
Some Progress in Satisfiability Checking
for Difference Logic�

Scott Cotton1, Eugene Asarin2, Oded Maler1 and Peter Niebert3

1 VERIMAG, 2 Av. de Vignate, 38610 Gières, France
[Scott.Cotton | Oded.Maler]@imag.fr

2 LIAFA, Université Paris 7, 2 place Jussieu, 75251 Paris, France,
asarin@liafa.jussieu.fr

3 Laboratoire d’Informatique Fondamentale, CMI, 39 rue Joliot-Curie
13453 Marseille Cedex 13, France, niebert@cmi.univ-mrs.fr

Abstract. In this paper we report a new SAT solver for difference logic, a propo-
sitional logic enriched with timing constraints. The main novelty of our solver is a
tighter integration of the incremental analysis of numerical conflicts with the pro-
cess of Boolean conflict analysis. This and other improvements lead to significant
performance gains for some classes of problems.

1 Introduction

The development of increasingly stronger Boolean satisfiability (SAT) solvers such as
[MS99,MMZ+01,GN02] made satisfiability checking an important ingredient in ver-
ification and synthesis of finite-state systems. Recently there is a growing interest in
extending the scope of SAT-based methods to reason about systems admitting variables
ranging over infinite domains such as integers and reals. To this end, new satisfiability
checking methods should be developed for propositional logic extended with numeri-
cal constraints that are rich enough to capture the dynamics (transition relation) of the
systems in question.

Difference logic, also known as separation logic, is one of the simplest extensions of
propositional logic which has recently attracted a lot of attention. In addition to propo-
sitional variables, the atoms of this logic consist of inequalities of the form x − y < c
for real-valued variables x, y and an integer constant c. The popularity of this logic
is due to the following: 1) It is rich enough to express bounded reachability for timed
automata, feasibility of scheduling problems, existence of paths in digital circuits with
bounded delays and other timing related problems; 2) The satisfiability of a conjunc-
tion of difference constraints can be reduced to the absence of negative cycles in finite
weigthed graphs, a procedure more efficient than general linear (and, of course non-
linear) constraints satisfaction.

In the last couple of years, several groups developed independently solvers for DL
[ACG99,MNAM02,S02,NMA+02,F02,ACKS02,SSB02,WZP03] or for richer logics
that contain it [ABC+02,MRS02,BDS+02]. These solvers use different approaches for

� This work was partially supported by the EC project IST-2001-35302 AMETIST (Advanced
Methods for Timed Systems).

the crucial problem of managing the interaction between the propositional and numeri-
cal parts of the problem. In this work we introduce yet another solver, DLSAT, which is
inspired by our previous solver MX-SOLVER reported in [MNAM02,NMA +02,M03]
and also by some ideas in [SSB02]. The main novelty of this solver is in a more efficient
algorithm for detecting numerical contradictions and in a tighter integration of this pro-
cedure with the conflict analysis and learning mechanisms used for the propositional
part. We report some significant performance gains on some non toy problems. 4

The rest of the paper is organized as follows. In Section 2 we define DL, and briefly
present the process of Boolean SAT solving. In Section 3 we discuss the various ap-
proaches for combining propositional and numerical satisfiability and position our ap-
proach in this landscape. In Section 4 we discuss the process of discovering numeri-
cal contradictions using negative cycles detection in weighted graphs and present our
procedure based on Goldberg’s heuristic improvement of the Bellman-Ford algorithm
[GR93]. Additional implementation details are described in Section 5 followed by ex-
perimental results and a discussion of future work.

2 Preliminaries

2.1 Difference Logic

Definition 1 (Difference Logic). Let P = {p1, p2, . . . pn} be a set of propositional
(Boolean) variables and X = {x1, x2, . . . xm} be a set of numerical variables. The
set of atomic formulae of DL(P ,X) consists of the propositions in P and numerical
constraints of the following forms:

xi − xj ≤ c and xi − xj < c

with c ∈ Z. The set F of all DL formulae is the smallest set containing the atomic
formulae which is closed under negation and conjunction:

– ϕ ∈ F implies ¬ϕ ∈ F .
– ϕ ∈ F and ψ ∈ F implies ϕ ∧ ψ ∈ F .

Remaining Boolean connectives ∨,∧,→, . . . may be defined in the usual ways in
terms of conjunction and negation.

A (P ,X)-valuation consists of two functions (overloaded with the name v) v :
P → {T, F} and v : X → R. The valuation v is extended to all DL(P ,X) formulae by
letting

v(xi − xj ≤ c) = T iff v(xi) − v(xj) ≤ c

and applying the obvious rules for the Boolean connectives. A partial valuation v is a
valuation defined over a subset of the variables. We denote by ϕ[v] the formula obtained
from ϕ by substituting v(p) and v(x) (when they are defined) in p and x, respectively.
A formula ϕ is satisfied by a valuation v iff v(ϕ) = T (we denote it also by v |= ϕ).
A formula ϕ is satisfiable if it has a satisfying valuation. The satisfiability problem for
DL(P ,X) is NP-complete.

Like most SAT solvers we work with formulae in conjunctive normal form:

4 I.e. no Fisher’s protocol.

Definition 2 (CNF). A Boolean literal is a formula of the form p or ¬p with p ∈ P .
A numerical literal is a formula of the form x − y ≤ c or x − y < c. A clause is
a disjunction C = L1 ∨ L2 ∨ . . . Ll of literals. A DL formula is in CNF if it is a
conjunction C1 ∧ C2 ∧ . . . ∧ Ck of clauses.

As in propositional logic (see [T70]), efficient translations from arbitrary formulae to
CNF can be done using auxiliary Boolean variables.

2.2 Basics of SAT Solving

In order to be self-contained we sketch briefly the principles underlying contemporary
SAT solvers as applied to Boolean satisfiability, a special case of DL with X = ∅. The
DPLL-based procedure for SAT can be seen as an intelligent search in the space of val-
uations, accompanied by formula simplification and learning. The search is conducted
by iteratively generating partial valuations and extending them. Extension is performed
with simplification rules which are applied after substituting the valuation in the vari-
ables. Literals are removed that evaluate to F. Clauses are removed that evaluate to T,
and variables are inferred that appear in unit clauses. The result of simplification of
a formula ϕ[v] can thus be either T, F or an extended valuation v ′. The search for a
satisfying assignment should be continued from ϕ[v ′].

Learning is a process, where after some ϕ[v] simplifies to F, a subset vcon of v is
identified as a sufficient cause for unsatisfiability, and its negation ¬vcon is added as
an additional clause to ϕ in order to prune the search tree and prevent exploration of
partial assignments that extend vcon. The whole procedure is sketched below where the
formula ϕ is a global variable and the partial valuation v is an argument to the recursive
procedure Solve, initially called with v = ∅:

procedure Solve(v)

(v′, ϕ′) := Simplify(ϕ[v])
if ϕ′ = T

return(yes)
else if ϕ′ = F

vcon := Conflict(ϕ, v)
ϕ := ϕ ∧ ¬vcon

return(no)
else
pick a variable p not appearing in v
if Solve(v ∪ {p = T})
return(yes)

else
return(Solve(v ∪ {p = F}))

Modern SAT solvers employ a myriad of optimizations and of course utilize an iter-
ative version of this procedure. Since SAT solvers spend most of their time simplifying
the formula [Zha95], a notable optimization is two literal watching [MMZ +01,ZH96],
which reduces to two the number of literals the procedure must scan in a clause while

identifying whether a clause is solved, empty, or unit. Additionally, various variable
ordering heuristics are employed, most of which are based on the frequency of variable
occurrences in the formula. Finally, non chronological backtracking is often employed
upon analyzing a conflict, in which the procedure either jumps back to the smallest as-
signment which leaves the conflicting clause unit. This process prevents the solver from
searching a larger number unsatisfiable subtrees that it would otherwise.

Perhaps the most interesting point (and one which can yield a great degree of vari-
ance on the performance) is exactly what clause(s) a solver decides to learn upon com-
ing across a conflict. All the different approaches make use of an implication graph in
which literals are vertices, and those which are deduced via unit resolution are implied
by the false literals in the unit clause. One of the more successful methods of examining
this graph backtracks through the implications until it finds a unique implication point,
or a literal l which lies between the literals in the empty clause and the guessed literals
in such a way that every path from the guessed literals to those in the empty clause
passes through l.

Taken together, these methods, heuristics, and optimizations have pushed the per-
formance of Boolean SAT solvers up by a few orders of magnitude. On the other hand,
the extension of these techniques to formulae with numeric atoms has not seen such
improvements. In the next section, we will review some methods of leveraging and
extending these techniqes for solving SAT for DL.

3 Approaches to DL SAT Solving

In the last couple of years several approaches for checking satisfiability of DL were
introduced. The approach of [WZP03] is restricted to integer solutions (discrete time
semantics). The clock variables are interpreted as integer variables encoded in binary,
and the whole problem is transformed into a Boolean SAT problem on the bits of the
numbers, which can then be submitted to one’s favorite solver. This approach has been
tried already in the context of BDD-based verification of timed automata [ABK +97]
and its disadvantage is that the arithmetical content of numerical constraints is lost
when they are coded in binary. The rest of the approaches known to us can be classified
into the following three categories:

3.1 The Lazy Approach

This approach, used for example in [ABC+02], consists of transforming a formula ϕ
into a purely Boolean formula ϕ ′ by replacing every numerical constraint of the form
x − y < c by a new propositional variable pxyc. The formula ϕ′ is “easier” to satisfy,
because the new variable are not interpreted and the implications between them are
not visible to the Boolean solver. Consequently if ϕ ′ is found to be unsatisfiable we
can conclude that so is ϕ. On the other hand, whenever a satisfying assignment v ′

is found, an additional feasibility check should be performed to see whether v ′ can be
transformed into an assignment v for ϕ. This is done by constructing a conjunction of all
numerical constraints x−y < c such that pxyc = T and ¬(x−y < c) such that pxyc = F

in v′. This conjunction is then submitted to a numerical solver and if it is feasible then

ϕ is satisfiable; otherwise v′ is declared unsatisfying and the enumeration of satisfying
assignments for ϕ′ continues. Additionally, learning clauses from the feasibility checks
and adding them to ϕ′ is usually performed.

This approach is very easy to implement as, with the exception of learning, the
Boolean and numerical parts are kept separate. This is also the reason for its practical
weakness for problems with many numerical implications as there is a limited flow of
information between these parts. Typically the algorithm can check many assignments
to ϕ′ until it finds one which can be transformed to an assignment for ϕ or until it
concludes that no such assignment exists.

3.2 The Preprocessing Approach

This approach, first suggested in [SSB02] is the opposite one. Although it is also based
on introducing propositional variables for the numerical constraints, it computes all the
intrinsic dependencies between the numeric variables, encoding the dependencies as
Boolean constraints and adding these constraints to ϕ ′. The advantage of this approach
is that, by construction, each assignment to the augmented formula can be transformed
into a satisfying assignment for the original formula. There are two major shortcom-
ings: 1) As noted in [SSB02], some classes of sets of numerical constraints lead to
an exponential blow-up in the size of the formula when their implications are added;
2) This procedure may need to compute dependencies between numerical constraints
mentioned in ϕ that, due to the structure of ϕ, will never have to be considered simul-
taneously.

3.3 Incremental Approaches

This class consists of approaches that try to check feasibility constraints somewhere be-
tween the above cited approaches. This is the case of our previous solver MX-SOLVER
[NMA+02] and also that of [MRS02] where it was called “lemmas on demand”. In
[NMA+02] the following strategy is used: a conjunction of numerical constraints that
need to be satisfied under the current assignment is maintained, represented as a DBM
(Difference Bound Matrix). Whenever a Boolean variable pxyc is assigned to T or F, its
corresponding numerical constraint is added to the DBM, which is tested for feasibility
using the Floyd-Warshall algorithm (more on the structure of difference constraints in
the next section). If the set of constraints is found infeasible at a partial assignment v ′

, there is no need to explore extension of v ′. This approach has an obvious advantage
over the lazy approach which needs to wait until a satisfying assignment for ϕ ′ is found
and an advantage over the preprocessing approach by not checking feasibility of all
combinations of constraints, only those that need to be satisfied simultaneously in some
explored branch of the search tree. However, in the absence of a learning mechanism,
this expensive procedure is invoked too often.

3.4 Our Approach

The solver described in the present paper is another variant of the incremental approach
with the following features:

1. An integrated solver that treats DL formulae and CNF Boolean formulae with
two literal watching, conflict analysis (first unique implication point), as well as
Boolean and numeric variable ordering heuristics.

2. Transformation to CNF is done using the more efficient construction of Wilson
[W90] rather than the classical Tseitin translation [T70].

3. Equal treatment of Boolean and numerical literals in terms of branching (unlike
[NMA+02] where branching was applied only to Booleans).

4. Optimizations for reducing the number of feasibility checks: We omit feasibility
checks upon assigning a truth value to a new numerical constraint in two cases:
when all the clauses where the new constraint appears are already solved (simplified
to true), and when the constraint involves a “new” numeric variable not mentioned
in the constraints assigned so far.

5. A more efficient algorithm for checking feasibility of a conjunction of difference
constraints. We detect cycles using a depth-first variant of the Bellman-Ford-Moore
algorithm [GR93] which has much better average case complexity in practice.

6. Integration of difference constraint feasibility checks with the conflict analysis
mechanism. Inconsistent sets of difference constraints are analyzed with respect to
their implication graph, and the procedure learns a “reason” for the inconsistency.

In the next section we discuss numerical feasibility checks in general and present
the algorithm that we use.

4 The Fine Structure of Sets of Difference Constraints

4.1 Feasibility

While conjunctions of difference constraints are a special case of linear inequalities,
their structure is much simpler. We can describe the satisfiability problem of conjunc-
tions of difference constraints using transitivity:

x − y < c1 ∧ y − z < c2 ⇒ x − z < c1 + c2

If a conjunction of difference constraints implies that x − x < 0 for some x, then it
is infeasible, otherwise it is is feasible. It is sometimes illustrative to consider the case
where each constant is 0, as all the difference constraints then take the form x < y. In
particular in this case it is easy to see that any cycle x < y < . . . < z < x is false. In the
more general case, we have that (x1−x2 < c1)∧(x2−x3 < c2)∧ . . .∧(xn−x1 < cn)
is false just in case Σn

i=1ci ≤ 0.
One can easily express the negation of a difference constraint as a difference con-

straint: ¬(x − y < c) ⇐⇒ (x − y ≥ c) ⇐⇒ (y − x ≤ −c). However, this situation
requires that the logic allow for both strict and non strict constraints. As a result, we
need to extend the notion of feasibility to accommodate strict and non strict constraints.
Letting ≺∈ {<,≤}, the infeasibility condition becomes (x1−x2 ≺1 c1)∧(x2−x3 ≺2

c2)∧ . . .∧ (xn − x1 ≺n cn) is false just in case Σn
i=1ci < 0 or Σn

i=1ci = 0 and at least
one ≺i is strict.

With such mixed constraints, it is convenient to speak of bounds, or pairs (≺, c),
representing either the interval (−∞, c) or the interval (−∞, c]. We refer to the set of

bounds as B. Additionally, we define an order <B on bounds with (≺, c) <B (≺′, c′)
whenever c < c′ or when c = c′, ≺ is < and ≺′ is ≤. Finally, we define addition for
bounds with (≺, c) + (≺′, c′) = (≺′′, c + c′) with ≺′′ strict just in case either ≺ or ≺′

are strict.
A natural data structure for describing sets of difference constraints is a bound

weighted graph in which the vertices are variables and edges represent constraints be-
tween variables:

Definition 3 (Constraint Graph). The constraint graph of a set (or conjunction) of
difference constraints Γ is a graph G = (V, E, ξ) with one vertex per numeric variable
occurring in some difference constraint in Γ , edges E = {(x, y) : (x − y ≺ c) ∈
Γ for some (≺, c) ∈ B}, and a function ξ : E → B defined by (x, y) �→ min{(≺, c) :
(x − y ≺ c) ∈ Γ}.

A well known data structure for storing a constraint graph is a Difference Bound
Matrix (DBM), in which a |V | × |V | matrix stores the implied relationship between
each pair of variables, and each cell x, y without an associated edge in the constraint
graph is initialized to (<,∞).

4.2 Finding Shortest Paths and Negative Cycles

Under any constraint graph representation, a feasibility check reduces to the detection
of a negative cycle, or any cycle where the edge bounds sum to a value less than (≤, 0).
Normally negative cycles are detected as a side effect of a shortest path algorithm.
Timed automata verification tools apply the Floyd-Warshall all pairs shortest path al-
gorithm to normalize the set of constraints and the detection of negative cycles (which
imply that the DBM is normalized to the empty set) is obtained as a side effect of the
algorithm. Unlike the case of reachability computation for timed automata, where the
DBMs are rather small, in DL solving, one can easily obtain sets with hundreds of nu-
meric variables and a more efficient algorithm is needed. We will use a single source
shortest path algorithm to do the feasibility checks.

Shortest path algorithms, either single-source or all-pairs, function by iteratively
approximating the minimum distance between vertices, where a distance from x to y is
taken to be the sum of the edge bounds on a path from x to y. In the context of a single
source shortest path algorithm, the distance estimates are represented by a function
δ : V → B indicating a bound on the distance from a distinguished source vertex.
Distance functions (δ0, δ1, . . .) are successively approximated by taking any edge (s, t)
such that δi(s)+ ξ(s, t) < δi(t) and letting δi+1(t) = mins(δi(s) + ξ(s, t)). Following
[GR93] we can use such a sequence of functions to filter out all the positive cycles
whose edge bounds sum to a value greater than (≤, 0):

Definition 4. Given a distance function δ : V → B, an edge (s, t) such that δ(s) +
ξ(s, t) ≤ δ(t) is called admissible. The admissible subgraph of a constraint graph G,
written Ga, is the subgraph of G containing all of its admissible edges.

Proposition 1. Given a constraint graph G and a series of distance estimating functions
(δ0, δ1, . . .), G has a negative or zero weight cycle if and only if Ga has a cycle under
some distance estimate δk.

Proof. It is well known that the distance estimation will converge to a fixed point if and
only if the graph has no negative cycle [CLRS01]. If it does not converge, then there
is a stage k for which all δk(v) = δk+1(v) for all v ∈ V except some V ′, some of
which are in negative cycles. Let x0 → x1 . . . xn → x0 be such a cycle. Then
δ(xi) + ξ(xi, xi+1) < δ(xi+1) for some 5 i and ∃v′ ∈ V ′ . v′ ∈ {x0, . . . , xn}. For
sufficiently large k, the remaining edges in the cycle must be admissible, for otherwise
the process would converge. Hence Ga will contain the cycle.

Suppose the process converges at δk and G contains a cycle x0 → x1 . . . xn → x0

whose edge bounds sum to (≤, 0). Since the process converges, δ(x i) + ξ(xi, xi+1) ≥
δ(xi+1). But if δ(xi) + ξ(xi, xi+1) > δ(xi+1) then there must be some j �= i such that
δ(xj) + ξ(xj , xj+1) < δ(xj+1) since the edge bounds sum to (≤, 0). However, this
implies the process has not converged and we have arrived at a contradiction. We can
then conclude that each edge in the cycle must satisfy δ(x i) + ξ(xi, xi+1) ≤ δ(xi+1)
and so the cycle is in Ga.

In the other direction, if there is a cycle in Ga then each edge in the cycle must
satisfy δ(s) + ξ(s, t) ≤ δ(t). Hence Σiδ(xi) + ξ(xi, xi+1) ≤ Σiδ(xi), and so
Σiξ(xi, xi+1) ≤ (≤, 0).

The problem of detecting negative cycles can be reduced to checking for cycles in
Ga which contain an edge with a strict bound (in the form (<, c)) or an edge (s, t) such
that δ(s) + ξ(s, t) < δ(t). This in turn can be accomplished via a depth first search
which keeps track of the location of such edges.

This algorithm provides a significant advantage over that of Floyd-Warshall used in
[NMA+02]. On a graph with n nodes and m edges, Floyd-Warshall takes n 3 time for
a full canonicalization and n2 time for a single incremental update on every execution.
Bellman Ford’s runtime is bounded by nm, and in this setting typically runs in m time.
Additionally, all the formulae associated with problems known to us have m � 10n.
If we assume the graph is sparse with m = 10n, then our typical run requires less
than 10n steps, our worst case run time is 10n2, a significant improvement over n3 full
canonicalization or even the n2 incremental canonicalization on each run.

5 Implementation

The solver, including parsing and CNF translation, is implemented in 3500 lines of
C++. Here we discuss some of the features of the solver.

5.1 Numeric Conflict Analysis

To explain numeric conflict analysis let us emphasize that such conflicts may appear
in a richer set of circumstances than ordinary Boolean conflicts which always appear
during simplification of the formula. Numerical conflicts can, in addition, appear when
guessing or flipping a truth value for a numeric constraint. Our observations indicated
that numeric conflicts arising outside of the simplification process occurred with less

5 We take i + 1 modulo n.

frequency on the harder satisfiable problems, presumably because the number of clauses
was sufficient to induce more simplification.

When the solver arrives at an inconsistent set of difference constraints, two types of
analysis and learning are performed. First, a small such inconsistent set of constraints
is identified and its negation is encoded as a clause. Second, if the numeric conflict
appears as a result of simplification, the implication graph of the literals in the conflict
clause is analyzed in order to find a reason for the inconsistency.

However the actual frequency with which the implication graphs of numericly in-
duced conflict clauses were analyzed varied widely from never (for example in the
scheduling problem FT06 described in 6.1) to roughly half (for example in the circuit
problems described in 6.3). Nonetheless this process allows the solver to learn rea-
sons for numeric conflicts which include settings of strictly Boolean variables (and vice
versa). The analysis mechanism itself is a straightforward implementation of Chaff style
[MMZ+01] first unique implication point (1UIP) cut of the implication graph. As with
Boolean SAT solving, experiments with other mechanisms such as a decision-only cut
or performing analysis on all conflicts did not perform as well as the 1UIP scheme.

The introduction of such learning into the DPLL algorithm requires a minor but
essential change to the conflict resolution mechanism as it occurs in the Boolean case.
This can be explained as follows. The backtracking mechanism is responsible for find-
ing a point in the search tree to jump back to. Once this point in found, the assignment
for the variable v associated with this node in the search tree is flipped and the alterna-
tive subtree is explored. In the presence of numerical constraints, this assignment can
of course introduce a numeric conflict. In the Boolean case, this assignment will not
by itself introduce an empty clause, for otherwise ¬v would have been deduced by unit
resolution at a previous decision level, or higher in the search tree. Thus the conflict
resolution process in the numeric case needs to be sensitive to conflicts which arise as
a result of resolving conflicts. This suggests that conflict resolution can be made recur-
sive for this case. However, our solver simply adds a clause representing the negation
of such a numeric conflict to the clause database and continues backtracking, without
analyzing the implication graph associated with the numeric conflict. As this case was
rare in practice, this seems like a reasonable course of action.

5.2 Reducing Feasibility Checks

In an incremental setting, feasibility checks occur with high frequency. In problems
dominated by numeric constraints this becomes a bottleneck. We employ two optimiza-
tions for reducing the number of required feasibility checks. First, we do not trigger
feasibility checks when branching on difference constraints which do not solve any
clauses. Thus at the end of the solving process, if the problem is satisfiable we will have
checked that the difference constraints in a prime implicant of the problem are feasible.
Second, we observe that a feasible set of difference constraints cannot be made infeasi-
ble by adding a single constraint which mentions an otherwise unconstrainted numeric
variable. Our observations showed that these optimizations reduced the number of fea-
sibility checks by one third on hard problems dominated by numeric constraints.

6 Experimental Results

In this section we report the performance results of DLSAT on several classes of bench-
mark problems.

6.1 Job Shop Scheduling

The problem of finding optimal schedules for the job shop problem [JM99] is a hard
combinatorial optimization problem whose constraints express very naturally in DL.
The optimization is converted into a decision (satisfiability) problem of the form “is
there a schedule whose length is smaller than d?” As observed in [NMA+02], when d
is much larger or much smaller than the length of the optimal schedule for the problem,
the solver finds the negative (resp. positive) answer quickly, but as we approach the
optimum things become harder.

d 50 51 52 53 54 55 56 57 58 59 60
Solver
ICS 1.88 2.95 3.41 21.90 38.00 174.00 85.00 68.00 95.00 69.00 0.11
MX-SOLVER 0.14 0.14 0.14 1.79 7.67 21.47 1.31 0.20 0.92 1.88 0.21
DLSAT 0.09 0.10 0.12 0.24 0.29 0.69 0.86 0.50 0.69 0.36 0.37

Table 1. Comparison of DLSAT with ICS and MX-SOLVER on the FT06 problem whose optimal
schedule is of length 55.

d 950 975 980 990 1000 1100 1234 1300 1390 1395 1400 1600 1800 3000
Solver
MX-SOLVER 4.6 4.7 4.9 1709.0 t/o t/o t/o t/o t/o 17.2 17.2 10.4 10.8 11.7
DLSAT 0.5 0.5 0.6 0.9 0.8 30.2 t/o 62.0 47.3 6.1 12.1 0.6 0.5 0.6

Table 2. Comparison of DLSAT with MX-SOLVER on the hard ABZ5 problem whose optimal
schedule is of length 1234. Time is given in seconds and t/o means more than 5 minutes.

Table 1 compares the performance results of DLSAT with those of MX-SOLVER
[NMA+02] and ICS [FORS01] on the FT06 job shop problem with 6 machines and
6 jobs. The optimal schedule is of length 55 and DLSAT finds it within 0.69 seconds
compared to 21.47 with MX-SOLVER and almost 3 minutes with ICS. This problem
consists of 132 clauses, 222 difference constraints and 37 numeric variables. It is not
surprising that ICS does not perform as well as MX-SOLVER or DLSAT because ICS
uses a method for combining decision procedures and can hence solve more complex
problems. Nevertheless we keep it as a point of reference for more general techniques.
Table 2 compares DLSAT and MX-SOLVER on the hard ABZ5 problem [ABZ88] with

10 machines and 10 jobs whose optimum is 1234. Bounding execution time to 5 minutes
for each query, MX-Solver can deduce that the optimum is somewhere in the interval
(990, 1395] while DLSAT can conclude that it is in (1100, 1300]. Yet none of them can
find the exact optimum. The problem is made up of 560 clauses over 1010 difference
constraints and 101 numeric variables.

Note that we restrict the comparison to MX-SOLVER because on this type of prob-
lems, dominated by numerical constraints, it already had a much better performance
than solvers that use the lazy or preprocessing approaches.

6.2 Diamond Problems

The diamond problems were introduced by Strichman as benchmarks for the prepro-
cessing approach. These are sets of difference constraints whose graphical representa-
tion is a series of diamond-like shapes with an additional back-edge from the last node
to the first (see Figure 1). These graphs are parametrized by the length d of each side of
the diamond and the number n of diamonds. The corresponding DL formula is gener-
ated to require the existence of a cycle in the diamond. Such graphs have 2nd+1 edges
and 2n cycles, hence they pose a challenge to numerical feasibility checks.

The problems are partitioned into three classes, unsatisfiable, satisfiable and tightly
satisfiable, i.e. with only one satisfying assignment. As Table 3 shows, DLSAT is much
superior to the preprocessing approach of [SSB02] on satisfiable instances, but much
inferior on unsatisfiable ones. On the satisfiable problems, DLSAT only considers com-
binations of difference constraints necessary to get a satisfiable answer, and hence is
able to reduce the required processing of the constraints to a level far below that of
the preprocessing approach. On the other hand, the approach of [SSB02] acts relatively
independently of the satisfiability of the problem, since it spends by far most of its time
coding the DL formula into an equivalent Boolean one, rather than solving the resulting
Boolean formula. Hence its performance remains relatively constant accross the satis-
fiable and unsatisfiable diamond problems. Also, as this coding process examines all
the possible constraints in a single step rather than piecewise (as in DLSAT), it is able
to globally analyze the structure of the set of all constraints and compress the repre-
sentation of the resulting Boolean formula by chordalizing the graph which represents
all the possible constraints. The advantage of this global analysis is more prominent in
the unsatisfiable problems because there is no satisfying subset to which DLSAT can
restrict its attention.

· · ·

· · ·
· · ·

· · ·

· · ·

Fig. 1. A constraints graph having the form of diamond concatenation.

n sat one-sat unsat
DLSAT SEP DLSAT SEP DLSAT SEP

5 0.01 0.17 0.01 0.17 15.10 0.17
10 0.03 0.16 0.01 0.17 t/o 0.17
20 0.03 0.51 0.03 0.50 t/o 0.50
20 0.03 0.51 0.03 0.50 t/o 0.50
30 0.04 1.21 0.06 1.23 t/o 1.25
40 0.06 2.60 0.10 2.60 t/o 2.60
50 0.20 5.21 0.14 5.10 t/o 5.30

100 0.20 45.30 0.50 44.20 t/o 47.60
200 0.70 t/o 2.40 t/o t/o t/o
500 4.90 t/o 21.90 t/o t/o t/o

Table 3. A comparison of the performance DLSAT with the approach of [SSB02] (column SEP)
on benchmark diamond problems with d = 5 (t/o means more than 4 minutes).

6.3 Circuit Timing Analysis

The last set of benchmarks is concerned with bounded model checking of timed au-
tomata that model digital circuits using the bi-bounded delay model [BS94,MP95]. We
use models of n-bit adders constructed from gates where changes are propagated from
inputs to outputs within t ∈ [l, u] time and would like to find the maximal stabilization
time of the circuit. We assume that the circuit starts from a stable state and the inputs
change at time zero and then remain constant, consequently there is a finite number of
transitions in the circuit. We submit to the solver queries, parametrized by d and k, of
the form “is there a run of the automaton with k transitions which remains in an unstable
state after d time?”. The parameter k defines the number of unfolding of the transition
relation of the automaton and hence the size of the DL formula. An upper-bound on d
can be computed by methods of static timing analysis (summing the delays along the
longest path in the circuit), and also each k gives an upper bound on the metric length
of runs with k steps. The reader may look at [BBM04] for more details on the problem
definition and at [NMA+02] for the formulation of bounded reachability of timed au-
tomata in DL. Readers familiar with SAT based methods for circuit verification should
bear in mind that we are dealing here with a much richer model of the circuits, with one
clock variable per gate.

Table 4 shows the execution time for different queries for a 3-bit adder with 10 gates
while Table 5 shows similar results for a 4-bit adder with 16 gates. The results consti-
tute and enormous progress for DL SAT solving (MX-SOLVER could not treat any of
these problems) but still they are very far from coping with the size of real problems.
The DL formula corresponding to 12 unfoldings of the 4-bit adder (before conversion
to CNF) has 624 Boolean variables, 222 numeric variables, and 1381 difference con-
straints. After conversion to CNF the number of Boolean variables increases to 19463,
and the formula has 31516 clauses.

k=4 k=5 k=6 k=7 k=8 k=9 k=10
d=10 2.10 4.02 8.85 19.38 45.09 51.18 186.01
d=15 2.43 4.03 8.86 15.86 39.81 116.00 376.10

Table 4. The time (in seconds) to answer (k, d) queries for a 3-bit adder (10 gates).

k=8 k=9 k=10 k=11 k=12
d=25 1:29 3:42 9:23 28:33 18:52
d=35 1:24 3:38 9:22 28:04 17:58

Table 5. The time (in minutes) to answer (k, d) queries for a 4-bit adder (16 gates).

7 Conclusions

This work represents a step forward in DL SAT solving and hence a step in the same
direction for exporting bounded model checking for timed systems. For most of the
problem classes we considered, our new solver performs much better than other solvers,
and we attribute this to the efficient numerical feasibility checks and their integration
with learning. Another direction that we explored but not report on the current version
is that of aggressive learning where the idea is to use the result of numerical feasibility
checks to encode (in a compact manner) all the negative cycles in the constraint graph
and learn their negation. For this purpose we have derived a compact CNF formula to
represent the set of all sub-graphs which have no negative cycles. Unfortunately, this
formula requires auxiliary variables which could not be shared across feasibility checks.
Consequently it had a negative effect on the performance. Some more experimentation
and fine tuning are needed in order to assess this technique.

Another future direction of attack is a more efficient encoding of bounded reach-
ability properties for timed automata and circuits. The size of the DL formulae after
conversion to CNF is very big, even for small problem and this may be improved by
more sophisticated encoding scheme (e.g. the asynchronous time approach mentioned
in [NMA+02]) or by extending the solver to work with non CNF formulae.

Acknowledgments.
Our understanding of SAT benefited from discussions with K. Sakallah and O. Strich-
man. We thank Moez Mahfoudh for his thesis through which we all took our first lessons
in the domain.

References

[ABZ88] J. Adams, E. Balas and D. Zawack, The Shifting Bottleneck Procedure for Job
Shop Scheduling, Management Science 34, 391-401, 1988.

[ACG99] A. Armando, C. Castellini and E. Giunchiglia, SAT-based Procedures for Temporal
Reasoning, Proc. ECP’99, LNCS, Springer, 1999.

[ABK+97] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse, Data Struc-
tures for the Verification of Timed Automata, Proc. Hybrid and Real-Time Sys-
tems, 346-360, LNCS 1201, Springer, 1997.

[ABC+02] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowics and R. Sebastiani, A SAT-
Based Approach for Solving Formulas over Boolean and Linear Mathematical
Propositions, in Proc. CADE’02, 193-208, LNCS 2392, Springer, 2002.

[ACKS02] G. Audemard, A. Cimatti, A. Kornilowics and R. Sebastiani, Bounded Model
Checking for Timed Systems, Technical report ITC-0201-05, IRST, Trento, 2002.

[BDS+02] C. W. Barrett, D. L. Dill, A. Stump, Checking Satisfiability of First-Order Formu-
las by Incremental Translation to SAT, in Proc CAV’02, 236-249.

[BBM04] R. Ben Salah, M. Bozga and O. Maler, On Timing Analysis of Combinational
Circuits, Proc. FORMATS’03, 2004.

[BS94] J.A. Brzozowski and C-J.H. Seger, Asynchronous Circuits, Springer, 1994.
[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT

Press, McGraw-Hill, 2001.
[F02] Martin Fränzle, Take It NP-Easy: Bounded Model Construction for Duration Cal-

culus Proc. FTRTFT’02, of 226-243, LNCS 2469, Springer-Verlag, 2002.
[FORS01] J-C. Filliâtre, S. Owre, H. Rueß and N. Shankar, ICS: Integrated Canonizer and

Solver, Proc. CAV’01, 246-250, 2001.
[GN02] E. Goldberg and Y. Novikov: BerkMin, a Fast and Robust SAT-solver, Proc. DATE

’02, 142-149, 2002.
[GR93] A. V. Goldberg and T. Radzik, A Heuristic Improvement of the Bellman-Ford

Algorithm, In Applied Mathematics Letters 6, 1993.
[H00] J. Hooker, Logic-Based Methods for Optimization: Combining Optimization and

Constraint Satisfaction, Wiley, 2000
[JM94] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey, Journal of

Logic Programming, 19/20, 503-581, 1994.
[JM99] A.S. Jain and S. Meeran, Deterministic Job-Shop Scheduling: Past, Present and

Future, European Journal of Operational Research 113, 390-434, 1999.
[M03] M. Mahfoudh, On Satisfaiblity Checking for Difference Logic, PhD Thesis, Uni-

veristé Joseph Fourier, Grenoble, 2003.
[MNAM02] M. Mahfoudh, P. Niebert, E. Asarin and O. Maler, A Satisfiability Checker for

Difference Logic, Proc. SAT’2002, 2002.
[MP95] O. Maler and A. Pnueli, Timing Analysis of Asynchronous Circuits using Timed

Automata, Proc. CHARME’95, 189-205, LNCS 987, Springer, 1995.
[MS99] J.P. Marques-Silva and K.A. Sakallah, GRASP: A Search Algorithm for Proposi-

tional Satisfiability, IEEE Transactions on Computers 48, 506-21, 1999.
[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff: Engineering

an Efficient SAT Solver, Proc. DAC 2001, 2001.
[MRS02] L. de Moura, H. Rueß and M. Sorea, Lazy Theorem Proving for Bounded Model

Checking over Infinite Domains, Proc. CADE’02, 437-453, LNCS 2392, Springer,
2002.

[NMA+02] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain and O. Maler, Verifica-
tion of Timed Automata via Satisfiability Checking, Proc. FTRTFT’02, 225-244,
LNCS 2469, Springer, 2002.

[S02] M. Sorea, Bounded Model Checking for Timed Automata, Proc. MTCS’02, 2002.
[SSB02] O. Strichman, S.A. Seshia, and R.E. Bryant, Deciding Separation Formulas with

SAT, in Proc. CAV’2002, Springer, 2002.
[Tar72] R. Tarjan. Depth-first Search and Linear Graph Algorithms. SIAM J. Comput. 1,

146-160, 1972.

[T70] G. Tseitin, On the Complexity of Derivation in Propositional Calculus, in Stud-
ies in Constructive Mathematics and Mathematical Logic 2, 115-125, Consultants
Bureau, New York, 1970.

[W90] J.M. Wilson, Compact normal forms in propositional logic and integer program-
ming formulations, Computers and Operation Research, 309-314, 1990.

[WZP03] B. Wozna, A. Zbrzezny and W. Penczek, Checking Reachability Properties for
Timed Automata via SAT, Fundamenta Informaticae 55, 223-241, 2003.

[Zha95] G. Zhang. The Davis-Putnam Resolution Procedure, In Advances in Logic Pro-
gramming and Automated Reasoning, volume 2. Ablex Publishing Corporation,
1995.

[ZH96] H. Zhang and M. Stickel: An Efficient Algorithm for Unit Propogation, In Proceed-
ings of the Fourth International Symposium on Artificial Intelligence and Mathe-
matics. 1996.

