
Approximating Continuous Systems by Timed

Automata⋆

Oded Maler1 and Grégory Batt2

1 Verimag-UJF-CNRS, 2 Av. de Vignate, 38610 Gières, France

Oded.Maler@imag.fr
2 INRIA Rocquencourt, 78153 Le Chesnay, France

Gregory.Batt@inria.fr

Abstract. In this work we develop a new technique for over-approximating (in

the sense of timed trace inclusion) continuous dynamical systems by timed au-

tomata. This technique refines commonly-used discrete abstractions which are

often too coarse to be useful. The essence of our technique is the partition of

the state space into cubes and the allocation of a clock for each dimension. This

allows us to get much better approximations of the behavior. We specialize this

technique to multi-affine systems, a class of nonlinear systems of primary impor-

tance for the analysis of biochemical systems and demonstrate its applicability

on an example taken from synthetic biology.

1 Introduction

Rigorous reasoning about the behavior of continuous dynamical systems has been a

topic of study within various communities including qualitative physics in AI, robotics,

and hybrid control systems. A more recent motivation comes from the domain of sys-

tems biology which, among other things, attempts to build quantitative dynamic models

that capture the behavior of complex networks involving a large number of biochemi-

cal substances. Due to experimental limitations, such models admit a lot of uncertainty

concerning parameter values and environmental conditions. Consequently, there is a lot

of ongoing effort to apply methodologies used in the design of complex artificial sys-

tems, formal verification included, to analyze the implication of proposed models and

assess their plausibility. The fact that biochemical models are often described as differ-

ential equations, with state variables denoting substance concentrations motivates the

effort to adapt algorithmic verification technology (model checking) to continuous and

hybrid systems in order to prove satisfaction of temporal properties by all system be-

haviors (trajectories) departing from a possible set of initial state and subject to a class

of admissible inputs (disturbances).

One can classify various approaches to algorithmic verification of continuous and

hybrid systems as using direct and indirect methods:3

⋆ This work was partially supported by the French-Israeli project Computational Modeling of

Incomplete Biological Regulatory Networks.
3 Another way to view this classification is between methods based on time and space discretiza-

tion.

1. Direct methods work on the original dynamics of the system, starting from a set of

initial states and applying a “successor” operator that computes the set of states

reachable from those by following the continuous dynamics, until a fixpoint is

reached (or not). For hybrid systems with a very simple continuous dynamics in

each discrete state, namely, constant derivatives as in timed automata or linear hy-

brid automata (LHA), such successor states can be computed exactly for all future

time instants [ACH+95,HHW97,F05]. The problem however still remains unde-

cidable for most interesting classes due to the combination of such dynamics with

discrete transitions [HKPV98,AMP95]. If the system admits a more complex dy-

namics defined by differential equations, the successors can be computed in an ap-

proximate manner using a kind of set-based numerical integration [DM98,CK98],

[ABDM00,CK03,ADF+06].

2. Indirect methods (which are the subject of this paper) transform the original sys-

tem model into an abstract model belonging to a simpler class, whose verifica-

tion is easier and often decidable. The most commonly-used class of abstract mod-

els are, of course, finite-state automata, used extensively in the biological context

[JPHG01,BRJ+05,HKI+07], but other reduction techniques have been proposed

such as using timed automata to approximate continuous systems [SKE00] and

LHA [OSY94], approximating continuous systems by LHA [HHW98,F05] or ap-

proximating nonlinear systems by piecewise-affine differential equations [ADG03].

The major advantage of the indirect approach is that simpler classes of models, for

example finite-state automata, admit well-known model-checking algorithms, real-

ized by numerous mature tools, while the adaptation of such techniques to systems

with non-trivial continuous dynamics is much more difficult if not impossible.

Procedures for deriving such abstract models offer a tradeoff between the accuracy

of the obtained model and the difficulty in deriving and analyzing it. The most straight-

forward approach for constructing automata from continuous systems, defined via an

equation of the form ẋ = f(x) consists of partitioning the continuous state space into

rectangular cells, and defining a transition between neighboring cells if there is a tra-

jectory of the continuous system that goes directly from one cell to another. This latter

fact can be determined locally by evaluating f on their common boundary. While this

approach guarantees a conservative over-approximation in the sense that the existence

of a trajectory from x to x′ in the concrete systems implies the existence of a corre-

sponding run in the automaton, it suffers, like any abstraction technique, from “false

transitivity” leading to numerous spurious behaviors, that is, abstract behaviors that do

not correspond to concrete ones.

In this paper we refine this abstraction scheme by adding clocks to the automata

[AD94]. The use of timed automata brings the following advantages:

1. The added clocks keep track of the progress of the trajectories along each dimen-

sion, and their values are used to constraint the dynamics of the automaton, result-

ing in a significant reduction of false transitivity. Moreover, the accuracy of the

model can be improved indefinitely by refining the underlying grid;

2. The timed model generates timed behaviors that can be checked against quantita-

tive timing properties expressed in real-time temporal logics such as MTL [Koy90]

or MITL [AFH96], while this information is absent from purely discrete models;

3. The constructed models can be handled by existing verification tools for timed au-

tomata such as Uppaal [LPY97] or IF [BGM02] that can compute reachable states

and, in principle, perform model checking.

The rest of the paper is organized as follows. In Section 2 we give preliminary defi-

nitions and demonstrate the problem of false transitivity. In Section 3 we show how to

derive a timed automaton from a continuous dynamical system and prove that it con-

stitutes a conservative approximation. We then present the derivation of delay bounds

for the class of multi-affine systems, a class of nonlinear dynamical system used exten-

sively in biological modeling. Section 5 reports preliminary experimental results using

a prototype implementation which generates timed automata written in the IF format.

A discussion of past and future work concludes the paper.

2 Preliminaries

We start this section with some definitions concerning dynamical systems, the parti-

tion of space into cubes and related geometrical concepts and notations taken from

[BMP99]. To simplify notations we consider integer grids and temporal properties gen-

erated from atomic propositions of the form xi ≥ k with integer k. Of course, all the

results can be adapted to non-uniform grids.

We consider a dynamical system S = (X, f) with state space

X = X1 × · · · × Xn = [0,m) × · · · × [0,m) ⊆ R
n

and dynamics is defined by

ẋ = f(x) (1)

where f = (f1, . . . , fn) is a well-behaving continuous function from R
n to itself. A

trajectory of the system starting from an initial state x is a function ξ : R≥0 → X such

that ξ is the solution of (1) with initial condition x0, that is, ξ(0) = x0 and for every

t ≥ 0,
dξ

dt
(t) = f(ξ(t)).

We impose an integer grid on X by letting V = V1×· · ·×Vn, Vi = {0, . . . ,m−1}
and letting C(X) be the set of unit cubes with integer vertices which are contained in

X . We use V to represent C(X).

Definition 1 (Cubes, Neighbors, Facets and Slices).

1. The cube associated with a point v = (v1, . . . , vn) ∈ V is

Xv = [v1, v1 + 1) × · · · × [vn, vn + 1),

that is, the unit cube for which v is the leftmost corner.

2. The successor and predecessor of a vertex/cube v in the ith direction are, respec-

tively

σ+i(v1, . . . , vi−1, vi, . . . , vn) = (v1, . . . , vi−1, vi + 1, . . . , vn)

and

σ−i(v1, . . . , vi−1, vi, . . . , vn) = (v1, . . . , vi−1, vi − 1, . . . , vn).

Two cubes/vertices are neighbors if one is the i-successor/predecessor of the other;

3. The common facet between two neighboring cubes is the (n− 1)-dimensional cube

obtained by intersecting their boundaries;

4. The i-slice associated with an integer r is the set Xi,r obtained by restricting X to

points satisfying r ≤ xi < r + 1.

Note that a unit cube Xv , v = (v1, . . . , vn), is an intersection of n slices:

Xv =
n⋂

i=1

Xi,vi
.

Definition 2 (Grid Based Abstraction).

1. The abstraction function α : X → V maps every point to the cube it belongs to,

that is, α(x) = v if x ∈ Xv;

2. The timed abstraction of a trajectory ξ is ξ′ = α(ξ) such that for every t, ξ′(t) =
α(ξ(t));

3. The untimed abstraction ᾱ(ξ) of ξ is the (stutter-free) sequence of cubes appearing

in α(ξ).

Definition 3 (Extremal Values of f).

1. The extremal values of fi in a cube v are

f i

v
= min{fi(x) : x ∈ Xv} and f

i

v = max{fi(x) : x ∈ Xv}.

2. The minimal absolute velocity of fi in a cube v is

f i

v
= min{|fi(x)| : x ∈ Xv}

3. The extremal values of fi on slice Xi,r are

f
i,r

= min{fi(x) : x ∈ Xi,r} and f i,r = max{fi(x) : x ∈ Xi,r}

The standard way to derive a finite-state automaton from a dynamical system is

summarized by the following definition.

Definition 4 (Abstraction by Automata). The automaton Ā = (V, δ̄) is an abstraction

of S if δ̄ consists of all pairs (v, σ+i(v)) of cubes such that fi admits a positive value

on their common facet and all pairs (v, σ−(v)) such that fi admits a negative value on

their common facet.

Claim (Conservativism). For every trajectory ξ of S, there is a run ξ̄ of ĀS such that

ξ̄ = ᾱ(ξ).

Fig. 1. (a): A simple continuous system with constant derivatives. The states reachable from the

initial cube lie between the two arrows and their cube abstraction is shaded; (b) The automaton

derived according to Definition 4 in which the whole state space is reachable.

This result implies that any (next-free) LTL property, generated by atoms of the

form xi ≥ k, which is satisfied by ĀS is satisfied by S. However, as the following

example shows, ĀS may have so many spurious behaviors, that it might be hard to

prove interesting properties based on it. Consider a system where f = (1, 1, . . . , 1) as

in Figure 1-(a). Since f has a positive component for every direction everywhere, there

will be a transition from each cube to each of its i-successors and the whole state space

will be reachable.

As one can see, the false transitivity is due to the fact that the transition relation

between neighboring cubes is computed locally: since it is possible to go from v to

σ+i(v) and from σ+i(v) to σ+i(σ+i(v)), the automaton allows these two successive

transitions to happen, ignoring timing constraints related to the fact that between these

two transitions, the trajectory needs to cross the distance between vi and vi + 1 in

direction i, a process that takes time and might be slower then the crossing in other

directions. In this paper we use clocks to impose such timing constraints.

Definition 5 (Timed Automaton). A timed automaton is a tuple A = (Q, C, I,∆)
where Q is a finite set of discrete states, C is a set of clock variables ranging over

R≥0 ∪ {⊥} where ⊥ is a special symbol indicating that the clock is inactive, I is

the staying condition (invariant) which assigns to every state q, a conjunction Iq of

conditions of the form c < d for clock c and integer d. The transition relation ∆ consists

of tuples of the form (q, g, ρ, q′) where q and q′ are discrete states, the transition guard

g is a positive combination of conditions of the form c ≥ d or c = ⊥, and ρ is a clock

transformation defined by one or more assignments of the form c := 0 or c := ⊥.

A configuration of the automaton is a pair (q, z) where z is a clock valuation. The be-

havior of a timed automaton consists of an alternation between time progress periods

where the automaton stays in a state q and Iq continuously holds, and discrete instanta-

neous transitions guarded by clock conditions. Formally, a step of the automaton is one

of the following:

– A time step: (q, z)
t

−→ (q, z + t), t ∈ R+ such that z + t satisfies Iq, and z + t is

the result of adding t to clocks active in z.

– A discrete step: (q, z)
δ

−→ (q′, z′), for some transition δ = (q, g, ρ, q′) ∈ ∆, such

that z satisfies g and z
′ is the result of applying ρ to z

A run of the automaton starting from a configuration (q0, z0) is a finite or infinite se-

quence of alternating time steps and discrete steps of the form

ξ : (q0, z0)
t1−→ (q0, z0 + t1)

δ1−→ (q1, z1) −→ · · ·

whose duration is
∑

ti. One can also view such a run as a function ξ : R≥0 → Q with

ξ(t) = q if after a duration of t the run is at state4 q.

3 From Dynamical Systems to Timed Automata

We first establish some upper bounds on the time a trajectory may stay in a cube or in a

slice and lower bounds on the time that must elapse between two successive transitions

in the same direction.

Claim (Cube Sojourn Bounds). A trajectory entering a cube Xv cannot stay there more

that tv time where

tv = min{1/f i

v
: 1 ≤ i ≤ n}.

This implies that any cube Xv must be left in finite time unless every fi attains a zero

in it. The following definition establishes lower bounds on the time is takes a trajectory

to cross a unit of distance in a positive or a negative direction based on the bounds on

its derivative.

Claim (Slice Sojourn Bounds). Let ξ be a one-dimensional trajectory whose derivative

in the interval [t, t + h] is bounded in [f, f]. Then

ξ(t + h) − ξ(t) = 1 ⇒ h ≥ t+

ξ(t + h) − ξ(t) = −1 ⇒ h ≥ t−

(∀h′ ≤ h ξ(t + h′) − ξ(t) ≥ −1) ⇒ h ≤ t
+

(∀h′ ≤ h ξ(t + h′) − ξ(t) ≤ −1) ⇒ h ≤ t
−

where t+, t
+

, t− and t
−

are computed from [f, f] according to the following table

t+ t
+

t− t
−

0 < f < f 1/f 1/f ∞ ∞

f < f < 0 ∞ ∞ −1/f −1/f

f < 0 < f 1/f ∞ −1/f ∞

(2)

Corollary 1 (Slice Transversal). Let f
i,r

and f i,r be the bounds for fi in slice Xi,r

and let t+i,r, t−i,r, t
+

i,r and t
−

i,r be the sojourn bounds derived from them according to (2).

4 If one or more transitions occur at t we take ξ(t) to be the state reached after the last transition.

1. A trajectory that enters Xi,r from the left cannot leave it from the right in time

smaller then t+i,r and cannot stay in the slice more than t
+

i,r

2. A trajectory that enters Xi,r from the right cannot leave it from the left in time

smaller then t−i,r and cannot stay in the slice more than t
−

i,r.

Based on this bounds we can now define the approximating timed automaton. Clocks

z+

i and z−i will be reset upon entering an i-slice from the left or from the right, respec-

tively and will constrain further transitions in the same direction. Clock z will be reset

at every transition and will be used for the invariant. We used timed automata with ex-

plicit deactivation of clocks denoted by x := ⊥. Whenever a transition in one direction

is taken, the clock in the other direction becomes inactive.

Definition 6 (Approximating TA).

Given a dynamical systems S = (X, f), its approximating timed automaton is AS =
(V,Z, I,∆) where Z = {z, z+

1 , . . . , z+
n , z−1 , . . . , z−n } is a set of clocks, I is an invariant

defined for every state v as

Iv = z < tv ∧

n∧

i=1

(z+

i < t
+

i,vi
) ∧ (z−i < t

−

i,vi
)

with z < ∞ interpreted as true. The transition relation ∆ consists of the following

transition types:

δ+i
v : (v, z+

i ≥ t+i,vi
∨ z+

i = ⊥, z+

i := 0; z−i := ⊥; z := 0, σ+i(v))

and

δ−i
v : (v, z−i ≥ t−i,vi

∨ z−i = ⊥, z−i := 0; z+

i := ⊥; z := 0, σ−i(v))

provided that such transitions are possible in the discrete abstraction Ā.

We do not specify the initial state to provide for queries concerning different initial

cubes. For every cube Xv we will use

Zv = {0} × [0, t+1,v1
] × · · · × [0, t+n,vn

] × [0, t−1,v1
] × · · · × [0, t−n,vn

]

as an initial timed zone when we ask queries about trajectories starting at Xv . This way

we are conservative with respect to all possible initial points in Xv which can be as

close as we want to the boundary and cross as early as we want. The property of the

timed automaton is summarized by the following theorem.

Theorem 1 (Neo Conservatism). For every trajectory ξ of S starting from a point

x ∈ Xv there is at least one run ξ′ of AS staring from (v, Zv) such that ξ′ = α(ξ).

Proof. Note that ξ′ = α(ξ) means that ξ′ takes transitions exactly when ξ crosses

grid boundaries, and that ξ′ can stay in a state as long as ξ stays in a cube. We use

the following auxiliary assertion that we prove by induction: for every trajectory ξ of

duration t, starting from x = (x1, . . . , xn) ∈ Xv and ending in x′ = (x′
1, . . . , x

′
n) ∈

Xv′ there is a run ξ′ of AS starting at (v, Zv) and ending in (v′, z) such that ξ′ = α(ξ)
and

1. The value of z is the time elapsed having entered Xv (or since time zero if we are

still in the initial cube).

2. The value of each clock z+

i and z−i is equal to one of the following

– The time elapsed since time zero if no crossing in direction i has occurred in ξ
up to time t;

– The time elapsed since the last i-crossing if it took place in the matching direc-

tion (positive for z+

i , negative for z−i);

– Otherwise, if the last i-crossing was in the opposite direction, the clock is in-

active.

The proof is by induction on the number k of boundary crossings by the trajectory

during the interval [0, t]:

– Base case: k = 0 and the trajectory remains in the same initial cube (Figure 2-(a)).

According to Rolle’s theorem each fi has a derivative (x′
i − xi)/t in the cube v

(and in each of the slices it belongs to). In other words

f i

v
≤ (x′

i − xi)/t ≤ f
i

v and f i

v
≤ |(x′

i − xi)|/t.

Taking into account that x′
i − xi ≤ 1 we have

t ≤ t/(x′
i − xi) ≤ ti,vi

and t ≤ t/|(x′
i − xi)|/t ≤ tv

which implies that there is a run of the automaton starting at v with all clocks set to

zero that will satisfy the state invariants during the whole interval [0, t].
– Inductive case: assuming the claim holds for all trajectories that cross grid bound-

aries at most k times, we show it holds for trajectories with k +1 crossings. Let the

new crossing occur in dimension i and, without loss of generality, be in the positive

direction. First we show that for each j the state invariant holds between the last

j-crossing and the time it reached x′. Since this part of the trajectory involves a

displacement of length smaller than 1 in dimension j, a reasoning similar to the

base case applies (Figure 2-(b)). Concerning direction i, we need, in addition, to

show that the transition guard associated with the last crossing holds. Let t′ denote

the time between these two crossings that occur at y and y′, respectively. There are

two cases:

1. They cross in the same direction, that is, at points y = (y1, . . . , yi−1, r, . . . , yn)
and y′ = (y′

1, . . . , y
′
i−1, r + 1, . . . , yn) (Figure 2-(c)). According to the induc-

tive hypothesis the value of clock z+

i when the trajectory reaches y′ is the time

elapsed since y. Since the i-distance is 1, by Rolle’s theorem there is a deriva-

tive 1/t′ in slice Xi,r and the transition guard on z+

i will be satisfied.

2. The crossing occurs in the opposite direction (Figure 2-(d)), hence clock z+

i is

inactive and the transition is enabled.

The other inductive conditions concerning clock values at time t are maintained by

construction.

The accuracy of the timed model can be further improved by tightening the timing

constraints associated with each cube Xv . Rather then computing them based on the

(a)

(c)

x
′

j − xj

x
′

y

y
′

i − yi

(b)x

(d)

x
′

j − yj

y
′

x

x
′

x
′

x
′

i − y
′

ix
′

i − xi

y

x

y
′

x

y

y
′

x
′

Fig. 2. (a) For a trajectory that makes no crossings, the clocks satisfy the invariant of v; (b) For a

trajectory whose last crossing is in dimension i, the clocks satisfy the slice invariants associated

with every j; (c) For a trajectory that crosses in direction +i twice, the clocks satisfy the guard; (d)

a trajectory the crosses in dimension i in two opposite directions, the guard is trivially satisfied.

extremal values of fi in the whole slice Xi,vi
we can restrict the optimization of fi

to those cubes on the slice from which Xv is indeed reachable. For example, one can

observe that if for every j 6= i, fj is always positive in the slice, the only cubes in the

slice from which v = (v1, . . . , vi, . . . , vn) can be reached, while staying in the slice, are

those of the form v′ = (v′
1, . . . v

′
i, . . . v

′
n) satisfying v′

j ≤ vj for every j. A systematic

way to obtain such restrictions is to use the untimed abstraction Ā. Let πi(v) be the set

of cubes v′ such that there exists a run of Ā from v′ to v which stays in Xi,vi
. Then

we can replace the slice-based bounds t+i,r, t−i,r, t
+

i,r and t
−

i,r by cube-specific bounds

computed according to (2), but using the extremal values of fi on πi(v). Note that

after deriving the timed automaton, one can apply reachability analysis on the timed

automaton, obtain a subset of πi(v), re-compute the bound according to it and so on.

As the alert reader might have noticed we have not yet specified how to compute

the extremal values of each fi over cubes or slices. For linear systems, extremal values

are obtained on vertices while for arbitrarily nonlinear systems one can apply numerical

optimization algorithms and add some error margins to the obtained results to guarantee

conservativeness. In the sequel we show how the technique specializes for multi-affine

systems, sometimes called multi-linear systems, which are based on functions whose

optimization over hyperrectangles is particularly easy.

Definition 7 (Multi-Affine Functions). A function p : R
n → R is multi-affine if it is a

polynomial such that the maximal degree of each variable in every term is at most one.

A dynamical system S = (X, f) with f = (f1, . . . , fn) is multi-affine if each fi is a

multi-affine function.

The following result, due to Belta and Habets [BH06], provides for simple compu-

tation of of f and f over cubes and slices.

Theorem 2 (Multi-Affine functions and Rectangles). The extremal values of a multi-

affine function p : R
n → R over a hyperrectangle are obtained on its vertices.

4 Implementation

Our current implementation is still in a prototype stage and it major weakness is that it

works offline, that is, it takes a description of a piecewise5 multi-affine dynamical sys-

tems and generates from it a timed automaton in the IF format, based on an optimized

version of Definition 6. This automaton is then analyzed by the IF toolset. This implies

that the timed automaton is not generated on the fly and its number of discrete states

is almost the size of the grid, slightly reduced using untimed reachability analysis. A

tighter integration between the approximation algorithm and the reachability computa-

tion on timed automata will allow us to restrict the generation of the TA to the reachable

(under timing constraints) part of the state space.

Fig. 3. The transcriptional cascade of [HTW05].

We illustrate the applicability of our approach by analyzing the timed behavior of

a synthetic gene network, the cascade of transcriptional inhibitions built in E.coli as

described in [HTW05] and illustrated in Figure 3. The cascade is made of four genes:

tetR, lacI , cI , and eyfp that code, respectively for, three repressor proteins, TetR, LacI,

and CI, and the fluorescent protein EYFP. The fluorescence of the system, due to the

protein EYFP, is the measured output. The system can be controlled by the addition

or removal of a small diffusible molecule aTc that binds to TetR and relieves the re-

pression of lacI in the growth media. The transient and steady-state behavior of the

system was experimentally compared with that of similar, shorter cascades [HTW05].

It was found that longer cascades have a more pronounced ultrasensitive input/output

responses at steady-state, but longer response times. A modifications of biological pa-

rameters that should improve the ultrasensitive response was proposed in [BYWB07],

but the potential modifications of network response times has not been investigated.

To investigate this question we cut the 5-dimensional state space into more than

2000 cubes, from which we generate a timed automaton. We then use IF to check

5 The extension of our results to piecewise multi-affine systems which are continuous on the

switching boundaries is straightforward.

Fig. 4. Experimentally observed dealy (circuit 3).

whether a significant increase of the fluorescence of the system (from less than 500

to more than 5000 fluorescence units) is obtained in a reasonable time following the ad-

dition of aTc in the growth medium. For the original system, prior to the improvement

proposed in [HTW05], our analysis shows that the required increase is guaranteed to

happen in at most 2820 minutes. On the other hand, for the tuned system, we obtain a

significantly smaller upper bound (1680 minutes, 40% less). This suggests that the pro-

posed modification improves the response time of the system, in addition to improving

its steady state behavior. We compare these (worst case) time bounds with observations

on the actual system (Figure 4) where the fluorescence of the system reaches the target

value 5000 approximatively 200 minutes after addition of aTc. This clearly reveals the

conservativeness of our approach, an issue that can be addressed by using finer parti-

tions of the state space.

5 Discussion

We have developed a technique for approximating dynamical systems by timed au-

tomata for the purpose of checking timed properties. The essence of this technique, is

the use of dimension-specific clocks, in contrast with the approach of [SKE00] which

uses one clock (our z) for the whole cube. These ideas are close in spirit to the rectangu-

lar hybrid automata of [HKPV98], in the sense of separating and bounding the dynam-

ics of each dimension. In that work, the emphasis was, however, on exact decidability

which required a reset (initialization) of all continuous variables when a boundary is

crossed, a feature which is not useful in the continuous context.

Our approach performs reasonably well in those parts of the state space where all

variables admit a monotone dynamics and the major challenge is to improve its treat-

ment of those parts of the state space where one or more derivative changes its sign, and

hence admits a zero. In that case, the non existence of a finite upper bound can make it

hard to prove eventuality properties. We also explore that extension of these techniques

to even richer dynamics.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine, The Algorithmic Analysis of Hybrid Systems,

Theoretical Computer Science 138, 3-34, 1995.

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Computer Science

126, 183-235, 1994.

[AFH96] R. Alur, T. Feder, and T.A. Henzinger, The Benefits of Relaxing Punctuality, Journal

of the ACM 43, 116-146, 1996.

[ABDM00] A. Asarin, O. Bournez, T. Dang, and O. Maler, Approximate Reachability Analysis

of Piecewise-linear Dynamical Systems, HSCC’00, LNCS 1790, 20-31, 2000.

[ADF+06] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic and O. Maler, Recent

Progress in Continuous and Hybrid Reachability Analysis, CACSD, 2006.

[ADG03] E. Asarin, T. Dang, and A. Girard, Reachability Analysis of Nonlinear Systems

using Conservative Approximation, HSCC’03, LNCS 2623, 20-35, 2003.

[AMP95] E. Asarin, O. Maler and A. Pnueli, Reachability Analysis of Dynamical Systems

having Piecewise-Constant Derivatives, Theoretical Computer Science 138, 35-65,

1995.

[BRJ+05] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page and D. Schnei-

der, Validation of qualitative models of genetic regulatory networks by model check-

ing : Analysis of the nutritional stress response in Escherichia coli, Bioinformatics

21, i19-i28, 2005.

[BYWB07] G. Batt, B. Yordanov, R. Weiss and C. Belta, Robustness analysis and tuning of

synthetic gene networks, Bioinformatics 23, 2415-2422, 2007.

[BH06] C. Belta and L.C.G.J.M. Habets, Controlling a Class of Nonlinear Systems on Rect-

angles, IEEE Trans. on Automatic Control 51, 1749-1759, 2006.

[BT00] O. Botchkarev and S. Tripakis, Verification of Hybrid Systems with Linear Differ-

ential Inclusions using Ellipsoidal Approximations, HSCC’00, LNCS 1790, 73-88,

2000.

[BMP99] O. Bournez, O. Maler and A. Pnueli, Orthogonal Polyhedra: Representation and

Computation,HSCC’99, LNCS 1569, 46-60, 1999.

[BGM02] M. Bozga, S. Graf and L. Mounier, IF-2.0: A Validation Environment for

Component-Based Real-Time Systems, CAV’02, LNCS 2404, 343-348, 2002.

[CK98] A. Chutinan and B.H. Krogh, Computing Polyhedral Approximations to Dynamic

Flow Pipes, CDC’98, IEEE, 1998.

[CK03] A. Chutinan and B.H. Krogh, Computational Techniques for Hybrid System Verifi-

cation, IEEE Trans. on Automatic Control 48, 64-75, 2003

[DM98] T. Dang and O. Maler, Reachability Analysis via Face Lifting, HSCC’98, LNCS

1386, 96-109, 1998

[F05] G. Frehse, PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech,

HSCC’05, LNCS 3414, 258-273, 2005.

[HKI+07] A. Halasz, V. Kumar, M. Imielinski, C. Belta, O. Sokolsky and S. Pathak, Analysis

of Lactose Metabolism in E.coli using Reachability Analysis of Hybrid Systems,

IEE Proceedings - Systems Biology 21, 130-148, 2007.

[HHW98] T.A. Henzinger, P-H. Ho, and H. Wong-Toi, Algorithmic Analysis of Nonlinear Hy-

brid Systems, IEEE Trans. on Automatic Control 43, 540-554, 1998.

[HKPV98] T.A. Henzinger, P. W. Kopke, A. Puri and P. Varaiya What’s Decidable about Hybrid

Automata?, Journal of Computer and System Sciences 57, 94-124, 1998.

[HTW05] S. Hooshangi and S. Thiberge and R. Weiss, Ultrasensitivity and noise propagation

in a synthetic transcriptional cascade, PNAS 102, 3581-3586, 2005.

[HHW97] T.A Henzinger, P.-H. Ho, and H. Wong-Toi, Hytech: A Model Checker for Hybrid

Systems, Software Tools for Technology Transfer 1, 110-122, 1997.

[JPHG01] H. de Jong, M. Page, C. Hernandez and J. Geiselmann, Qualitative Simulation of

Genetic Regulatory Networks: Method and Application, IJCAI-01, 67-73, 2001.

[Koy90] R. Koymans, Specifying Real-time Properties with Metric Temporal Logic, Real-

time Systems 2, 255-299, 1990.

[LPY97] K.G. Larsen, P. Pettersson and W. Yi, Uppaal in a Nutshell, Software Tools for Tech-

nology Transfer 1, 134-152, 1997.

[OSY94] A. Olivero, J. Sifakis and S. Yovine, Using abstractions for the verification of linear

hybrid systems, CAV’94, 81-94, LNCS 818, 1994.

[SKE00] O. Stursberg, S. Kowalewski, and S. Engell, On the Generation of Timed Discrete

Approximations for Continuous Systems, Mathematical and Computer Models of

Dynamical Systems 6, 51-70, 2000.

