2 :¼ 1to n2 do

Y(i1, i2) :¼ f(X(i1, i2))
od

od

We assume that an array element represents the minimal gran-
ularity for which the computation of f can be carried out. In image
processing it can be a pixel, a block or a macroblock. We refer to
such granularity as a basic block. For the moment we talk only
about the logical structure of the array and defer the discussion
of the physical memory layout to the sequel. One could handle
data transfers at the basic block level by putting explicit DMA
calls get and put before and after the computation in the main
program loop. However, as is common with other slow memories
such as disks, these transfers are applied on a coarser granularity
by clustering together several array elements which are brought
into a buffer via a single DMA call. We call such clusters super
blocks and assume they are rectangular blocks consisting each of
s1 � s2 basic blocks, see Fig. 1. One can view the super blocks as
arranged in an m1 �m2 array X (and Y) with m1 = n1/s1 and
m2 = n2/s2. We use

Xðj1; j2Þ ¼ Xði1; i2Þ :
ðj1 � 1Þs1 þ 1 6 i1 6 j1s1

ðj2 � 1Þs2 þ 1 6 i2 6 j2s2

� �

to denote the set of basic blocks associated with a super block
indexed by (j1, j2). It is sometimes more convenient to view two-
dimensional arrays as one-dimensional and this is done by a flatten-
ing function /:[1� � �m1] � [1� � �m2] ? [1� � �m], for m = m1m2. We will
sometime refer to super block X(j1, j2) as X(j) for j = /(j1, j2). We use
buffers Bx and By for input and output super blocks and rewrite Pro-
gram 1 as follows.
Program 2. Buffering
for j :¼ 1 to m do
get(Bx,X(j));
 read super block

for i1 :¼ 1 to s1 do
for i2 :¼ 1 to s2 do
 compute for all blocks

By(i1, i2) :¼ f(Bx(i1, i2))
 in super block j
od
od
put(By,Y(j));
 write super block

od
In the following, we use comp(j) as a shorthand for the inner
double loop.

In program 2, data transfers and computations are performed
sequentially and the processor is idle during reading and writing.
Using double buffering for input and output blocks Bx[0], Bx[1],
By[0] and By[1], the processor can work on a super-block j residing
in one buffer while the DMA brings in parallel the super-block j + 1
to the other buffer. Program 3 defines a software pipeline with 3
stages: input of super block (j + 1), computation on super block j
and output of super block (j � 1), see Fig. 2. Reading the first block
and writing back the last block are, respectively, the prologue and
epilogue of the pipeline.

Program 3. Double Buffering
c :¼ 0; c0 :¼ 1;

get(Bx(0),X(1));
 first read

get(Bx(1), X(2))k comp(1);

for j :¼ 2 to m � 1 step 1 do
get(Bx(c),X(j + 1))kcomp(j)kput(By(c0),Y(j � 1));

c :¼ c � 1; c0 :¼ c0 � 1;
od
comp(m)kput(By(0),Y(m � 1));

put(By(1),Y(m));
 last write
To reason about the optimal granularity of data transfers we
need first to analyze the performance of the pipeline and to this
end we need to refine the qualitative description of Fig. 2 which de-
scribes the obvious precedences between the computations and
data transfers but tells us nothing about their relative durations.

Without loss of generality we assume that a basic (input and
output) block consists of a contiguous chunk of b bytes,2 that the
array is organized contiguously in a lexicographic order and that
transfer costs in both directions are identical. We denote the transfer
time and computation time per super block by T and C, respectively.
Based on the balance between T and C, the behavior of the software
pipeline splits into two cases: the computation regime, where C > T
and the transfer regime when C < T, illustrated in Fig. 3a and b,
respectively. It is not hard to see that the total execution time is:

m � C þ 2T when C > T

ðmþ 1Þ � T when C < T
ð1Þ

The relation between the computation time of a super block and
its transfer time is not fixed but can be controlled to some extent
by varying the size and shape of the super block. To this end we
need to characterize the DMA behavior. In the following we detail
the DMA command flow in the CELL architecture on which we base
our experiments and derive a model of its performance.

Fig. 1. Basic blocks X(i1, i2) and super blocks X(j1, j2) (logical view).

Fig. 2. A schematic description of a pipeline: Read, compute, and write.

Fig. 3. Pipelined execution using double buffering for one processor in both regimes

850 S. Saidi et al. / Microprocessors and Microsystems 37 (2013) 848–857
2.2. DMA performance model

We start with features that are common to most DMA mecha-
nisms. To copy data from one memory location to another, a pro-
cessor issues a command to the DMA which takes charge of the
transfer. Such a command typically consists of a source address, a
destination address and a block size. The command execution
decomposes into two major phases:

1. Command initialization phase: including the command issue
time, the time to write the command in the queue and poten-
tially some address translations when virtual memory address-
ing is used. Note that this phase is independent of the amount of
data to transfer.

2. Data transfer phase: when a command is ready, data transfer
begins and the block is divided into smaller packets that travel
from source to destination through an interconnect (bus, NoC).
The duration of this phase is proportional to the amount of data.

The initialization cost is typically significant and is amortized
when the blocks are large. This makes the DMA more attractive
for coarse data granularity than for load/store instructions. For
one-dimensional data arrays the super blocks are stored as contig-
uous memory segments but this is no more the case for two-
dimensional data arrays that require usually rectangular data block
transfers. Bringing non-contiguous (but regularly structured)
pieces of data is possible using strided DMA commands that in
addition to the source and destination address specify the stride
which is an offset to access the next contiguous block in memory.
Strided transfers are more expensive than contiguous transfers of
the same size.

In the CELL architecture, a strided DMA command is imple-
mented using a DMA list, that is, one DMA command composed
of a list of contiguous transfers. It can be viewed as an array whose
entries are pairs consisting of a main memory address and a
contiguous transfer size. Each list element can refer to a different
location in the external memory. However, all elements of the list
move data in the same direction (get or put) and the transferred
data should form a contiguous block in local memory.

The cost of transferring a super block of s1 � s2 basic blocks
(physically a rectangular chunk of memory of s1 lines and b � s2

columns) can be approximated by the affine function

Tðs1; s2Þ ¼ I0 þ I1 � s1 þ aðb � s1 � s2Þ ð2Þ

Fig. 4. The dependence of computation C and transfer T on granularity (s1,s2).

S. Saidi et al. / Microprocessors and Microsystems 37 (2013) 848–857 851
This function assumes a fixed initialization cost I0, independent
of the size and form of the super block, an additional initialization
cost I1 associated with each element (contiguous line) in the DMA
list, and the transfer itself which is proportional to the size (area) of
the super block. Note that in this model we assume a fixed transfer
latency a. This assumption is imprecise for two major reasons:

� We do not model the characteristics of the external DRAM
memory such as the scheduling policy of the memory control-
ler, the effect of page misses and data refreshment latencies.
� The speed of transfer in the interconnect, especially in a multi-

processor setting, depends crucially on the number of simulta-
neous transfer requests from the processors.

The first issue is too complex to handle precisely as memory
controllers vary among vendors. We can assume, however, that
page misses are distributed more or less evenly and their effect
does not favor or disfavor a specific choice of granularity. More-
over, the preference to contiguous blocks captured by our cost
model holds also on the memory controller side. As for the influ-
ence of demand patterns on the latency of the interconnect, we
will use later a model where a is parameterized by the number p
of active processors with ap < ap0 whenever p < p0.

Note that if strided DMA commands are not supported then
transferring a rectangular block requires a separate contiguous
DMA command for each line of the block. The cost of transferring
a super block of s1 � s2 basic blocks becomes then: s1 � T(1,s2).

We assume the algorithm for computing f to have a fixed (data
independent) computation time x per basic block, once the block
is in local memory. This is the time to perform one iteration in
Program 1. The cost of computing a super block is therefore

Cðs1; s2Þ ¼ xs1s2 ð3Þ

In the next section, based on (2) and (3), we derive optimal granu-
larity for super blocks in Program 3.
3 Note that if these shapes have the same area, then the shape with less lines has a
smaller transfer overhead, that is Tðs1; s2Þ < Tðs01; s02Þ.
3. Independent computations, single processor

As mentioned previously we can control to some extent the
relation between T and C by controlling the size and shape of super
blocks, but which relation is preferred? The answer depends on
which resource is more stressed by the application, computation
or communication, a fact characterized by

w ¼ x� ab:

Condition w < 0 means that regardless of the choice of data
granularity, transfer time always dominates computation time. In
this case we prefer large data blocks (which corresponds to the
maximal buffer size allowed by the local store capacity) to amor-
tize the DMA initialization time and fully utilize the interconnect
bandwidth. In the sequel, we focus on the other case where
w P 0, that is, more computation than transfer. In this case we
opt for a shape that yields a computation regime.

Assuming w > I1, the dependence of T and C on their arguments
is illustrated in Fig. 4. The intersection of these two surfaces sepa-
rates the domain of (s1,s2) into two sub-domains, the computation
domain T 6 C where the computation of a super block dominates
the transfer of the next one and the transfer domain where T > C,
see Fig. 5a.

For the same instance of the problem, computation regime
yields a better performance than transfer regime because the pro-
cessor does not stall between two iterations waiting for data,
thereby avoiding idle time. Therefore we orient the super block
selection towards shapes (s1,s2) such that C(s1,s2) P T(s1,s2) and
m � C(s1,s2) + 2T(s1,s2) is minimal. Since the processor is always
busy, all shapes satisfying C > T admit roughly the same total com-
putation time m � C(s1,s2) wxn1n2 since it is a sequential execution
over all the basic blocks. Hence, it remains to optimize the length
of the prologue and epilogue 2T(s1,s2) with computation regime
viewed as a constraint. Obvious additional constraints state that
a super block is somewhere between a basic block and the full im-
age, provided its size does not exceed the maximum local buffer
size M imposed by the local store limited capacity. This leads to
the following constrained optimization problem.

min Tðs1; s2Þ
s:t: Tðs1; s2Þ 6 Cðs1; s2Þ
ðs1; s2Þ 2 ½1::n1� � ½1::n2�
b � s1 � s2 6 M

ð4Þ

Note that in addition to these constraints, each specific DMA en-
gine imposes additional constraints on the range possible values of
s1 and s2.

Comparing the transfer time of the points (shapes) in the com-
putation domain is not trivial since the computation domain con-
stitutes a partially ordered set where possibly two different shapes
s and s0 are such that s1 < s01 and s2 > s02.3 Observe that the compu-
tation domain is convex where for any point s inside the domain, we
can always find another point s0 on the boundary such that s02 ¼ s2

and s01 < s1, see Fig. 5b and hence with a smaller transfer time. There-
fore the candidates for optimality are restricted to the intersection
T = C. These points are of the form (s1,H(s1)), where

Hðs1Þ ¼ ð1=wÞðI1 þ I0=s1Þ

Their transfer time is expressed as a function of the number of
clustered horizontal blocks s1:

Tðs1;Hðs1ÞÞ ¼ cðI0 þ I1s1Þ

where c is the constant 1 + (ab/w). This function is linear and mono-
tone in s1, means that as we move upwards in the hyperbola H the
transfer time increases. Hence optimal shape is

s�1; s
�
2

� �
¼ s�1;Hðs�1Þ
� �

¼ ð1;Hð1ÞÞ ð5Þ

which constitutes a contiguous block of one line of the physical data
array. This is not surprising as the asymmetry between dimensions
in memory access prefers ‘‘flat’’ super blocks with s1 = 1. Without
data sharing and memory size constraints the problem becomes
similar to the one-dimensional case [9], where it is only the size
of the super block that needs to be optimized.

For any point s = (s1,s2), the area of the rectangle defined by its

(a) (b)
Fig. 5. (a) Computation and transfer domains and (b) optimal granularity candidates and optimal granularity.

(a) (b)
Fig. 6. Local memory constraint, (a) excluded solutions and (b) near optimal granularity.

852 S. Saidi et al. / Microprocessors and Microsystems 37 (2013) 848–857
coordinates represents the memory capacity required for this gran-
ularity. More generally, the local memory size constraint s1s2b 6M
is represented by the hyperbola shown in Fig. 6, excluding solu-
tions (shapes) above the hyperbola that do not fit in local memory.
If optimal granularity (1,H(1)) does not fit in local memory, near
optimal solutions that provide good performance results given
the local memory budget have to be considered. Such solutions
can be other points of the hyperbola H which are, as explained pre-
viously, candidates for optimality since they satisfy the equality
T = C. However, we know that as we move upwards in the hyper-
bola H, the transfer time increases and consequently computation
time which is proportional to the area. Therefore the point (1,H(1))
is also the point with minimal transfer time as well as computation
time and area (means that it is the closest point of the hyperbola H
to the origin). This proves that if this point does not fit in local
memory then no other point (shape) of the hyperbola fits in local
memory, which is viewed as the hyperbolas H and s1s2b = M do
not intersect. Optimal shape can therefore be replaced by the point
(1,M/b), see Fig. 6b.
4 The dark perimeter around the super blocks in Fig. 7.
4. Shared Data

So far we considered data independent applications. In the rest
of this paper we focus on applications where the computation for
each block involves additional input data from neighboring blocks.
In other words, the computation in the inner loop of Program 1 is
replaced by

Yði1; i2Þ ¼ f ðVði1; i2ÞÞ

where V(i1, i2) denotes a set of basic blocks consisting of X(i1, i2) and
its neighbors. Without loss of generality, we assume V(i1, i2) to be a
square around X(i1, i2), that is,

Vði1; i2Þ ¼ Xðj1; j2Þ :
ði1 � k=2 6 j1 6 i1 þ k=2
ði2 � k=2 6 j2 6 i2 þ k=2

� �

We assume that shared data is replicated at each transfer to the
local memory. In the sequel we explain how the shape of the block
and its replicated area influence the transfer cost and then derive
optimal granularity for shared data considering first one processor
and then multiple processors.

4.1. Replicated area and transfer cost

To process a super block of shape s1 � s2, one needs to load

Rðs1; s2Þ ¼ ðs1 þ kÞ � ðs2 þ kÞ

basic blocks. In other words, the overhead of replicated external
data4 is k(s1 + s2) + k2 which, among all the super blocks of the same
area, is minimal for square super blocks as illustrated in Fig. 7. This

Fig. 7. Super blocks of different shapes but with the same area s1 � s2 = 4. The shaded area represents replicated data overhead for k = 2.

5 Note that the gain from overlapping the initialization phase is less significant for
large granularities, where the transfer phase time dominates the fixed initialization
overhead.

S. Saidi et al. / Microprocessors and Microsystems 37 (2013) 848–857 853
fact is in conflict with the DMA issue overhead, optimized for flat
blocks and when both are combined there is a balance to be found
between the two.

The DMA transfer cost under sharing becomes

Tðs1 þ k; s2 þ kÞ ¼ I0 þ I1ðs1 þ kÞ þ ab � Rðs1; s2Þ ð6Þ

Fig. 8a illustrates this function for a fixed value of d = s1 � s2

along with the DMA issue time overhead optimized for flat block
transfer (s1 = 1) and the replicated data transfer overhead opti-
mized for square shapes ð

ffiffiffi
d
p

;
ffiffiffi
d
p
Þ. Among all combinations (s1,s2)

satisfying s1 � s2 = d, the transfer cost is minimal for the point
s�1; d=s�1
� �

, where s�1 ¼
ffi
abkd=ðI1 þ abkÞ

p
. This point represents the

balance between initialization phase overhead (number of lines)
and transfer phase cost (amount of replicated data). In the follow-
ing section we derive optimal granularity for shared data applica-
tions taking this fact into account.

Note that if we look at the computation time of these blocks,
then all shapes satisfying s1 � s2 = d have approximately the same
computation time: d �x, proportional to the area. According to
the balance between a block computation time and its transfer
time, some shapes will lead to a computation regime and others
to a transfer regime as depicted in Fig. 8b, and s�1; d=s�1

� �
is then

the optimal shape for each value of d (assuming d �x P
T s�1 þ k; d=s�1 þ k
� �

) since it minimizes the transfer time. In the fol-
lowing, we derive optimal granularity for all shapes yielding a
computation regime.

4.2. Optimal granularity for shared data applications

4.2.1. Single processor
With data replication, the constrained optimization Problem 4

becomes

min Tðs1 þ k; s2 þ kÞ
s:t: Tðs1 þ k; s2 þ kÞ 6 Cðs1; s2Þ
ðs1; s2Þ 2 ½1::n1� � ½1::n2�
b � ðs1 þ kÞ � ðs2 þ kÞ 6 M

ð7Þ

As for independent computations, candidates for optimal gran-
ularity are restricted to the points (s1,H(s1)) satisfying the equality
T = C and the problem is reduced to minimizing T(s1 + k,H(s1)),
where

Hðs1Þ ¼ ðc2s1 � c3Þ=ðws1 � c1Þ

c1, c2 and c3 are positive integer constants that depend on I0, I1, a, b
and k such that

c1 ¼ abk

c2 ¼ c1 þ I1

c3 ¼ I0 þ I1kþ abk2

8><
>:
T(s1,H(s1)) is a second order function with one variable. By computing
the derivative, we get one negative point that is not interesting for us
and another positive point that is the optimal. To simplify the reading
of the formulas, let D = (c1/w)[1 + D], where D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3a=c1c2

p
, then

s�1 ¼ Dþ ðc1=wÞð1=DÞ
s�2 ¼ Dþ ðI1=wÞð1þ DÞ

�

Fig. 9a illustrates the evolution of the computation domain and
the optimal granularity while considering shared data. As dis-
cussed in the previous section, we can clearly see that optimal
granularity is somewhere between a flat and a square block as s�1
and s�2 are both equal to D plus a different offset each.
4.2.2. Multiple processors
Given p identical processors having the same processing speed

and the same local store capacity, the input array is partitioned
into p chunks of data to be executed in parallel where each proces-
sor is responsible of computing its corresponding chunck.

Typically the size of a chunk allocated to a processor is much
larger than the local memory capacity, since p	 n1n2. Therefore
chuncks are further divided into super blocks of (s1,s2) basic blocks,
see Fig. 10a. Each processor implements double buffering algo-
rithm to fetch the blocks and compute them thereby improving
performance by overlapping computations and data transfers. We
extend our double-buffer granularity analysis to this case assum-
ing all processors implement the same granularity (s1,s2).

Intuitively, using multiple processors, a conflict arises between
computation and data transfers since increasing the number of
processors reduces the amount of total work per processor but cre-
ates contentions on the shared resources thus increasing the trans-
fer time.

In the analysis, we assume a distributed DMA system where
each processor has its own DMA engine. It has the advantage of par-
allelizing the initialization phase of processors transfer commands
which occurs independently on each processor’s DMA engine. For
this reason we synchronize data transfers of all processors at the
beginning of the execution.5 Fig. 10b illustrates a pipelined execu-
tion using several processors where p concurrent transfer requests
arrive simultaneously to the shared interconnect. Arbitration of these
requests is left to the hardware which serves the processors in a low
granularity (packet based) round robin fashion. Therefore processors
receive their super blocks nearly at the same time and can then per-
form their computations in parallel. Note that since neighboring data
required for the computation of a super block is replicated at each
transfer, computations on the different processors are completely

(a) (b)
Fig. 8. Given d = s1 � s2 fixed: (a) DMA transfer cost with replicated area, (b) Balance between computation time and transfer time, as we increase the number of lines in a
block.

(a) (b)
Fig. 9. Computation domain and optimal granularity considering replication of shared data: (a) Single processor and (b) as we increase the number of processors.

(a) (b)
Fig. 10. Double buffering using multiple processors: (a) Data partitioning, shaded area represents replicated data required for the computation of each super block. (b)
Pipelined execution.

6 Architectures that have a centralized DMA can avoid this overhead by literally
scheduling the transfer at the super block level.

854 S. Saidi et al. / Microprocessors and Microsystems 37 (2013) 848–857
independent since no synchronization is required to exchange
shared.

Increasing the number of processors does not influence the
computation time C per super block, however it increases the
transfer time because contentions on the shared resources induce
a significant overhead that we model by parameterizing the
transfer cost per byte a with the number of active processors such
that ap increases monotonically with p.6 We use Tp to denote (6)
with ap replacing a, the total execution time of the pipeline becomes,

Table 1
Parameters notation.

n1, n2 array height and width in number of basic blocks
s1, s2 super block height and width in number of basic blocks
b size in bytes of a basic block
k shared neighboring data
x computation time per basic block
p number of active processors
I0 DMA initialization cost
I1 DMA initialization overhead to issue a DMA list element
a transfer cost in time per byte
ap transfer cost in time per byte of p concurrent requests
T(s1,s2) transfer time of a super block
C(s1,s2) computation time of a super block
M max local buffer size imposed by the local store capacity

Table 2
The transfer time per byte as a function of the number of processes.

ap

p min max avg

1 1.13 14.00 2.57
2 1.78 29.98 4.13
4 3.97 47.23 11.07
8 5.43 87.86 18.82

Fig. 12. Influence of block shape and its replicated data on the transfer time.

S. Saidi et al. / Microprocessors and Microsystems 37 (2013) 848–857 855
m=p � C þ 2Tp when C P Tp

ðm=pþ 1Þ � Tp when C < Tp

Obviously this changes the ratio between the computation time
and the transfer time of a super block and consequently the optimal
granularity. Fig. 9b shows the evolution of the computation do-
mains and optimal granularity as we increase the number of pro-
cessors. The reasoning is similar to previously where function H
becomes Hp thus yielding an optimal data granularity for each value
of p. Note that the difference between computation and transfer
time represented by w = x � bap decreases as we increase p reduc-
ing the computation domain. Also, beyond some value of p we are
always in a transfer regime and there is no point in using more pro-
cessors since our main focus is to optimize processors idle time.

Optimal granularity, which is simply the necessary amount of
data needed to hide memory latency, increases as we increase the
number of processors since more data needs to be brought to each
processor to keep it busy during the time it takes to fetch its next
super block as well as the next super block of each of the other pro-
cessors. Note that when optimal granularity does not fit in local
memory, decreasing the number of used processors and thus its
corresponding optimal granularity can be another way to achieve
best performance given the available local memory budget.

Table 1 summarizes the notations for the considered hardware
and software parameters.
5. Experiments

We validate our results on the CELL processor whose architecture
is shown in Fig. 11. It is by now a decade old architecture, still
Fig. 11. The CELL proce
favorable for streaming applications. The main features of the
architecture include a powerful general purpose processor (PPU –
Power Processing Unit) along with eight accelerators (SPU – Syner-
gistic Processing Unit). Each SPU has a local scratchpad memory
which is the only memory directly accessible using load/store
instructions. Data in main memory and other processors memory
is accessed using DMA. For more information about the architec-
ture we refer to [13–16].

As an application we use a mean filter algorithm that works on a
bitmap image of 512 � 512 pixels. Each pixel is characterized by its
intensity ranging over 0� � �255. The output for a pixel is the average
of the value of its neighborhood defined as a square (mask)
ssor architecture.

Fig. 14. Observed optimal granularity s⁄ = (4,256) and predicted optimal granular-
ity s⁄ = (32,64).

856 S. Saidi et al. / Microprocessors and Microsystems 37 (2013) 848–857
centered around it. We have experimented with different mask
sizes and focus on the presentation of the results for a 9 � 9 mask,
that is, k = 8. In order to use SIMD operations to optimize the
implementation of the code, we encode a pixel as an integer
(b = 4 bytes). Based on profiling information, we are able to derive
the DMA parameter values: fixed initialization cost I0 = 108 and
initialization cost per line I1 = 50 cycles. The transfer cost per byte
for p processors ap varies. The minimal, maximal and average val-
ues of ap are shown in Table 2. This variation is mainly due to pack-
et-level arbitration between request of different processors as well
as reading and writing of the same processor. We use the average
value in our model. The computation workload per basic block is
roughly x = 62 cycles (see remarks at the end of the section).

Note that due to the characteristics of the CELL not all combina-
tions are possible. Indeed a DMA list can hold up to 2 K transfer ele-
ments. Each element is a contiguous block transfer with maximum
size 16 KBytes (which corresponds in our case to s2 = 4096).
Furthermore, the CELL has a strict alignment requirements on
16-byte boundary for both DMA transfers and SPU vector instruc-
tions for which the processor is optimized. If this is not taken care
of, the DMA engine aligns the data by itself causing erroneous
results.

Fig. 12 illustrates the influence of the shape of the block (and its
implied replicated area) on the transfer time as explained in
Section 4. We consider in this plot different feasible combinations
of (s1,s2) so that s1 � s2 = 4096. A shape (s1,s2) yields a block of
s1 + 8 lines, each line corresponding to a contiguous transfer of
b � (s1 + 8) bytes. As argued in Section 4, the optimal transfer time
is obtained neither for square (64,64) nor the flattest possible
(8,512) super blocks and the best trade-off in this case is
(s1,s2) = (32,128).

Finally we evaluate the effect of the size and shape of the super
blocks and the total execution time of the pipeline for different
numbers of processors. Fig. 13a compares the predicted and mea-
sured performance for different block shapes where s1s2 = 1024
while Fig. 13b does the same for s1s2 = 2048. As one can see, the
distance between the predicted and measured values is rather
small except for large values of s1.

The major reason for the discrepancy between the model and
the reality is that C(s1,s2) has non negligible component that de-
pends on s1 for two reasons. The first is due to the overhead at each
computation iteration related to the setting required between the
outer loop and the inner loop like adjustment of the pointers for
every row, pre-calculation of sums of borders, etc. Secondly, the
creation of list elements occupies the processor and this overhead
is also added to the overall execution time.
(a)
Fig. 13. Predicted and measured values f
Fig. 14 combines the measured results for different super block
sizes. The measured optimum is obtained for (4,256) while our cal-
culation yield (33,56) whose nearest feasible value is (32,64)
whose measured overall performance is less than 10% above the
performance for the optimum. The discrepancy can be attributed
to the reasons stated above, namely the dependence of C on s1.
6. Discussion

Adapting array-processing algorithms to multi-core architec-
tures is an activity that will occupy a lot of programmers time in
the coming future and it is highly desirable to make it as transpar-
ent as possible. Efficient use of the memory hierarchy is crucial for
performance on this new class of execution platforms. In this work
we have demonstrated how the problem can be approached in a
systematic manner for the CELL architecture. Starting from an ab-
stract logical description of the application and the DMA specifica-
tions, we could build a model that captures the influence of the size
and shape of buffered super blocks on performance. In particular,
our model captures the tension between preference of flat super
blocks (due to asymmetrical transfer cost) and square super blocks
(due to the nature of the application).

We are of course aware of the fact that each real program and
each architecture will have its own particularity, more complex
and richer in parameters than the model we have built but we
(b)
or different combinations of s1 � s2.

S. Saidi et al. / Microprocessors and Microsystems 37 (2013) 848–857 857
believe that this is a first step toward making such decisions more
systematic than by pure trial and error.

Our major observation the experience is that for this type of
‘‘collaborative’’ applications where a large computational task is
split, executed and then merged, it is preferable to have a central-
ized DMA mechanism that can schedule data transfers at the super
block rather than the packet level. This way, useless contentions be-
tween sub tasks of the same application can be avoided. At least in
terms of predictability, such policies, used for example in the con-
text of hard real-time systems such as in automotive control [17]
will be much simpler. In the future we intend to refine the model
and make it more accurate. Then we plan to replicate this work
for applications currently being developed for the P2012 architec-
ture where the DMA is more centralized, and the local memory is
shared between all the cores that reside in the same cluster.
References

[1] M. Gschwind, The cell broadband engine: exploiting multiple levels of
parallelism in a chip multiprocessor, International Journal of Parallel
Programming 35 (3) (2007) 233–262.

[2] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F. Clermidy, D.
Dutoit, Platform 2012, a many-core computing accelerator for embedded SoCs:
performance evaluation of visual analytics applications, in: P. Groeneveld, D.
Sciuto, S. Hassoun (Eds.), DAC, ACM, 2012, pp. 1137–1142.

[3] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips, Gpu computing,
Proceedings of the IEEE 96 (5) (2008) 879–899, http://dx.doi.org/10.1109/
JPROC.2008.917757.

[4] K. Fatahalian, D. Horn, T. Knight, L. Leem, M. Houston, J. Park, M. Erez, M. Ren,
A. Aiken, W. Dally, et al., Sequoia: programming the memory hierarchy, in:
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, ACM, 2006
(83–es).

[5] S. Schneider, J. Yeom, D. Nikolopoulos, Programming multiprocessors with
explicitly managed memory hierarchies, Computer 42 (12) (2009) 28–34.

[6] S. Schneider, J.-S. Yeom, B. Rose, J.C. Linford, A. Sandu, D.S. Nikolopoulos, A
comparison of programming models for multiprocessors with explicitly
managed memory hierarchies, in: PPOPP, 2009, pp. 131–140.

[7] J.C. Sancho, K.J. Barker, D.J. Kerbyson, K. Davis, Quantifying the potential
benefit of overlapping communication and computation in large-scale
scientific applications, in: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, SC ’06, ACM, New York, NY, USA, 2006. http://dx.doi.org/
10.1145/1188455.1188585.

[8] J. Sancho, D. Kerbyson, Analysis of double buffering on two different multicore
architectures: Quad-core Opteron and the Cell-BE, in: IPDPS 2008. IEEE
International Symposium on Parallel and Distributed Processing, IEEE, 2008,
pp. 1–12.

[9] S. Saidi, P. Tendulkar, T. Lepley, O. Maler, Optimizing explicit data transfers for
data parallel applications on the cell architecture, ACM Transactions on
Architecture Code Optimizer 8 (4) (2012) 37:1–37:20. http://dx.doi.org/
10.1145/2086696.2086716.

[10] A. Agarwal, D. Kranz, V. Natarajan, Automatic partitioning of parallel loops and
data arrays for distributed shared memory multiprocessors, IEEE Transactions
on Parallel Distributed Systems 6 (1995) 943–962.

[11] C. kin Lee, M. Hamdi, Parallel image processing applications on a network of
workstations, Parallel Computing 21 (1) (1995) 137–160. http://dx.doi.org/
10.1016/0167-8191(94)00068-L, <http://www.sciencedirect.com/science/
article/pii/016781919400068L>.

[12] T. Altilar, Y. Paker, Minimum overhead data partitioning algorithms for parallel
video processing, in: Proceedings Domain Decomposition Methods
Conference, 2001, pp. 25125–25128.

[13] IBM, Cell SDK 3.1. <http://www.ibm.com/developerworks/power/cell/>.
[14] IBM, Cell Simulator, June 2009. <http://www.alphaworks.ibm.com/tech/

cellsystemsim>.
[15] M. Kistler, M. Perrone, F. Petrini, Cell multiprocessor communication network:

built for speed, Micro, IEEE 26 (3) (2006) 10–23, http://dx.doi.org/10.1109/
MM.2006.49.

[16] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, D. Shippy,
Introduction to the cell multiprocessor, IBM Journal of Research and
Development 49 (2005) 589–604. <http://dl.acm.org/citation.cfm?id=1148882.
1148891>.
[17] H. Kopetz, G. Bauer, The time-triggered architecture, in: Proceedings of the
IEEE, 2003, pp. 112–126.

Selma Saidi is a PHD student in Verimag Lab (University
of grenoble, France) working in collaboration with
STMicroelectronics, she received a computer science
engineering degree in 2004 from the university of
technology of Algiers, Algeria and then a master degree
in 2007. Her research interests include embedded
multi-core systems, explicitly managed memory archi-
tectures and parallel computing.
Pranav Tendulkar is a Ph.D. student Verimag Labora-
tory, Gieres, France and University of Joseph Fourier. He
received Bachelor of Engineering in electronics and
telecommunications engineering from India in 2004.
His research interests include algorithm and model
design for embedded systems, multicore systems and
heterogeneous computing.
Thierry Lepley is an STMicroelectronics Principal Engi-
neer, graduated Electronics and Computer Science from
the Grenoble Institute of Technology in 1996. He started
research on frequency synthesizers at Carlton Univer-
sity, Ottawa, then moved to the industry with Philips to
develop the operating system of smart cards electronic
wallet applications. He then entered the compiler field
in STMicroelectronics, developing a retargetable opti-
mizing compiler infrastructure for emerging DSP and
VLIW processors, with a particular emphasis on
instruction scheduling algorithms such as software
pipelining. He also developed a compiled simulator

technology for speeding up application simulation and leaded a collaborative
research project on real-time adaptive control techniques. Still in STMicroelec-
tronics, Thierry has been responsible from 2009 of the OpenCL activity in the P2012

many-core project, defining the programming methodology and contributing to the
development of the compiler, the runtime system, the parallelization of applica-
tions. He is also contributing to the OpenCL standardization work-group of the
Khronos consortium, representing STMicroelectronics. Author of several scientific
publications and industrial patents, his interests are centered on Computing from
embedded to HPC, from CPU to GPGPU, covering parallelism at all its granularities,
programming models, compilers and computer architecture. His interest also cov-
ers the computer vision applicative domain.

Oded Maler is a research director (DR1) at the CNRS
(French National Center of Scientific Research), leading
the timed and hybrid systems group at VERIMAG,
Grenoble. He obtained a B.A. in Computer Science from
the Technion, Haifa in 1979, an M.Sc. in Management
Science from the University of Tel-Aviv In 1984 and a
Ph.D. in Computer Science, from Weizmann Institute,
Rehovot. His interests include modeling, simulation and
verification for continuous and hybrid systems as well
as timing and performance analysis for embedded and
other systems.

http://refhub.elsevier.com/S0141-9331(13)00054-9/h0005
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0005
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0005
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0010
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/JPROC.2008.917757
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0020
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0020
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0020
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0020
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0020
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0025
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0025
http://dx.doi.org/10.1145/1188455.1188585
http://dx.doi.org/10.1145/1188455.1188585
http://dx.doi.org/10.1145/2086696.2086716
http://dx.doi.org/10.1145/2086696.2086716
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0040
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0040
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0040
http://dx.doi.org/10.1016/0167-8191(94)00068-L
http://dx.doi.org/10.1016/0167-8191(94)00068-L
http://www.sciencedirect.com/science/article/pii/016781919400068L
http://www.sciencedirect.com/science/article/pii/016781919400068L
http://www.ibm.com/developerworks/power/cell/
http://www.alphaworks.ibm.com/tech/cellsystemsim
http://www.alphaworks.ibm.com/tech/cellsystemsim
http://dx.doi.org/10.1109/MM.2006.49
http://dx.doi.org/10.1109/MM.2006.49
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0055
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0055
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0055
http://refhub.elsevier.com/S0141-9331(13)00054-9/h0055

	Optimizing two-dimensional DMA transfers for scratchpad Based MPSoCs platforms
	1 Introduction
	2 Preliminaries
	2.1 Software pipelining
	2.2 DMA performance model

	3 Independent computations, single processor
	4 Shared Data
	4.1 Replicated area and transfer cost
	4.2 Optimal granularity for shared data applications
	4.2.1 Single processor
	4.2.2 Multiple processors

	5 Experiments
	6 Discussion
	References

