
Optimizing Explicit Data Transfers for Data Parallel Applications on
the Cell Architecture

Selma Saidi, VERIMAG, STMicroelectronics Grenoble, France
Pranav Tendulkar, VERIMAG, Grenoble, France
Thierry Lepley, STMicroelectronics Grenoble, France
Oded Maler, VERIMAG Grenoble, FRANCE

In this paper we investigate a general approach to automate some deployment decisions for a certain class
of applications on multi-core computers. We consider data-parallelizable programs that use the well-known
double buffering technique to bring the data from the off-chip slow memory to the local memory of the
cores via a DMA (direct memory access) mechanism. Based on the computation time and size of elementary
data items as well as DMA characteristics, we derive optimal and near optimal values for the number of
blocks that should be clustered in a single DMA command. We then extend the results to the case where
a computation for one data item needs some data in its neighborhood. In this setting we characterize the
performance of several alternative mechanisms for data sharing. Our models are validated experimentally
using a cycle-accurate simulator of the Cell Broadband Engine architecture.

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Data parallelization, Double Buffering, Direct Memory Access (DMA),
Cell B.E.

ACM Reference Format:
Saidi S., Tendulkar P., Lepley T, Maler O, Optimizing Explicit Data Transfers for Data Parallel Applications
on the Cell Architecture ACM Trans. Embedd. Comput. Syst. V, N, Article A (July 2011), 20 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The semi-conductor industry has chosen to use multi-core computing as the path for
sustaining the ever-increasing demand for computational power, hitherto satisfied by
essentially making processors faster. While the major reasons for this turn are based
on physical arguments, much of the burden in actually realizing this increased com-
putational potential is delegated to software developers who must somehow find ways
to exploit multi-processor platforms without compromising their own productivity. The
success of multi-core computers thus depends on the ability to combine the flexibility
of software with the performance advantages of hardware. Since the performance of
an application running on a multi-processor system depends significantly on the way
computational and data transfer resources are shared among tasks, the application
programmer is, in some sense, taken back to the dark times where low-level details
had to be considered, thus reducing productivity.

This paper is part of an effort to alleviate this problem by automating, as much as
possible, various deployment decisions associated with the execution of applications
on multi-core platforms. Such decisions include the mapping of tasks onto processors,
scheduling the execution of computational tasks on bounded-resource platforms and
various data partitioning and sizing issues. In this paper we treat restricted but im-
portant problem of choosing the granularity of data transfers between local and remote
memory.

Emerging multiprocessor system on chip (MPSoC) , such as the Cell Broadband En-
gine [Pham et al. 2006] and Platform 2012 [STMicroelectronics and CEA 2010] are
heterogeneous multi-core architectures, with a powerful host processor and a num-
ber of smaller cores that serve as a computation fabric to accelerate computations
previously performed by specialized hardware. Computation intensive tasks such as
video processing are delegated to the multi-core fabric to be accelerated via parallel

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:2 S. Saidi et al.

execution. Such applications work on large data arrays initially stored in a remote off-
chip memory whose access time is about 100 times larger than that of the core’s local
memory. To reduce processor stall time a combination of DMA and double-buffering
is used. A DMA is a device that can transfer large amounts of data between mem-
ory locations without processor intervention. Using double buffering, the processor(s)
can work on data residing in their local memory while the DMA is fetching the next
batch of data. Therefore, besides single instruction multiple data (SIMD) low granu-
larity level of parallelism, multithreading...etc, heterogeneous multicore architectures
offer another level of parallelism by overlapping computations and data prefetching
[Gschwind 2007; Sancho et al. 2006].

We focus on algorithms that apply the same computation to each element of a large
array. Such algorithms are used, for instance, in image quality improvement, signal
processing and many classes of scientific computations. They exhibit regular memory
access patterns and hence the explicit control of data transfers can be more efficient
than implicit unpredictable low granularity caching mechanisms [Sancho and Ker-
byson 2008].

Double buffering is used to enhance performance by executing in parallel the compu-
tation of current buffer and the data transfer of the next one. However, it complicates
the software developer’s work. Besides writing more complex programs, the program-
mer has to make decisions about data granularity, data partitioning and scheduling
of data transfers to achieve optimal performance. We try to provide tools to help the
developer make such decisions, and ultimately automate the whole process of data
parallelization for such MPSoC platforms.

The problem is of course not new and has been addressed enormously many times
in the context of SIMD (single instruction multiple-data) computers, systolic arrays,
FPGA, etc. The difference with the present work is the attempt to apply it in a higher
level of granularity that corresponds to tasks operating on large elementary data
blocks rather at the instruction level, with the hope to find relatively general solutions
that can eventually be integrated in the software development cycle and in design
space exploration.

The rest of the paper is organized as follows. In Section 2 we formulate the prob-
lem from the application side and introduce a generic simplified performance model
of DMA mechanisms. In Section 3 we derive optimal granularity for data transfers,
first in the case of a single processor and then for several ones. In Section 4 we extend
the results to overlapped computations where some data are shared among neighbors
and explore optimal granularity for different data sharing mechanisms. In Section 5
we validate the models using a cycle-accurate simulator of the Cell architecture [IBM
2009] while in Section 6 we mention some related work. We conclude by a discussion
of the present work and its potential extensions.

2. PRELIMINARIES
In this section, we introduce the generic features of the problem from the application
software side and the realizing hardware side.

2.1. Double Buffering
We assume an algorithm computing y = f(x) over a basic data unit that we call a
block.

PROGRAM 1 (SEQUENTIAL).

for i := 0 to n− 1 do
Y [i] := f(X[i])

od

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



Optimizing Explicit Data Transfers for Data Parallel Applications on the Cell Architecture A:3

Consider the sequential algorithm above, which uniformly applies f to a large input
arrayX to produce an output array Y . To simplify notations we assume that both input
and output arrays have the same number of blocks n of the same size each. To execute
the program we need first to bring the data from the external memory via dma get
command, perform the computation and then write back the output via a dma put
command, see Program 2.

0 1 ... m-1

0 ... s-1

Array (m superblocks)

Each superblock of s basic blocks

0 ... b-1 Each basic block of b bytes

Fig. 1: Decomposition of Input (resp. Output) Array

To amortize the fixed overhead associated with each DMA call, it is typically invoked
in a coarse granularity by clustering together several blocks. In other words, the input
and output arrays are partitioned into m = n/s super-blocks each consisting of s basic
blocks stored in the input and output buffers used in Program 2, see Figure 1. A basic
block of size b bytes is the minimal granularity the algorithm requires to compute one
iteration in Program 1 (in image processing it can be a pixel, a block, a macroblock...)
or is chosen as the minimal granularity of transfer.

The event e is associated with each dma get command to ensure the synchronization
between data transfer and its corresponding computation.

PROGRAM 2 (BUFFERING).

for i := 0 to m− 1 do
dma get (in buf, X[(i)s .. (i+ 1)s− 1], e); fetch in-buffer
dma wait (e);
for j := 0 to s− 1 do compute

out buf [j] = f(in buf [j]);
od
dma put (out buf, Y [(i)s .. (i+ 1)s− 1]); write out-buffer

od

In program 2, data movements and computations are performed sequentially and the
processor is idle during data transfers. Using the double buffers, in buf [0], in buf [1],
out buf [0] and out buf [1], the processor can work on one super-block residing in cur-
rent buffer (i%2) while the DMA brings in parallel the next super-block to next buffer
buffer (i+1)%2. In the following program, events e in(d) and e out(d) synchronize data
transfers for the corresponding buffers. Program 3 defines a software pipeline with 3
stages: input transfer of super-block (i + 1), computation of super-block i and output
transfer of super-block (i − 1). Fetching the first block and writing back the last block
are respectively the beginning and the end of the pipeline.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:4 S. Saidi et al.

PROGRAM 3 (DOUBLE BUFFERING).

curr = 0;
next = 1;
dma get (in buf [0], X[0 .. s− 1], e in[0]); first read
for i := 0 to m− 2 step 1 do

dma get (in buf [(next], X[(i+ 1)s .. (i+ 2)s− 1], e in[next]); fetch next
dma wait (e in[curr]); wait for current fetch
dma wait (e out[curr]); wait for previous write back
for j := 0 to s− 1 do process current

out buf [curr][j] = f(in buf [curr][j]);
od
dma put (out buf [curr], Y [(i)s .. (i+ 1)s− 1], e out[curr]); write current
curr = (i+ 1)%2; toggle buffers
next = (i+ 2)%2;

od
dma wait (e out[next]); wait for last block
for j := 0 to s− 1 do process last

out buf [next][j] = f(in buf [next][j]);
od
dma put (out buf [next], Y [n− (s+ 1) .. n− 1], e out[next]); last write

Note that local memory, excluding program code and additional working memory,
should be large enough to store 4 buffers of s super-blocks each. There are additional
constraints that limit the size of a super-block that we summarize by a bound s̄ on the
number of blocks that can be clustered in one DMA call. In the following, we look for a
number of blocks s∗ ≤ s̄ that yields good performance.1

2.2. DMA Performance Model
To reason about optimal granularity, it is important to characterize the DMA behavior.
It is quite difficult to model this behavior precisely taking into account all low level
hardware details that vary from one architecture to another. Nevertheless, all DMAs
share some common characteristics.

The DMA copies data from one memory location to another. When a processor needs
data, it issues a transfer command to the DMA which takes charge of the transfer.
However, there is an initialization cost which is more amortized for large data trans-
fers. This makes it more efficient for coarse data granularity than for low granularity
load/store instructions. DMA transfer commands are composed of a source address, a
destination address and a block size. The commands are stored in a queue of limited
size. When a command is ready, data transfer begins and the block is divided into
smaller packets to travel from source address through an interconnect and read/write
issued by the memory controller.

We assume a fixed initialization cost I and a transfer cost of α time units per byte.
This value depends on several hardware factors such as interconnect bandwidth, mem-
ory latency (which is different according to the type of memory: SRAM of another pro-
cessor or off-chip DRAM), and possible contentions. Assuming the size of a basic block
b bytes, the transfer time of a super-block consisting of s blocks is then approximated
as

T (s) = I + α · b · s.

1In this paper, we restrict ourselves to one dimensional data arrays. For higher dimensions, the problem
becomes more complex as we need to decide both block size and shape.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



Optimizing Explicit Data Transfers for Data Parallel Applications on the Cell Architecture A:5

Note that the model defined here is for transfers of contiguous blocks. Applications
working on two dimensional arrays require usually rectangular data block transfers.
This is possible using strided DMA commands, by specifying in addition to the source
and destination address the stride, an offset to access next contiguous block in memory.
Strided commands are costlier than contiguous commands of the same size, and they
have an extended performance model based also on the shape of the block.

Under some circumstance, performance can be further improved by using more than
two buffers. For example, in a triple buffering scheme, the DMA may hold two subse-
quent requests in the queue, and start the initialization of the second in parallel with
the transmission of data for the first. Initial experiments with more than two buffers
did not show a gain, partly because the requests are not necessarily executed in the
same order they are issued. Therefore we need some extra synchronization to avoid
that and hence we focus on double buffering.

3. OPTIMAL GRANULARITY
In this section we derive the optimal granularity of data transfers in terms of the
number of blocks s clustered in a super-block, starting with the case of one processor.

3.1. One Processor
The execution of Program 3 admits repetitive parallel execution of computation (for
super-block i) and data-transfer (for super-block i + 1). We assume the algorithm f to
have a fixed (data independent) computation time ω per basic block once the block is
in the local memory of a processing core.

The computation time of a super-block is C(s) = ω · s while the transfer time using
DMA is T (s) = I + α · b · s as defined previously. Both functions are plotted in Figure 2
(a) and their point of intersection s∗ (we assume α · b < ω) splits [1..s̄] (the domain of
s) into two sub-domains, the computation regime where computation of a super-block
dominates the transfer of the next one T (s) < C(s), and the transfer regime, where
T (s) > C(s).

The overall execution time is illustrated in Figure 2 (b). It switches from a transfer
regime to a computation regime for granularity s∗. Figure 3 illustrates the behavior of
the pipeline for the two regimes. Both admit a prologue (first read with no overlapped
computation) and epilogue (last write with no overlapped computation), each consum-
ing I+α ·b ·s time and n/s−1 episodes dominated either by transfer or by computation.
Therefore, the overall execution time is

τ(s) =
{

(n/s+ 1) T (s) w (n · I)/s+ (n · α · b) for s < s∗

2 · T (s) + n · ω w (α · b · s) + (n · ω + I) for s > s∗

Any granularity s ≥ s∗ guarantees a computation regime in which the processor
never stalls. However, as the granularity increases in this interval, the overhead as-
sociated with the prologue and epilogue increases and hence optimal granularity is
attained at s∗. This overhead may be negligible when n or ω are large.

Note that, if for any granularity s the execution is always in a computation regime,
then optimal unit of transfer is the basic block, that is s∗ = 1 which guarantees min-
imal prologue and epilogue. Whereas if the execution is always in a transfer regime,
then optimal granularity is the upper bound s̄ as DMA initialization overhead is more
amortized for larger data blocks.

3.2. Multiple Processors
Given p identical processors having the same processing speed and the same local store
capacity, the input array is partitioned into p contiguous chunks of data distributed
among the processors (see Figure 4) to execute in parallel. Typically p << n and the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:6 S. Saidi et al.

Transfer/computation time 

per block 

s

C(s)

s̄

T (s)

s∗

Computation regimeTransfer regime

I
Computation Regime

Program execution time using

double buffering

Transfer Regime

s∗
s

τ(s)

(a) (b)

Fig. 2: Computation and transfer regime (a) The dependence of computation C and
transfer T on the number of blocks s, (b) Total execution time as a function of s

(a)

(b)

s = 1

s = 3

Time

Input

Computation

Output

Input

Computation

Output

EpiloguePrologue

Prologue Epilogue

Time

Transfer

Transfer

Transfer

Transfer

Fig. 3: Pipelined execution on one processor: (a) transfer regime, (b) computation
regime. The shaded areas indicate processor stall time.

chunk allocated to a processor is much larger than s̄. We extend our efficient double-
buffer granularity analysis to this case.

Intuitively, using multiple processors, a conflict arises between computation and
data transfers since increasing the number of processors reduces the amount of work
per processor but can create contentions on the shared resources and consequently
increase transfer time.

DMA mechanisms for multi-core systems can be roughly classified as centralized
(one device serves all processors) or distributed (each processor has its own DMA ma-
chine). A distributed system has the advantage of parallelizing the initialization steps
of transfer commands, however, all these requests are served by the same transfer
infra-structure. A distributed mechanism has less control over scheduling such re-
quests while a centralized DMA could avoid contentions, especially for applications
that exhibit regular patterns and move large amounts of data. Since our experimental
platform, the Cell B.E. (Cell Broadband Engine), as well as other platforms such as
Tilera, have a distributed DMA we focus our analysis on the distributed model.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



Optimizing Explicit Data Transfers for Data Parallel Applications on the Cell Architecture A:7

P2P1

Array

0

P3 P4

n
p-1... 0 ... 0 ... 0 ...n

p-1
n
p-1

n
p-1

Fig. 4: Contiguous allocation of data blocks per processor.

time 

s
s̄

T (s, 1)

C(s)

T (s, 2)

T (s, 3)

s∗(1) s∗(2) s∗(3)

Fig. 5: Optimal granularity for several processors.

To parallelize the initialization phase we synchronize data transfers of all proces-
sors at the beginning of the execution.2 This means that p concurrent transfer re-
quests arrive simultaneously to the interconnect. Arbitration of these requests is left
to the hardware which serves the p processors in a low granularity round robin fash-
ion resulting in transfer cost per byte α(p), parameterized by the number of processors.
This cost increases monotonically with the number of processors, see Figure 5, as con-
tentions overhead increase with the number of competing processors transfer requests.

The characterization of transfer time of s blocks by a processor becomes

T (s, p) = I + α(p) · s · b

and optimal granularity for p processors is attained at s∗(p) satisfying T (s∗(p), p) =
C(s∗(p)) which indicates that the computation time for the amount of data needed to
keep a processor busy is exactly the time it takes to fetch its next block as well as
the next block of each of the other processors. As one can see in Figure 5, optimal
granularity increases with the number of processors due to the increase in transfer
time. The overall execution time τ(s, p) has the same form as for one processor:

τ(s, p) =
{

(n/sp+ 1) T (s, p) for s < s∗

2 · T (s, p) + n/p · ω for s > s∗

Note that beyond some value of p we are always in transfer regime and there is no
point in using more processors.

Table I summarizes the notations for the used hardware and software parameters.

4. OVERLAPPED DATA COMPUTATIONS
An overlapped data computation is a data parallel loop in which the computation for
each block needs additional data from neighboring blocks. In other words the compu-

2The gain from overlapping initialization is less significant for large granularity, see further discussions
concerning this choice in Section 5.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:8 S. Saidi et al.

Table I: Parameters Notation
n number of blocks to be processed
ω computation time per basic block
b size in bytes of a basic block
s number of blocks in a super-block
p number of processors active at a time
I initialization cost for transfer
α transfer cost in time units per byte
α(p) transfer cost per byte when p processors are active
β transfer cost per byte for inter-processor communication
γ cost per byte of a load/store instruction for copying overhead
Rk inter-processor communication time to transfer a data block of size k
T (s) transfer time for s blocks
T (s, p) transfer time of s blocks by on processor when p processors are active
C(s) computation Time
X[i] input data vector
Y [i] output data vector
V [i] neighborhood data vector

tation in the inner loop of Program 1 is replaced by

Y [i] = f(X[i], V [i])

where V [i] is additional data taken from the input left neighbor X[i − 1]. We assume
that the relative location of V [i] in X[i − 1] is the same for every i, and that its size is
some fixed k ∈ [0, b]. Such patterns are common, for example, in signal processing ap-
plication with overlapping time windows. As before we partition the workload among
p processors and compare several data distribution and sharing strategies for which
we construct performance models that can be used to derive optimal granularity . The
three strategies that we compare differ in the component of the architecture which
carries the burden of transferring the additional data in V [i]:

(1) Replication: transfer via the interconnect between local and off-chip memory;
(2) Inter-processor communication: transfer via the network-on-chip between the

cores;
(3) Local buffering: transfer by the core processors themselves.

We discuss these strategies briefly below.

4.1. Replication
For each granularity s, the input arrayX is divided into contiguous super-blocks of size
(s · b + k) and allocated to processors. The analysis is therefore similar to section 3.2
considering at each iteration an overhead of k additional bytes for each super-block
transfer.

Considering this overhead, optimal granularity is reached for the granularity s∗ so
that, T (s∗ + k/b, p) = C(s∗). The overall execution time is similar to section 3.2:

τ(s, p) =
{

(n/sp+ 1) T (s+ k/b, p) for s < s∗

2 · T (s+ k/b, p) + (n/p)ω for s > s∗

4.2. Inter-processor Communication
Let Rk be the communication time to transfer a data block of size k from one pro-
cessor to another. It obviously depends on the transfer mechanism used: load/store
instructions via a shared memory location, explicit DMA commands, etc. In this paper,
we consider blocking DMA commands that have the same initialization cost I, and a
transfer cost per byte β � α because the network-on-chip connecting the cores as well

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



Optimizing Explicit Data Transfers for Data Parallel Applications on the Cell Architecture A:9

Prologue Epilogue

IPCIPC IPC

Time

Output

Input

P2

P1

P0

Fig. 6: Inter-processor communication

as their memories is much faster. Thus Rk is approximately I + β · k with, perhaps,
additional terms that depend on p to represent synchronization overhead between the
cores.

Optimal data partitioning using this mechanism occurs when the communication
geometry matches the interconnect geometry which is ring-like in our experimental
platform. Processors can then perform in parallel a point to point inter-processor com-
munication. Unlike the other strategies, here we need to allocate memory to proces-
sors in a periodic rather than contiguous fashion. As in Section 3.2, transfers from
external memory are synchronized and after reception of a super-block each processor
pj sends the overlapping data to its right neighbor pj+1. Processors stall at that time
waiting for the end of the communication. Prefetching of next blocks can then be issued
to be done concurrently with computations, see Figure 6.

Optimal granularity is therefore reached for s∗ so that,

T (s∗, p) = C(s∗) +Rk

and the overall execution time is,

τ(s, p) =
{

(n/sp+ 1) T (s, p) for s < s∗

2 · T (s, p) + (n/p)ω + (n/sp)Rk for s > s∗

4.3. Local Buffering
The input array is divided into p contiguous large chunks. Neighboring blocks are
therefore allocated to the same processor and computed at successive iterations with
shared data being stored in the processor local memory for the next iteration.

In this strategy, at each iteration, shared data has to be copied from one local buffer
to the other using load/store instructions.3 The local copying overhead is k · γ where γ
is the cost per byte of a load/store instruction. It is a fixed computation overhead added
at each iteration of computing over a super-block of size s · b. Note that this overhead
relative to the whole execution time decreases as the number of processors p and the
granularity s increases.

Optimal granularity is obtained at s∗ so that T (s∗, p) = C(s∗) + k · γ and the overall
execution time τ(s, p) is,

τ(s, p) =
{

(n/sp+ 1) T (s, p) for s < s∗

2 · T (s, p) + (n/p)ω + (n/sp)(k · γ) for s > s∗

4.4. Comparing Strategies
These approximate models can be used to give some guidelines for choosing granu-
larity. They involve, on one hand, parameters of the application: b, k and ω (assum-

3More efficient pointer manipulation is hard to implement because the same buffer is used to store x[i− 1]
and x[i+ 1] which is filled in parallel with the computation of y[i].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:10 S. Saidi et al.

time 

k

k · γ

Rk

α(1) · k

α(2) · k

α(3) · k

Fig. 7: Comparing parameters for strategies

ing processor speed is fixed) and parameters of the architecture: α, β, γ. According
to these models one can optimize the decision variables which are p, s and the shar-
ing strategy. Before moving to experimental validation let us make some observations.
In inter-processor communication and in local buffering each iteration involves addi-
tional processor workload and needs to transfer less data from off-chip memory. There-
fore, replication switches to the computation regime at a higher granularity than local
buffering and inter-processor communication.

When all three strategies reach their computation regime, replication always per-
forms better than inter-processor communication and local buffering because of the
overall overhead that corresponds to the time the processor spends copying shared
data locally, or communicating with an other processor: (n/sp)Rk or (n/sp)(k · γ). How-
ever, the advantage of replication is reduced as s or p increase.

When transfer time is dominant, comparing the strategies boils down to comparing
the cost of transferring the additional shared data using different hardware mecha-
nisms: k ·α(p), I + k · β and k · γ, Figure 7 illustrates the sensitivity of these quantities
to k and p. In this example, for one processor, replication cost is lower than local copy-
ing and inter-processor communication, but as the number of processors increases, the
overhead of contentions while accessing off-chip memory ruins the performance com-
pared to the other strategies, where the transfer of shared data is delegated to the high
speed network-on-chip or to the processors and is totally or partly done in parallel.

Note that in the local buffering and IPC schemes, the transfer of shared data is
counted as computation time because in local buffering, the processor is busy copying
data using load/store instructions and in the IPC the processor is idle waiting for the
synchronous DMA transfers to finish.

Note that if the optimal granularity for the replication strategy does not fit in the
memory limit, the parameters comparison can then give a hint about the strategy that
can give best performance given the available memory space budget.

5. EXPERIMENTS
In this section our goal is to validate these simplified models against a real archi-
tecture, the Cell Broadband Engine Architecture (Cell BE), represented by a cycle-
accurate simulator, and see whether their predictive power is sufficiently good to serve
as a basis for optimization decisions.

5.1. The Cell BE
The Cell Broadband Engine Architecture is a 9-core heterogeneous multi-core architec-
ture, consisting of a Power Processor Element (PPE) linked to 8 Synergistic Processing

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



Optimizing Explicit Data Transfers for Data Parallel Applications on the Cell Architecture A:11

PPE (Pow-
erPC Pro-
cessor Ele-
ment)

PPU (Pow-
erPC Pro-
cessor
Unit)

MIC (Mem-
ory Inter-
face Con-
troller) SP

E

SP
E

SP
E

SP
E

BIC (Bus
Interface
Controller)

EIB (Element Interconnect Bus)

SP
E

SP
E

SP
E

SPU
(Synergistic

Processor Unit)

LS
(Local Store)

MFC (Memory
Flow Controller)

SPE
(Synergistic
Processor
Element)

Fig. 8: Cell B.E. Architecture

Elements (SPE) acting as co-processors, through internal high speed Element Inter-
connect Bus (EIB) as shown in Figure 8.

The PPE is composed of a 64-bit PowerPC Processor Unit (PPU) and each SPE is
composed of a Synergistic Processing Unit (SPU) which is a vector processing unit, an
SRAM local store (LS) of size 256 kbytes shared between instructions and data, and
a Memory Flow Controller (MFC) to manage DMA data transfers. The PPU provides
a single shared address space across SPEs and the MFC’s memory translation unit
handles the required address translation. An SPE can access the external DRAM and
the local store of other SPEs only by issuing DMA commands. The PPU can also issue
DMA commands supported by the MFC. The MFC supports aligned DMA transfers of
1, 2, 4, 8, 16 or a multiple of 16 bytes, the maximum size of one DMA transfer request
being 16K. To transfer more than 16K, DMA lists are supported. Further details of the
architecture can be obtained at [IBM 2008].

The MFC of each SPE is composed of a Direct Memory Access Controller (DMAC)
to process DMA commands queued in the MFC and of a Memory Management Unit
(MMU) to handle the address translation of DMA selected commands. The MMU has
a translation look-aside buffer (TLB) for caching recently translated addresses. TLB
misses can affect significantly the performance, therefore we neglect this effect by do-
ing a warm-up run which will load the TLB entries before profiling of the program.
Also, we allocate large page tables to have a smaller number of TLB entries for data
array. After the address translation, the DMAC splits the DMA command into smaller
bus transfers and peak performance is achievable when both the source and destina-
tion address are 128-byte aligned and the block size is multiple of 128 bytes [Kistler
et al. 2006]. We can observe reduction in performance when this is not the case.

In the Cell Simulator that we use [IBM 2009] the PPE and SPE processors run at
3.2GHz clock frequency and the interconnect is clocked with half the frequency of the
processors. The cell-simulator is very close to the actual processor. However, it models
DDR2 memory instead of RAMBUS XDR which is used in the real processor. Further
it does not have Replacement Management table for cache, however, we measure the
performance directly on SPU’s and it does not affect our model.

5.2. Basic Parameters Measurement
We measure a DMA transfer time as we increase the super block size in one transfer,
and accordingly the cost per byte, see Figure 9. The DMA cost per byte is reduced sig-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:12 S. Saidi et al.

16 64 256 1024 4096 16384

103

104

super-block size (s · b)

T
ra

ns
fe

r
T

im
e

(c
lo

ck
cy

cl
es

) 1 SPU
2 SPU
4 SPU
8 SPU

(a) DMA transfer time

16 64 256 1024 4096 16384

0

10

20

30

super-block size (s · b)

C
os

t
Pe

r
B

yt
e

(c
lo

ck
cy

cl
es

) 1 SPU
2 SPU
4 SPU
8 SPU

(b) DMA Read Cost per Byte

Fig. 9: DMA performance

nificantly for block size larger than 128 bytes. Below this value, the DMA has a high
initialization overhead. As we increase the number of processors and synchronize con-
current DMA transfers, we can observe that the transfer time is not highly affected for
a small granularity because the initial phase of the transfer is done in parallel in each
processor’s MFC, whereas for large granularity the transfer time increases proportion-
ately to the number of processors due to the contentions of concurrent requests on the
bus and bottleneck at the Memory Interface Controller (MIC) as explained in [Kistler
et al. 2006]. The initialization phase time I is about 400 cycles and the DMA transfer
cost per byte to read from main memory α(1) is about 0.22 cycles per byte, it increases
proportionately to the number of processors to reach p · α(1) (for large granularity
transfers).

5.3. Experimental Results
We run experiments implementing double buffering for independent and overlapped
data computations, first on synthetic algorithms of computation where f is an abstract
function for which we vary the computation workload per byte ω. We then implement
a convolution algorithm that computes an output signal based on an input signal and
an impulse response signal. The size of the impulse signal determines the size of the
data window required to compute one output item. Moreover, we vary the size of the
impulse signal to vary the size of the neighboring shared data.

For synthetic algorithms, we fix the size b of a basic block to 16 bytes and the size n
of input data array to 64K, the total size of the array being 1Mbytes. Also we keep the
number of threads that are spawn on SPUs as maximum equal to number of SPU’s.
This will avoid context switching and give more predictable results. Also there will be
no question of scheduling which is another part of the problem and not in the scope of
this paper. The memory capacity limits then the possible number of blocks clustered
in one transfer to s̄ < 4K, excluding memory space allocated to code size. We vary
the number of blocks s and the number of processors. We compare both predicted and
measured optimal granularity, and the total execution time for both transfer and com-
putation regimes. Figure 10 shows the predicted and measured values for 2, 4 and 8
processors. We can observe that values are very close to each other. The predicted opti-
mal points are not exactly the measured ones but they give very good performance. Per-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



Optimizing Explicit Data Transfers for Data Parallel Applications on the Cell Architecture A:13

16 64 256 1024 4096 16384
0

0.5

1

1.5

·107

super-block size (s · b)

E
xe

cu
ti

on
T

im
e

(c
lo

ck
cy

cl
es

)

2 SPU-pred 4 SPU-pred 8 SPU-pred
2 SPU-meas 4 SPU-meas 8 SPU-meas

Fig. 10: Independent data computations

formance prediction in the computation regime is better than in the transfer regime,
because the computations which constitute the dominant part of the total execution
time is performed on processors. Besides, as mentioned in [Sancho et al. 2006] we have
sufficient time to hide delays caused due to the network latency and bandwidth.

For overlapped data computations, we implement the different strategies for trans-
ferring shared data explained in section 4. We run experiments with different values
of k, s and p, for both computation and transfer regimes by varying the computation
workload ω. We present the results for a small and a large value of k, 128bytes and 1K
respectively, and for 2 and 8 processors.

In Inter-Processor Communication (IPC) strategy, we make sure that neighboring
processors exchanging data are physically mapped close to each other. Specifying affin-
ity during thread creation in linux allows the logical threads to be mapped physically
next to each other. This gives advantage of having higher bandwidth as mentioned
in [Sudheer et al. 2009]. The global data partitioning specified in section 4.2 has a ring
geometry of communication similar to the EIB topology, so that each processor can
send data to its right neighbor. The processors must synchronize with each other to
send shared data after the DMA request for fetching a super-block from main memory
has completed. We experiment with two variants of IPC synchronization: a point to
point signaling mechanism to check the availability of shared data and acknowledge
the neighbor, and a global barrier based on signals mentioned in [Bai et al. 2008] to
synchronize all processors. Because of the high synchronization overhead compared to
point to point signaling, we do not present the results obtained with this variant here.
After processors synchronization, the shared data transfer is done by issuing a DMA
command.

As discussed in section 4.4, in the computation regime replication performs always
better than local buffering and IPC as shown in Figures 11a and 11b. Besides, we
can see that IPC performs worse than local buffering because the cost per byte γ via
load/store operations which is around 2 cycles per byte, is much lower than the cost
Rk to perform IPC synchronization and DMA calls. Rk involves a DMA inter-processor
cost per byte β and a synchronization cost. In practice, it is very difficult to estimate
Rk precisely, mainly because of the difficulty in prediction of exact arrival time in

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:14 S. Saidi et al.

128 256 512 1024 2048 4096 8192

106

106.5

super-block size (s · b)

E
xe

cu
ti

on
T

im
e

(c
lo

ck
cy

cl
es

)

2 repl 2 ipc 2 local buffering
8 repl 8 ipc 8 local buffering

(a) shared data size 128 bytes

1024 2048 4096 8192

106

106.2

106.4

106.6

super-block size (s · b)

E
xe

cu
ti

on
T

im
e

(c
lo

ck
cy

cl
es

)

2 repl 2 ipc 2 local buffering
8 repl 8 ipc 8 local buffering

(b) shared data size 1024 bytes

Fig. 11: Overlapped data in computation regime

presence of continuous read/write data-transfers. In our experiments, the initial time
of an inter-processor DMA command was around 200 cycles, the transfer cost per byte
β around 0.13 cycles and the synchronization cost between 200 and 500 cycles as we
vary the number of processors. The synchronization cost using barrier is much larger,
between 800 and 2400 at each iteration.

In the transfer regime, performance varies according to the value of k and num-
ber of processors. We can observe in Figure 12a that the costs of local buffering and
replication are nearly the same, and that replication performs even better for a trans-
fer of block size between 512bytes and 2K. This demonstrates that using DMA for
transferring additional data can perform sometimes better than local buffering even
for a small value of k, and that keeping shared data in the local store may have a
non-negligible cost. Therefore, even when considering contiguous partitioning of data,
redundant fetching of shared data using replication strategy can be as efficient, if not
more efficient than keeping shared data in the local store. However, the cost of trans-
ferring shared data using replication becomes higher than other strategies when the
number of processors increase because of the contentions even for small values of k.

In the following, we detail the results for each strategy in terms of efficiency and
conformance with the prediction of the models.

— Replication: For computation regime, the measured results are very close to the
predicted ones. The only source of error would be the contentions on the network
with huge network traffic which causes differences in the arrival time of the data.
The error between the measured and predicted values is about 3%. In the transfer
regime, replication always performs worse than other strategies for 8 processors due
to contentions.

— IPC: When synchronization is done using messages between neighboring proces-
sors, we observe variabilities in the arrival time of data transfers and exchanged
messages due to contentions in the network. This effect increases in the transfer
regime which makes the gap between the measured and estimated performance
bigger, with an error of about 6%, that goes to 30% when barriers are used with a
high number of processors.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



Optimizing Explicit Data Transfers for Data Parallel Applications on the Cell Architecture A:15

128 256 512 1024 2048 4096 8192

105.8

106

106.2

106.4

106.6

super-block size (s · b)

E
xe

cu
ti

on
T

im
e

(c
lo

ck
cy

cl
es

)

2 repl 2 ipc 2 local buffering
8 repl 8 ipc 8 local buffering

(a) shared data size 128 bytes

1024 2048 4096 8192

105.8

106

106.2

super-block size (s · b)

E
xe

cu
ti

on
T

im
e

(c
lo

ck
cy

cl
es

)

2 repl 2 ipc 2 local buffering
8 repl 8 ipc 8 local buffering

(b) shared data size 1024 bytes

Fig. 12: Overlapped data in transfer regime

— Local buffering: In the computation regime, local buffering outperforms IPC for most
of the cases, whereas in the transfer regime, the DMA engine can be more efficient
for transferring shared data than copying it from one buffer to another in the local
store, despite the inter-processor synchronization overhead.

Note that for a given k, as super-block size increases the cost of transferring shared
data relative to the overall execution time decreases and all strategies give similar
performance results. In the transfer regime, the gap between estimated and measured
performance becomes larger as it is more dependent upon contentions in the network
traffic for which our modeling is less accurate. There are two major sources of con-
tentions that we currently do not model:

(1) In the 3 stage software pipeline there is an overlap between reading super-block i
and writing super-block i − 1. This is the main reason why the estimated optimal
granularity point is in reality still in the transfer regime.

(2) Inter-processor synchronization, in which messages exchanged between processors
add contention to the network. This overhead increases with the number of proces-
sors even for the more efficient inter-processor signaling variant. The exact arrival
time of each message is difficult to model owing to continuous read/write network
traffic and the scheduling policy of the DMA controller.

We believe that more detailed models can further improve performance predictions.

5.4. Convolution
Convolution is one of the basic algorithm is signal processing [Nussbaumer 1981].
Assuming an input signal array X of a large size n and an impulse system response
signal array B of a smaller size m (m << n), the output system signal array Y of same
size n is computed as follows,

Y [i] =
m∑

j=0

X[i− j] ·B[j]

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:16 S. Saidi et al.

Therefore to compute each sample Y [i] of the output signal, a window of m data
samples is required from input array X. When multiple processors are used, input
array is partitioned into contiguous chunks, see Figure 13. The area in grey illustrates
shared data between processors.

P2P1

X

B

Y

Fig. 13: Convolution Algorithm.

In our experiments, the size of input array X is chosen to be 1Mbytes of data, so it
cannot fit in the scratchpad memory, whereas B is small enough to be permanently
stored in each SPU’s local store. Hence double buffering is implemented to transfer
data blocks of array X (resp. Y ). As for the synthetic examples, we compare the differ-
ent strategies of section 4 and we vary the size of B to vary the size of shared data.

Signal samples are encoded as double data type. The minimal granularity size b is
chosen to be the size of the data window required to compute one output data sample,
that is b = m · 8 (8 being the size of a double data type). In the implementation of the
algorithm, we use SIMD operations to optimize the code. The measured cost per byte
ω is about 53 cycles.

Note that for this algorithm, despite an optimized implementation using vector op-
erations the computation cost per byte ω is much higher than the transfer cost per byte
with maximum contentions resulting from the use of maximum number of available
cores, α(8) being 7.22 cycles. Therefore, the overall execution is always in a computa-
tion regime for all strategies.

The reason why the cost per byte for this algorithm is so high is the use of double
data type to encode signals samples which does not take fully advantage of the 16 bytes
SIMD engine since operations on at most 2 elements of the array can be done in paral-
lel. Floating point data types would take more advantage from the SIMD operations,
however at the cost of results accuracy since the Cell B.E. does not support a float-
ing point unit. Besides since SPU’s general registers are SIMD registers, this makes
operations on the SPU unoptimized for scalar operations and branching instructions,
resulting in a high execution latency.

Figure 14 summarizes performance results for size of B = 256 bytes that is 32 sam-
ples, using 2 and 8 processors. As explained in section 4.4, in the computation regime
replication strategy outperforms local buffering and IPC strategies since it avoids the
computational overhead at each iteration of copying shared data locally or exchanging
data between neighboring processors using synchronous DMA calls. This overhead is
proportional to the number of iterations and therefore decreases with higher granular-
ities to be eventually negligible which leads all strategies to perform with nearly the
same efficiency.

Note that in the program execution time estimation in sections 3 and 4, we ignored
the overhead at each iteration of setup variables. It is proportional to the number of
iterations and therefore is reduced for high granularity.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



Optimizing Explicit Data Transfers for Data Parallel Applications on the Cell Architecture A:17

256 512 1024 2048 4096 8192

4

4.02

4.04

4.06

super-block size (s · b)

N
or

m
al

iz
ed

E
xe

cu
ti

on
T

im
e 2 repl

2 ipc
2 local

256 512 1024 2048 4096 8192

1

1.01

1.02

1.03

1.04

super-block size (s · b)

N
or

m
al

iz
ed

E
xe

cu
ti

on
T

im
e 8 repl

8 ipc
8 local

Fig. 14: Convolution using double buffering, shared data size is 256 bytes

6. RELATED WORK
Data prefetching is a well and intensively studied topic for cache based architec-
tures to improve memory performance by hiding memory access latency. Several tech-
niques have been proposed ranging from purely hardware prefetching solutions such
as [Dahlgren et al. 1995; fu Chen and loup Baer 1995; Fritts 2002] requiring a hard-
ware unit connected to the cache to handle prefetching at runtime but at the cost of
extra circuitry, to software prefetching approaches such as [Mowry and Gupta 1991;
Callahan et al. 1991] relying on compiler’s analysis to insert additional fetch instruc-
tions in the code. Other works such as [Chen and Baer 1994; Gornish and Veidenbaum
1999; Wang et al. 2003] combined both hardware and software prefetching approaches.

Furthermore, splitting large amount of data into smaller partitions to optimize pro-
gram execution is an old and known problem [Wolfe 1989] for non-DMA architectures.
For various cache-based architectures, loop tiling is performed in order to have optimal
performance [Coleman and McKinley 1995; Lam et al. 1991; Esseghir 1993; Agarwal
et al. 1995] which can be considered analogous to the choice of data granularity on
architectures with DMA.

A major characteristic of the Cell B.E. (and other more recent multi-core computers)
is software managed local storage rather than a hidden cache mechanisms. This sim-
plifies hardware design but at the cost of program complexity because programmers
have to manage explicitly the memory hierarchy. To handle these issues new program-
ming models have been introduced such as Sequoia and Cellgen [Fatahalian et al.
2006], [Schneider et al. 2009], [Yeom et al. 2009]. There are more abstract theoretical
models such as re bulk synchronous parallel (BSP) model [Valiant 1990], LogP [Culler
et al. 1993], and HMM (Hierarchical Memory Model) [Aggarwal et al. 1987] that are
intended to analyze the concrete complexity of parallel execution of algorithms.

In [Chen et al. 2007] a more general parametric analysis is presented for evaluating
multi buffering for data independent parallel loops. Given a space budget, it deter-
mines the optimal buffering scheme (simple, double, or triple buffering) and optimal
buffer size. However, this analysis is done only for independent data computations and
for one processor. It does not address the problem with multiple SPUs competing for
the same resources and data exchange between SPUs, which is dealt as a separate
topic in [Kistler et al. 2006].

The work of [Carpenter et al. 2010] propose a compiler based approach for buffer
size allocation. The target applications are streaming applications modeled as data

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:18 S. Saidi et al.

flow graphs. They propose an algorithm to determine which edge to enlarge and by
how many buffers in order to increase performance. They perform experiments on an
IBM QS blade which has two Cell BEs. Even though the approach is more general, it
is not clear how the use of DMA and contentions are modeled and how they influence
performance.

There are several of publications which are trying to enhance the performance of
the Cell B.E. on various applications. For example, [Blagojevic et al. 2008] refers to
another modeling of parallel applications particularly targeted at the Cell. However,
it remains silent about the variation of buffer sizes with respect to double buffering.
[Sancho and Kerbyson 2008] explains implementing double buffering on Cell B.E. but
without formal analysis.

The work of [Zinner and Kubinger 2006] (done on Texas Instrument TMS320C6000
processor) comes very close to ours. However, it restricts itself to the uni-processor
scenario. With the Cell architecture, we have extended the double buffering scenario
to more than one SPU simultaneously accessing the resources.

Some other work like [Beltran et al. 2009] and [Ahmed et al. 2008] address the prob-
lem of overlapping computations and data transfers by using multithreading so that
the context switch occurs at the request of data not available in local store. This tech-
nique can be more efficient than a double or multi-buffering technique for applications
with less regular computation and data access patterns.

Methodologically speaking, the work of [Petrini et al. 2007] studies the gain on per-
formance with respect to architecture related enhancements. Further it suggests that
such metrics should be automatized and integrated in the compiler to achieve peak
performance, which is congruent to our proposition.

7. DISCUSSION
This paper was motivated by one of the major problems that will determine the suc-
cess or failure of multi-core computers: how to facilitate the development of efficient
application software while avoiding as much as possible the need to solve challenging
combinatorial puzzles for each new algorithm and each new architecture.

To demonstrate a potential automation of such decisions we have targeted a
relatively-easy (but important) class of applications with regular patterns of compu-
tation and (high volume) data transfers. Under some simplifying assumptions we con-
structed models, with parameters obtained by profiling, that turned out to approx-
imate reasonably well the behavior of synthetic programs on a real architecture. A
crucial point of our methodology is that the hardware characterization and modeling
phase can, in principle, be done once for each new platform and then be used by differ-
ent applications running on it. Our current plans are to repeat the same experience on
the Tilera platform.

Modeling always involves a tension between model fidelity and the tractability of
analyzing it. We believe that further experience will sharpen our intuitions about the
appropriate level of model granularity. Let us mention some limitations and possible
extensions of this work. On the hardware side, it should be noted that we (and the Cell
simulator that we employ) do not use a detailed model of the external memory that
could induce further variations in access time. It will be also interesting to study the
performance of centralized DMA mechanisms that are more amenable to scheduling
policies that avoid contentions.

In terms of the application models, many extensions are planned for subsequent
work including:

— Allowing some limited variations in computation time and data volumes.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



Optimizing Explicit Data Transfers for Data Parallel Applications on the Cell Architecture A:19

— Combining data-parallelism with task-level parallelism. This will change the sym-
metric nature of the problem and may create new bottlenecks. Consideration of code
distribution should also be taken into account;

— Adding streaming aspects with new instances of the array arriving in some periodic
or quasi-periodic fashion. In this scenario instance pipelining will play a major role;

— Allowing data dependent executions;
— Experimenting with additional applications exploiting more efficiently computation

optimization capabilities of the SPU cores in the Cell B.E.

A particular difficulty in the embedded multi-core domain is the cultural gap be-
tween the software and hardware communities that hold different partial views of the
same system. Our models, based on a clear separation between parameters charac-
terizing the applications and those which are specific to the hardware platform will
hopefully help in bridging these gaps and contribute to progress in this important do-
main.

REFERENCES
AGARWAL, A., KRANZ, D., AND NATARAJAN, V. 1995. Automatic partitioning of parallel loops and data

arrays for distributed shared-memory multiprocessors. Parallel and Distributed Systems, IEEE Trans-
actions on 6, 9, 943 –962.

AGGARWAL, A., ALPERN, B., CHANDRA, A., AND SNIR, M. 1987. A model for hierarchical memory. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing. STOC ’87. ACM, New
York, NY, USA, 305–314.

AHMED, M., AMMAR, R., AND RAJASEKARAN, S. 2008. Spenk: adding another level of parallelism on the cell
broadband engine. In Proceedings of the 1st international forum on Next-generation multicore/manycore
technologies. ACM, 1–10.

BAI, S., ZHOU, Q., ZHOU, R., AND LI, L. 2008. Barrier synchronization for cell multi-processor architecture.
In Ubi-Media Computing, 2008 First IEEE International Conference on. 155 –158.

BELTRAN, V., CARRERA, D., TORRES, J., AND AYGUADÉ, E. 2009. CellMT: A cooperative multithreading
library for the Cell/BE. In High Performance Computing (HiPC), 2009 International Conference on.
IEEE, 245–253.

BLAGOJEVIC, F., FENG, X., CAMERON, K. W., AND NIKOLOPOULOS, D. S. 2008. Modeling multigrain
parallelism on heterogeneous multi-core processors: a case study of the cell be. In Proceedings of the
3rd international conference on High performance embedded architectures and compilers. HiPEAC’08.
Springer-Verlag, Berlin, Heidelberg, 38–52.

CALLAHAN, D., KENNEDY, K., AND PORTERFIELD, A. 1991. Software prefetching. In Proceedings of the
fourth international conference on Architectural support for programming languages and operating sys-
tems. ASPLOS-IV. ACM, New York, NY, USA, 40–52.

CARPENTER, P., RAMIREZ, A., AND AYGUAD, E. 2010. Buffer sizing for self-timed stream programs on
heterogeneous distributed memory multiprocessors. In High Performance Embedded Architectures and
Compilers, Y. Patt, P. Foglia, E. Duesterwald, P. Faraboschi, and X. Martorell, Eds. Lecture Notes in
Computer Science Series, vol. 5952. Springer Berlin / Heidelberg, 96–110.

CHEN, T., SURA, Z., O’BRIEN, K., AND O’BRIEN, J. K. 2007. Optimizing the use of static buffers for dma on
a cell chip. In Proceedings of the 19th international conference on Languages and compilers for parallel
computing. LCPC’06. Springer-Verlag, Berlin, Heidelberg, 314–329.

CHEN, T.-F. AND BAER, J.-L. 1994. A performance study of software and hardware data prefetching
schemes. SIGARCH Comput. Archit. News 22, 223–232.

COLEMAN, S. AND MCKINLEY, K. S. 1995. Tile size selection using cache organization and data layout. In
Proceedings of the ACM SIGPLAN 1995 conference on Programming language design and implementa-
tion. PLDI ’95. ACM, New York, NY, USA, 279–290.

CULLER, D., KARP, R., PATTERSON, D., SAHAY, A., SCHAUSER, K. E., SANTOS, E., SUBRAMONIAN, R.,
AND VON EICKEN, T. 1993. LogP: towards a realistic model of parallel computation. In Proceedings of
the fourth ACM SIGPLAN symposium on Principles and practice of parallel programming. PPOPP ’93.
ACM, New York, NY, USA, 1–12.

DAHLGREN, F., DUBOIS, M., AND STENSTRÖM, P. 1995. Sequential hardware prefetching in shared-memory
multiprocessors. IEEE Trans. Parallel Distrib. Syst. 6, 733–746.

ESSEGHIR, K. 1993. Improving data locality for caches.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.



A:20 S. Saidi et al.

FATAHALIAN, K., HORN, D., KNIGHT, T., LEEM, L., HOUSTON, M., PARK, J., EREZ, M., REN, M., AIKEN,
A., DALLY, W., ET AL. 2006. Sequoia: Programming the memory hierarchy. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing. ACM, 83–es.

FRITTS, J. 2002. Multi-level memory prefetching for media and stream processing. In Multimedia and Expo,
2002. ICME ’02. Proceedings. 2002 IEEE International Conference on. Multimedia and Expo, 2002.
ICME ’02. Proceedings. 2002 IEEE International Conference on 2, 101–104 vol.2.

FU CHEN, T. AND LOUP BAER, J. 1995. Effective hardware-based data prefetching for high-performance
processors. IEEE Transactions on Computers 44, 609–623.

GORNISH, E. H. AND VEIDENBAUM, A. 1999. An integrated hardware/software data prefetching scheme
for shared-memory multiprocessors. International Journal of Parallel Programming 27, 35–70.
10.1023/A:1018792002672.

GSCHWIND, M. 2007. The cell broadband engine: exploiting multiple levels of parallelism in a chip multi-
processor. International Journal of Parallel Programming 35, 3, 233–262.

IBM. 2008. Cell SDK 3.1. https://www.ibm.com/developerworks/power/cell/.
IBM. 2009. Cell Simulator. http://www.alphaworks.ibm.com/tech/cellsystemsim.
KISTLER, M., PERRONE, M., AND PETRINI, F. 2006. Cell multiprocessor communication network: Built for

speed. Micro, IEEE 26, 3, 10 –23.
LAM, M. D., ROTHBERG, E. E., AND WOLF, M. E. 1991. The cache performance and optimizations of blocked

algorithms. SIGOPS Oper. Syst. Rev. 25, 63–74.
MOWRY, T. AND GUPTA, A. 1991. Tolerating latency through software-controlled prefetching in shared-

memory multiprocessors. Journal of Parallel and Distributed Computing 12, 87–106.
NUSSBAUMER, H. J. 1981. Fast Fourier transform and convolution algorithms. Springer-Verlag, Berlin ;

New York :.
PETRINI, F., FOSSUM, G., FERNANDEZ, J., VARBANESCU, A., KISTLER, M., AND PERRONE, M. 2007. Mul-

ticore surprises: Lessons learned from optimizing sweep3d on the cell broadband engine. In IPDPS2007.
Vol. CDROM. IEEE Society, 1–10.

PHAM, D., ANDERSON, H.-W., BEHNEN, E., BOLLIGER, M., GUPTA, S., HOFSTEE, H. P., HARVEY, P. E.,
JOHNS, C. R., KAHLE, J. A., KAMEYAMA, A., KEATY, J. M., LE, B., LEE, S., NGUYEN, T. V., PETRO-
VICK, J. G., PHAM, M., PILLE, J., POSLUSZNY, S. D., RILEY, M. W., VEROCK, J., WARNOCK, J. D.,
WEITZEL, S., AND WENDEL, D. F. 2006. Key features of the design methodology enabling a multi-core
soc implementation of a first-generation cell processor. In ASP-DAC, F. Hirose, Ed. IEEE, 871–878.

SANCHO, J. AND KERBYSON, D. 2008. Analysis of double buffering on two different multicore architectures:
Quad-core Opteron and the Cell-BE. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on. IEEE, 1–12.

SANCHO, J. C., BARKER, K. J., KERBYSON, D. J., AND DAVIS, K. 2006. Quantifying the potential benefit of
overlapping communication and computation in large-scale scientific applications. In Proceedings of the
2006 ACM/IEEE conference on Supercomputing. SC ’06. ACM, New York, NY, USA.

SCHNEIDER, S., YEOM, J., AND NIKOLOPOULOS, D. 2009. Programming multiprocessors with explicitly
managed memory hierarchies. Computer 42, 12, 28–34.

STMICROELECTRONICS AND CEA. 2010. Platform 2012: a many core programmable accelerator for ultra
efficient embedded computing in nanometer technology.

SUDHEER, C., NAGARAJU, T., BARUAH, P., AND SRINIVASAN, A. 2009. Optimizing assignment of threads
to spes on the cell be processor. Parallel and Distributed Processing Symposium, International 0, 1–8.

VALIANT, L. G. 1990. A bridging model for parallel computation. Commun. ACM 33, 103–111.
WANG, Z., BURGER, D., MCKINLEY, K. S., REINHARDT, S. K., AND WEEMS, C. C. 2003. Guided region

prefetching: a cooperative hardware/software approach. SIGARCH Comput. Archit. News 31, 388–398.
WOLFE, M. 1989. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE conference on Super-

computing. Supercomputing ’89. ACM, New York, NY, USA, 655–664.
YEOM, S., ROSE, B., LINFORD, J., SANDU, A., AND NIKOLOPOULOS, D. 2009. A Comparison of Program-

ming Models for Multiprocessors with Explicitly Managed Memory Hierarchies.
ZINNER, C. AND KUBINGER, W. 2006. Ros-dma: A dma double buffering method for embedded image pro-

cessing with resource optimized slicing. Real-Time and Embedded Technology and Applications Sympo-
sium, IEEE 0, 361–372.

Received July 2010; revised ; accepted

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: July 2011.


