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Words, even infinite words, have their limits.

Abstract. We survey some of the problems associated with checking whether a
givenbehavior (a sequence, a Boolean signal or a continuous signal) sagisfie
property specified in an appropriate temporal logic and describe tworsoai-
toring algorithms for the real-time logic MITL.

1 Introduction

This paper is concerned with the following problem.
Given a temporal property how to check that a given behavi9satisfies it.

Within this paper we assume that the behavior to be checkwddkiced by anodel
of a dynamical systen, although some of the techniques are applicable to belsvior
generated by real physical systems. Unlike formal verificetvhich aims at showing
thatall behaviors generated 8/satisfyy, hereS is used to generatene behavior at a
timeand can thus be viewed a®kck box This setting has been studied extensively in
recent years both in the context of digital hardware, ungentimes of “dynamic” ver-
ification, or assertion checking as well as for software, ngliigs referred to asuntime
verification [HR02a,SV03]. We will use the terrmonitoring In this framework the
question ofcoveragethat is, finding a finite number of test cases whose behavlbr w
guarantee overall correctness, is delegated outside tpe suf the property monitor.
This approach can be used when the system model is too lalgeverified formally.
Itis also applicable when the “model” in question is nothing a hardly-formalizable
simulation program, as is often the case in electrical sitimuh of circuits. On the other
hand, the explicit presentation gfitself, rather than using the generating model
raises new problems.

Most of the work described in this paper has been performehirwthe Euro-
pean project PROSYDwith the purpose of extending some ingredients of verificati
methodology from digital (discrete) to analog (continuans hybrid) systems. Conse-
quently, we treat systems and behaviors described at tifferedt levels of abstraction
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(discrete, timed and continuous). Hence we find it usefutda svith a generic model

of a dynamical system defined over an abstract state space etvlves in an abstract
time domain, see also [M98,M02]. The three models used ip#per are obtained as
special instances of this model.

States and BehaviorsA model S of a system is defined over a $6t= {z1,...2,}

of state variableseach ranging over a domalyy;. Thestate spacef the system is thus

X = X; x --- x X,,. The system evolves over a time domdirwhich is a linearly-
ordered set. Aehaviorof the system is a function from the time domain to the state
spacef : T — X. We considecompletebehaviors, wheré€ is defined all ovefl’, as
well aspartial behaviors wheré is defined only on a downward-closed subsef of
that is, some interval of the forfd, 7). We use the notatio€t,, t2] for the restriction

of £ to the intervalt, t2] and let¢[t] = L whent > r. We denote the set of all possible
(complete and partial) behaviors over a Xeby X *.°

Systems The dynamics of a systet$i is defined via a rule of the form’ = f(z,u)
which determines the future stai¢ as a function of the current staieand current
inputu € U. As mentioned earlier, we do not have accesg &md our interaction with
the model is restricted to stimulating it with an inpute U* and then observing and
checking the generated behavioe X*.

Properties Regardless of the formalism used to express it, a progedsfines a subset
L, of X*. A property monitor is a device or algorithm for deciding vither a given
behavior¢ satisfiesp (denoted by = ) or, equivalently, whethef € L.

The paper starts with properties of discrete (digital) syst, a well-studied and ma-
ture domain, where some of the problems associated withtorarg (non-causality of
the specification formalism, satisfiability by finite tracealine vs. offline) are already
manifested. We then move toneddiscrete systems, whose behaviors can be viewed
ascontinuous-time Boolean signalshich raise a lot of new issues such as sampling,
event detection, variability bounds, etc. Most of the papi#iinvestigate monitoring at
this level of abstraction where we made some original coutions. Finally we move to
continuous (analog) signals which, in addition to dense tiadmit alscwumerical real
values Although for many types of properties (and in particularst expressible in our
signal temporal logidNMO07,MNO04]) checking continuous properties can be reduce
to checking timed properties, there are further issued) siscapproximation errors,
raised by the continuous domain and by the manner in whiaratécare generated by
numerical simulators.

2 Discrete (Digital) Systems: Properties
Discrete models are used for modeling digital hardware é& ¢evel and above) as
well as software. At this level of abstraction the Bebf natural numbers is taken as

5 For discrete time behaviors, it is common to Usé for finite behaviors and(* for infinite
ones, but these distinctions are less meaningful when we come to cargihabaviors.



the underlying time domain. In this case the difference betv{[t] and [t + 1] re-
flects the changes in state variables that took place in stemsywithin one clock cycle
(hardware) or one program step (softwdf@he state space of digital systems is often
viewed as the séB” of Booleann-bit vectors! Behaviors are, hence-dimensional
Booleansequencegenerated by system models which are essentially finitenzate
(transition systems) which can be encoded in a variety afédisms such as systems of
Boolean equations with primed variables or unit delaysjWware description languages
at various levels of abstraction, programming languages, e

Semantically speaking, a property is a subset of the set géqliences (also known
in computer science asfarmal languagg indicating the behaviors that we allow the
system to have. Such subsets can be defined syntactically as@ariety of formalisms
such as logical formulae, regular expressions or autorhatatcept them. In this paper
we focus ontemporal logic[MP92,MP95] which can be viewed as a useful syntactic
sugar for the first-order fragment of the monadic logic ofewrfd@61]. This section does
not present new results but is rather a synthetic surveyeotidite-of-the-art which can
serve as an entry point to the vast literature and which, wk e a pre-requisite for
understanding the timed and continuous extensions.

2.1 Temporal Logic (Future)

The temporal logic of linear time (LTL) is perhaps the mospyplar property specifica-
tion formalism. In a nutshell it is a language for specifyaggtain relationships between
values of the state variablesdifferent time instantghat is, at different positions in the
sequence. For example, we may require that whenever 1 at positiont thenzy = 0

at positiont+3. A property monitor is thus a device that observes sequeanekshecks
whether they satisfy all such relationships. We repeaflprs®me standard definitions
concerning the syntax and semantics of LTL.g&ynanticsve mean the rules according
to which a sequence is declared as satisfying or violatirayradilae.

The syntax of LTL is given by the following grammar:

pi=ploplei Ve | Ol eilhps,

wherep belongs to a seP = {pi,...,p,} Of propositions indicating values of the
corresponding state variable. The basic temporal opararenext(()), which speci-
fies what should hold in the next step amdtil (¢/), which requiresp; to hold untilys
becomes true, without bounding the temporal distance sdistoming. From these ba-
sic LTL operators one can derive other standard Boolearatgesras well as temporal
operators such assentually(¢) andalways():

Qo =TUp and Op = -0-p.

5 We mention here the existence and usefulnesasgfchronougevent triggeredather than
time triggered systems and models, where the interpretation of a step is different.

"In software, as well as in high-level models of hardware, systemsinwyde state vari-
ables ranging over larger domains such as bounded and unboundettical variables or
dynamically-varying data structures such as queues and trees, tessain the hardware
context, those can be encoded by bit vectors.



Models of LTL areBoolean sequences the formé : N — B"™. We also use to denote
the sequence obtained by projecting a sequémaethe dimension correspondingio
The satisfaction relatio(€, t) = ¢, indicating that sequencesatisfiesy starting from
positiont, is defined inductively as follows:

£
& ESe  «3H =t (1)
Gt EDe v >t

A sequencé satisfiesp, denoted by | o, iff (£,0) | ¢.

2.2 Temporal Logic (Past)

The past fragment of LTL is defined by a syntax similar to theifel fragment where
the nextand until operators are replaced tpreviously () andsince (S). As with
future LTL, useful derived operators asemetime in the past andalways in the past
J defined as

Qp=TSp and Hy=-0-p

Their semantics is given by

EDEOQy  —t=00r(t-1) =y
(&,1) E @1Spa < 3t € [0,1] (£,) |= @2 andvt” € (', 1], (6,1") | ¢

G EOy <3 e0tE ) Ey
G EDe =V e[0t(Et)EFye

A finite sequence satisfies a past properifit satisfies it from the last position “back-
wards”, thatisg = ¢ if (€, 1€]) |E .

3 Discrete Systems: Checking Temporal Properties

We describe here the fundamental problems associated éttking temporal proper-
ties as well as the common approaches for tackling them.eTé&esproblems that exist
already in the simplest model of Boolean sequences and apagated, with additional
complications to the timed and continuous domains.

3.1 Causality and Non-determinism

A major difficulty in checking properties expressed in f@WTL is due to thenon-
causaldefinition of the satisfaction relation. To see what this neamight be helpful



to look at the definition of LTL semantics as a procedure whgctecursiveon both
the structure ofp and on the sequential structurefThis procedure is called initially
with ¢ and with£[0] as arguments because we want to determine the satisfiadfility
o from position zero. Then the semantic rules “call’ the pohae recursively with
sub formulae ofp and with further positions of. In other words, the satisfiability of
o at timet may depend on the value gfat somefuture time instantt’ > ¢. Even
worse, some temporal operators refer to future time instardaquantifiedmanner, for
example, requiring someto hold inall future time instantsThe satisfiability of such
a property may sometime be determined only at infinity, thatdfter” we can be sure
that no instance ofp is observed.

Note that for past LTL, the recursion goeackwardin time and the satisfaction of
a past formulap by a sequence at positiont is determined according to the values of
¢ at the interval0, t] and in this sense, past LTL is causal. However it has beeredrgu
that the futuristic specification style is more natural fantans. The past fragment of
LTL admits an immediate translation to deterministic avdarand a simple monitoring
procedure [HRO2b] based on this observation.

The “classical” theoretical scheme for using LTL in formatification is based on
translating a formulg into a non-deterministic automaton over infinite sequerfaas
w-automaton)A4,, that accepts exactly the sequences that satisfy it. The etemrdin-
ism is needed to compensate for the non causality: the atorhas to “guess” at time
t whether future observations at somie> ¢ will render o satisfied at, and split the
computation into two paths according to these predictidngath that made a wrong
prediction will be aborted later, either within a finite nuentof steps (if the guess is
falsified by some observation) or via theacceptance condition (if the falsification is
due to non-occurrence of an event at infinity). Satisfigbditthe formula can thus be
determined by checking whether thelanguage accepted by, is not empty. This
reduces to checking the existence of an accepting cycle.iwhich is reachable from
an initial state. Verification is achieved by checking wieeti may generate an infinite
behavior rejected byl,, (or accepted byd-.). It should be noted that simplified pro-
cedures have been developed and implemented when the fyropguestion belongs
to a subclass of LTL, such as safety.

3.2 Evaluating Incomplete Behaviors

In monitoring we do not exploit the modél that generates the sequences, but rather
observe sequences as they come. The major problem heregsithct to the standard
semantics of LTL which is defined oveomplete infinite sequengésthe impossibility
to observe infinite sequences in finite tifhelence, the extension of LTL semantics to
incomplete behaviors a major issue in monitoring.

After having observed a finite sequentee can be in one of the following three
basic situations with respect to a propegty

8 To be more precise, there are some classes of infinite sequencesshehitimately-periodic
ones, that admit a finite representation and an easily-checkable sdiigfiabwever we work
under the assumption that we do not have much control over the typguésces provided by
the simulator and hence we have to treat arbitrary finite sequencesoittfsmoting that ifS is
input-deterministic then an ultimately-periodic input induces an ultimately-gierlsehavior.



1. All possible infinite completions of satisfy p. Such a situation may happen, for
example, wherp is Op andp occurs iné. In this case we say that positively
determinesp.

2. All possible infinite completions &f violate ¢. For example whep is O-p andp
occurs in. In this case we say thgtnegatively determinegs.

3. Some possible completions o satisfyp and some others violate it. For exam-
ple, any sequence whepehas not occurred has extensions that satisfy, as well as
extensions that violate, formulae such{gsor O—p. In this case we say thatis
undecided

It should be noted that the “undecided” category can be mfaerording to both
methodological, quantitative, and logical consideratiddne might want to distinguish,
for example, between “not yet violated” (in the casé bfp) and “not yet satisfied” (in
the case of)p). The quantitative aspects enter the picture as well bectheslonger
we observe a sequenédree of p, the more we tend to believe in the satisfaction of
O-p, although the doubt will always remain. On the other hand,dftisfaction of a
formula like OFp, a shorthand fot)(O(... O p)...)), although undecided for se-
quences shorter thdn will be revealed in finite time. The most general type of agsw
concerning the satisfiability @f by a finite sequencgéwould be to give exactly the set
of completions of that will make it satisfyy, defined as

Qo ={¢:¢-¢ Fo}

Positive and negative determination correspond, reygtio the special cases where
&\p = X* and&\p = 0. This “residual” language can be computed syntactically as
the left quotient (“derivative”) ofp by &.

In certain situations we would like to give a decisive ansatethe end of the se-
guence. In the case of positive and negative determinat®nam reply with a yes/no
answer. More general rules for assigning semantics to diréty sequence have been
proposed [LPZ85,EFHO03]. Let us consider some sub-classes of LTL formulae for
which such a finitary semantics clearly makes sense. Thelestnpmong those is
bounded-LTL where the only temporal operatomixtand where satisfiability of a
formula ¢ at time0 is always determined by the values of the sequence up to some
t < k, with k£ being a constant depending gnNote that this class is not as useless as
it might seem: one can use “syntactic sugar” operators ssichg,» as shorthand for
/\;‘:—[}(Qi@). The implication for monitoring is that evesufficiently-longsequence is
determined with respect to such formulae (see also [KV01]).

The next class is the class sdfetypropertie$ where the only quantification of the
time variable isuniversalas inCly. It is not hard to see thai-languages corresponding
to such formulae consist of infinite words thd not have a prefixn some finitary
language. While monitoring a finite sequerceelative to such a formula, we can be
in either of the following two situations. Either such a pxdfias been observed and
hence any continuation @fwill be rejected and can be declared as violating, or no

% To be more precise safety properties can be written as positive Boabealsirgtions of for-
mulae of the fornidy wherey is a past property, and eventuality properties are negations of
safety properties.



such prefix has been observed but nothing prevents its @metiin the future anéis

undecided. A similar and dual situation holds for eventuptoperty such a9 that
guantify existentially over time, and where an occurrerfce finitary prefix satisfying
o renders the sequence accepted.

With respect to these sub-classes one can adopt the foligualicy: interpret any
quantification@t, @ € {V, 3} asQt < |¢| and hence a safety that has not been violated
during the lifetime of¢ is considered as satisfied, and an eventuality not fulfilied b
that time is interpreted as violated. This principle may kieeded to more complex
formulae that involve nesting of temporal operators butis tase the interpretation
seems less intuitive.

Let us remark that although modelsmdstLTL are finite sequences, the problem
of undecided sequences still exists. Consider for exarhgl@toperty-l p. As soon as
—p is observed, we can say the the formula is negatively deteraénd need not wait
for the rest of the sequence. On the other hand, as long d®ms not been observed,
although the prefix satisfies the property we cannot give logive results until the
“official” end of the sequence, becausg may always be observed in the next instant.
Hence the treatment of past properties is not much differenm future ones, except
for the simpler construction of the corresponding automato

Naturally many solutions have been proposed to this probiehe context of mon-
itoring and runtime verification and we mention few. The woffABG +00] concern-
ing the FoCs property checker of IBM, as well as those of [KDg] are restricted to
safety (prefix-closed) or eventuality properties and repimiation when it occurs. On
the other hand, the approach of giving the residual langisgg®posed in [KPA03] and
[TRO4] in the context of timed properties. A systematic gtodl the possible adapta-
tion of LTL semantics to finite sequences (“truncated patlsiresented in [EFHO3].
This semantics has been adopted by the semiconductor ipdteshdargroperty spec-
ification languagePSL [EFO06].

Our approach to monitoring is invariant under all these s#ital choices. As a
minimal requirement for being used, the chosen semantmsidlassociate with every
formulay a function(2, : X* — D which maps all finite sequences into a domain
D that contain® (satisfied/violated) and is augmented with some additivalaies for
undecided formulae.

3.3 Offline and Online Monitoring

In this section we discuss different forms of interactiomm@Een the mechanism that
generates behaviors and the mechanism that checks whie¢lyesatisfy a given prop-
erty. The behaviors are generated by some kind sinsulator that computes states
sequentially. Without loss of generality we may assume ttasystems we are inter-
ested in araot reverse-deterministiand, hence, the natural way to generate behaviors
is from the past to the future. One may think of three basicesaaf interaction (see
Figure 1):

1. Offline The behaviors are completely generated by the simulafordéhe check-
ing procedure starts. The behaviors are kept in a file whichbmread by the
monitor in either direction.



2. Passive OnlineThe simulator and the checker run in parallel, with theclattb-
serving the behaviors progressively.

3. Active Online There is a feed-back loop between the generator and theongoi
that the latter may influence the choice of inputs and, heheesubsequent values
of £. Such “adaptive” test generation may steer the system tbeanly detection
of satisfaction or violation, and is outside the scope of gfaper.

Each behavior is a finite sequengéewhose satisfiability value with respect ¢ois
defined viaf2,,(£) regardless of the checking method. However there are somctiqal
reasons to prefer one method over the other. First, to sewe tive would like the
checking procedure to reach the most refined conclusions@s a&s possible. In the
offline setting this will only reduce checking time, whiletire online setting the effects
of early detection of satisfaction/violation can be muchresignificant. This is because
in certain systems (analog circuits is a notorious examgiaylation time isvery long
and if the monitor can abort a simulation once its satisfigti decided, one can save
a lot of time.

The difference between online and offline is, of course, nmdhne significant in
situations where monitoring is done with respect fathgsical devicenot its simulated
model. We discuss briefly several instances of this sitnafibe first is when chips are
tested after fabrication by injecting real signals to tipeirts and observing the outcome.
Here, the response time of the tester is very important arig @mline) detection of
violation can have economic importance. In other circunsga we may be monitoring
a system which is already up and running. One may think of tipeiwision of a com-
plex safety-critical plant where the monitoring softwanesld alert the operator about
dangerous developments that manifest themselves by pyopelation or by progress
toward such violations. Such a situation calls for onlinenitaring, although offline
monitoring can be used for “post mortem” analysis, for exnanalyzing the “black
box” after an airplane crash. Monitoring can be used for wlisis and improvement of
non-critical systems as well. For example analyzing whretthe behavior of an organi-
zation satisfies some specifications concerning the bissiméss of the enterprise, e.g.
“every request if treated within a week”. Such an applicatbmonitoring can be done
offline by inspecting transaction logs in the enterprisadatse.

In the sequel we describe three basic methods for checkitigfasion of LTL
formulae by sequences.

The Automaton-Based Method This is an online-oriented approach that follows the
principles used in formal verification. To monitor a propeyt we first construct the
automatond,, that accepts exactly the sequences satisfyilagd then let it read every
sequence as it is generated. There is a vast literature concerningdhstruction of
automata from LTL formulae [VW86] and monitoring does not elegh too much on
the choice of the translation algorithm. We have, howevearefepence for the compo-
sitional construction, presented in [KP05] and extendedifieed systems in [MNPOG6].
For each sub-formulé of ¢, this procedure constructs a sequeRgés) indicating the
satisfaction ofy over time, that is¢,, (€) has valuel at¢ iff (¢,t) = .

There are two major problems that need to be tackled whilda@img this method.
The first problem is that the natural automaton ¢owill be an automaton oveinfi-



Input Generato Simulator File Monitor/checker—
Input Generato Simulator Monitor/checker———
Input Generato Simulator Monitor/checker———

T

Fig. 1. Offline, passive online and active online modes of interaction betwees gegrerator and
a checker.

nite sequencesrhis automaton needs to be transformed, via a suitableititafirof
acceptance conditions, into an automaton over finite segsdahat realizes the chosen
finitary semantics, as discussed in the previous sectiarex@ample, if our satisfiability
domain consists ofes no andundecidedwe will outputyesas soon as the automaton
enters a state from which all the remaining paths are acugfdi positive “sink”) and
nowhen we enter a negative sink. From all other states the bwiiilbe undecided

The second problem is thad,, is typically non-deterministic. It can be resolved
in either of the following ways: 1) Feed the non-deterministutomaton with¢ while
keeping track of all the states in which it can be at every fins¢gant. This amounts to
performing the classical “subset construction” on-theZyDeterminize the automaton
offline, either using Safra’s algorithm farautomata [S88] or using a simpler algorithm
adapted to the finitary semantics.

Purely-Offline Marking This is the first method we have developed to timed and
continuous properties and will be described in more detéildction 6.1. The procedure
consists in computing; (£) for every sub-formula) of ¢ from the bottom up. It starts
with the truth values of propositional formulag,(¢) given by the sequencgitself.
Then, recursively, for each sub-formufavith immediate sub-formulag; and«, such
thaty,, (§) andxy, () have already been computed, we computé¢) following the
semantic rules of LTL. The backward nature of these ruledigshat the values of
&y, andgy, at timet will “propagate” to values of,, at somet’ < t. The satisfaction
functionx,, for the main formula is computed at the end.



Incremental Marking This approach combines the simplicity of the offline proce-
dure with the advantages of online monitoring in terms ofyedetection of violation
or satisfaction. After observing a prefix of the sequeéitet,] we apply the offline
procedure. If, as a resul,,(§) is determined at time zero we are done. Otherwise we
observe a new segmefit,, ¢2] and then apply the same procedure baseg@yi,].

A more efficient implementation of this procedure need nattdhe computation
from scratch each time a new segment is observed. It will tendhe case thag, (£)
for some sub-formulag is already determined for some subset[@ft;] based on
£[0,t4]. In this case we only need to propagate upwards the new iafimmobtained
from £[t1, t2], combined, possibly, with some additional residual infation from the
previous segment that was not sufficient for determinatiothe previous iterations.
This procedure will be described in more algorithmic detabection 6.2.

The choice of the granularity (length of segments) in whitis procedure is in-
voked depends on trade-offs between the computationalacasthe importance of
early detection.

4 The Timed Level of Abstraction

Coming to export the specification, testing and verificaframework from the digital
to the analog world, one faces two major conceptual and teehproblems [M06].

1. The state variables range over subsets of the setabfnumbersthat represent
physical magnitudes such as voltage or current;

2. The systems evolve ovepaysicaltime scale modeled by the real numbers and not
over alogical time scale defined by a central clock or by events.

Mathematically speaking, the behaviors that should beifipg@nd checked argig-
nals function fromRx( to R™ rather tharsequenceffom N to B" or to some other
finite domain. The first problem for monitoring is the problefihow to represent a sig-
nal defined over the real time axis inside the computer, divetit is a function defined
over an infinite (and non-countable) domain. The very sarablpm is encountered, of
course, by numerical simulators that produce such signals.

Based on our conviction that the dense time problem is maséopnd than the
infinite-state problem we use the following approach. Usrfinite number of pred-
icates over the continuous state space, analog signalsaersfdrmed into Boolean
ones and are checked against properties expressed intinreaémporal logic whose
atomic propositions correspond to those predicates. Tlhigsus to tackle the problem
of dense time in isolation. Aspects specific to the contirsgiate space are discussed in
Section 7. Note that one can naturally combine these prediegith genuine Boolean
propositions to specify properties of hybrid systems (mig&gnal systems in the circuit
jargon).

Handling an infinite state space, such as the continuumgdsiite formulae is a
fundamental mathematical problem. In finite domains onectemacterize every indi-
vidual state by a distinct formula. For example, there igechion betweeB™ and the
set of Boolean terms ovépy, . . ., p, } which has one literal for eagh. The common



way to speak of subsets of infinite sets suckRéss via predicatesfunctions fromR"
to B, for example inequalities of the formy < d.

We thus adopt the following approach. Let, . . ., ., bem predicates of the form
1 R™ — B. These predicates define a mappig: R" — B™ assigning to every
real point a Boolean vector indicating the predicates isfas. Applying this mapping
in a pointwise fashion to an analog sigigat R~y — R"™ we obtain a Boolean sig-
nal M(§) = ¢ : R>o — B™ describing the evolution over time of the truth values
of these predicates with respect&dsee Figure 2). Events such rasing andfalling
in the Boolean signal correspond to soqualitativechanges in the analog signal, for
example threshold crossing of some continuous variablis. iStan intermediate level
of abstraction where we can observe thmporal distancdetween such events and
need to confront the problems introduced by the dense timmado Timed formalisms
such as real-time temporal logics or timed automata areréall for modeling, spec-
ification, verification and monitoring at this level of atattion, which in addition to
its applicability to analog circuits, is also very usefulnimdel phenomena such as de-
lays in digital circuits and execution times of software gindact, anything in life that
can be modeled as a process where some time has to elapsembdiaitiation and
termination®®

SO AVAVAVAY

p1=x1 > 0.7 T 1 [1 [ ]

p2 =x2 > 0.7 Ll [l [ [

Fig. 2. A 2-dimensional continuous signal and thelimensional Boolean signal obtained from
it via the predicates; > 0.7 andzs > 0.7.

4.1 Dense-Time Signals: Representation

The major problems in handling Boolean signals by compzeeértools are due to the
properties of the time domain. In digital systems we havediserete order(N, <),
which means that there is a relation (successor) that gesetse whole order relation.

9t is a pity that the study and utilization of timed models outside academic “famathods”
circles is so negligible compared to their vast, almost universal, domaippbication.



In other words, for every andt’ such that < ', there is a finite positivé such that

t' = Suck(t). This also implies that whenever we put a boundn the range of the
time variable, the sdft : 0 < ¢t < r} isfiniteand every behavior defined on the interval
[0, ] can be represented by a finite $€{0], {[1], ..., &[r]}.

The dense ordefR, <) does not admit such a property, and for every ¢’ one
can find¢” such that < ¢” < ¢'. This implies that in order to specify a dense-time
signal, even if restricted to a bounded time interf@al], one might need to specify
an infinite set of values. For arbitrary analog signals the only way twigle these
values throughout the entire interval is via analytic egprens such ag[t] = sin(t).
Otherwise an analog signal can only be partially represebieits values at a finite
subset of the time domain consistingsafimpling point§more on that in Section 7). As
for Boolean signals, let us note that functions fri@m to B can be rather weird objects,
potentially switching betweef and1 infinitely many times in a bounded interval of
time (the so-called Zeno phenomendh:rom now on we restrict our attention to non-
Zeno Boolean signals.

A non-Zeno Boolean signgl defined over an intervdl), ») decomposes naturally
into a finite sequence of intervalg, I1, . .., I such thatly = [0,t1), I; = [t;, tit1),

I, = [ty—1,7), the value of is constant in every interval, ad/; 1) = —£(I;). The
set of intervals, together with the valuetat 0 determine the value df at any point
and can serve as a basis for checking properties relatige to

4.2 Dense-Time Signals: Properties

The temporal operators of LTL are of two types. Timext operator is bounded and
guantitative. It specifies something that should happehiwthe very next step or, if
used iteratively, within a bounded number of steps. i operator and its derivatives
are unbounded and qualitative, requiring that somethimgilshor should not hold at
some unspecified future instant. The latter propertiesairaffected seriously from the
passage to dense time, while quantitative operators neael tiedefined. To start with,
the nextoperator which specifies awwhat should hold at themallestt’ such thet <
becomes meaningless. Instead one has to use operatorpéhdy stt what should
hold at timet + d or during the intervat @ [a, b] = [t + a,t + b]. Many temporal logics
over such metric time have been proposed and studied [Kay#®,Hen98,HR04] and
we will focus on the logic MITL, which is a natural adaptatiohLTL to dense time
[AFH96].

Dense time also has an influence on the different monitoriogguiures. As we
shall see, the offline procedure based on marking the tritlesaf sub-formulae over
time, can be rather easily adapted to signals. However tlieeompproaches are more
problematic. Consider the approach based on translatiognaufa into an automaton
that accepts its models. The appropriate automaton will timed automaton, which
reads signals continuously and uses auxiliary clock véegatn measure times since
the occurrence of certain events. Automata correspondidMTL formulae are, more

11 Such Zeno signals can be obtained from analog signals via Booleanizasbronsider a
signal representing a damped oscillation around zero and its Booleag wigathe predicate
z < 0.



often than not, non-deterministic, a feature that, in ardigctime framework, can be
resolved using subset construction, either offline or orflith®©ense non-determinism
is another story as the automaton may stay during an intanabktate; while at any
moment during the interval it may take a transitiomytpthus spawning uncountably-
many runs of the automaton. The impossibility of an offlinéedminization of timed
automata is a well-known fact in the domain, but in Secti@wée will mention some
remedies to this problem.

We can now move to more detailed definitions of signals anul toeresponding
temporal logics, followed by the description of their manibg algorithms.

5 Boolean Signals and their Temporal Logics

5.1 Signals

Two basic semantic domains can be used to describe timedibehdime-event se-
quencesconsist of instantaneous events separated by time dusatibile discrete-
valuedsignalsare functions from time to some discrete domain. The readsrcon-
sult the introduction to [ACMO02] for more details on the ddgaic characterization of
these domains. In this work we use Boolean signals as thergiengd@main, which is
the natural choice, both for the logic MITL and the circuipfigation domain.

Let the time domairi’ be the selR>( of non-negative real numbers. A Boolean
signal is a functiort : T — B"™. We use([t] for the value of the signal at timeand
the notatiortri1 . 052 -- - for a signal whose value s, at the interval0, t1), o in the
interval [t1,t1 + t2), etc. A signal whose value is defined only on an intefgat) is
called finite and ometrict? lengthr (denoted by¢| = 7). The restriction of a signal to
lengthd is defined as

, e ) t|ift<d

¢ = (Qalff & = {i[ | otherwise
For the sake of simplicity we restrict ourselvedatfi-closed right-opesignal segments
and to timed modalities that use only closed intervals. Asr@sequence we exclude
signals withpunctual“intervals” which are meaningless in the algebraic defimitof
signals [ACM02,A04]. The more general case was treated FH26].

Different Boolean signals can be combined and separated ti# standard opera-
tions of pairing andprojectiondefined as

§1 || o = 1 i VE &1ot] = (&1[t], E2]t])
&1 = mi(&12) & = m2(&12)

In particular,m, (&) will denote the projection of on the dimension that corresponds to
propositionp.
Any Boolean operatiop can be “lifted” to an operation on signals as

§ = OP(&1, &) iff VE £[t] = oP(&1[t], &2[t])

12 To distinguish it from thdogical length which corresponds to the number of state changes.



When we apply operations on signals of different lengths veetiis convention
oP(v, L) =0oP(L,v) =L

which guarantees that{f= or({1, &2) then|{| = min(|&1], |€2]).

Any reasonable Boolean signal can be represented usingrdatie number of
intervals. Aninterval coveringof a given intervall = [0, ) is a sequencé = I, 15 . ..
of left-closed right-open intervals such thgtl; = I andl; N I; = () for everyi # j.
An interval coveringZ’ is said torefineZ, denoted byZ’ < T if VI’ € 7' 3 € T such
thatl’ C I.

An interval coveringZ is said to beconsistentwith a signal¢ if £[t] = ¢[t'] for
everyt,t’ belonging to the same interva). In that case we can use the notatidi; ).
Clearly, if Z is consistent withe, so is anyZ’ < Z. We restrict ourselves to signals
of finite variability, that is, signals admitting a finite consistent intervalarinvg. We
denote byZ, the minimalinterval covering consistent with a finite variability sajg.
The set of positive intervals <2§fisIgr ={I € I : £(I) = 1} and the set of negative
intervals isZ, =7, — Z;'.

A signal¢ is said to beunitary if Zg is a singleton. Any finite-variability signa|
over a bounded interval can be decomposed into a uniégnuaitary signals such that
E=¢Mv ... v P, see Figure 3.

The concatenatiort = &; - & of two signalsé; andé, defined over the intervals
[0,71) and[0, r2) respectively is a signal ovéd, r, + ) defined as:

E[t]:{gl[t] ift<r

&t — r1] otherwise

The d-suffixof a signal¢ is the signak’ = d\¢ obtained from¢ by removing the
prefix ()4 from &, that is,

&'t] = [t + d] for everyt € [0, €] — d).

¢ [ [

€2
¢ [ ]

Fig. 3. A signal¢ and its unitary decompositiofg’, £2, £).

TheMinkowski sunanddifferenceof two setsP; and P, are defined as

Poh :{£C1 +x9:21 € P 29 GPQ}
PoP,= {1‘1 — X9 :x1 € P, 2o EPQ}.



Of particular interest are the applications of these opmratto one-dimensional sets
consisting of elements of the time domdin

{t} dla,b] =[t+a,t+Db], [m,n)D[a,b=[m+a,n+D)

{t}ela,b)=[t—bt—al, [m,n)S][a,b]—[m—0bn—a)

The operation that will be used for computing the satisfighdf a formula whose
major operator is a bounded temporal operator is the operafiback shifting

Definition 1 (Back Shifting). The|[a, b]-back-shifting of a Boolean signdl, denoted
by £ = SHIFT[,4)(£), is a signal such thet for every, ¢[t] = 1 iff there exists
t' €t ® [a, b] such thatt’[t'] = 1.

The resemblence of this definition to the semantics ofithe; operator (to be defined
in Section 5.2) is not a coincidence.df = ¢, ;1¢’ then the respective satisfiability
signals ofy and ' satisfy x, = SHIFT[, (x,). This operation is easy to compute
on a representation based on an interval covering of theksigihen¢’ is a unitary
signal withZ;, = {I'}, the result of back shifting is the unitary sigganith Z" = {I}
wherel = I' & [a, b] N T (the intersection witl" is needed to remove negative values,
see Figure 4).

I' = [m,n) _ | | S L ]
I' o [a,b] SR S

(CY (b) (c)

Fig. 4. Three instances of back shiftilg= [m,n) © [a,b]: (@) I = [m — b,n —a); (b) [ =
[0,n — a] becausen — b < 0; (c) I = () becauser —a < 0

5.2 Real-time Temporal Logic

The syntax of MITL is defined by the grammar

pi=plo@|e1 Ve | pildappe | e1les

wherep belongs to a seP = {py,...,p,} of propositions and > a > 0 are ratio-
nal numbers? From basioviTL operators one can derive other standard Boolean and
temporal operators, in particular the time-constraieeentuallyandalwaysoperators:

Qlap)p = TUapp  and Oy = =0a,p

13 |n fact, it is sufficient to consider integer constants.



We interpretmITL overn-dimensional Boolean signals and define the satisfiabidity r
lation similarly to LTL.

&t Ep oplt] =T

(&1) F e = (& Ee

O Ee1 Ve < (1) Eeior(t) F e

(1) Fpillps < ' >t (€,1) = 2 and
vt e [tvt/]a (gvtn) ’: ®1

§t) | oilhigpp2 — 3t €t @ a,b] (§,t') = @2 and
vt e [tﬂf/ ,(E,t”) ©1

(6:1) F Qupp <3t etdfa,b] (&) e
&t) FOane <V et®a,b] (&) e

The past version of MITL is obtained by replacing g, ;) operator by thesince
operatorS, ;;, from which one can derive the time-constrairgnetime in the past
(©) andalways in the pagf-]), operators. The semantics of the past operators is defined

as
(&:1) = e1Sapp2 < ' €t O a,b] (€ 1) = p2 and
vt e [t 1], (& 1") = ¢

(6:1) E Quuy <3 etelenb] (&) Fy
1) F By < vVietolb] (&) Fe

In this paper we focus on the more difficult future fragmenibT L.

6 Checking Timed Properties

In this section we describe two procedures for checking Mpfaperties:

1. An offline marking procedure that propagates truth valygsards from propo-
sitions via super-formulae up to the main formula. This prhae has been first
presented in [MNO4].

2. An incremental marking procedure that updates the mgmath time a new seg-
ment of the signal is observed. This procedure is describ@dNO07].

A central notion in all these algorithms is that of $eisfaction signat’ = x,(¢)
associated with a formulaand a signaf. In this signak’[t] = 1 whenever&, t) | o.
We remind the reader that due to non-causality the valug[df is not necessarily
known at timet, that is, after observing|t], and may depend on future valueséf
Whenever the identity of is clear from the context, we will use the shorthand notation

Xe-

6.1 Offline Marking

This algorithm [MNO4] works as follows. It has as input a fart@y and am-dimensional
Boolean signal of length. For every sub-formula of ¢ it computes its satisfiability



signal . (§). To simplify the discussion we restrict the presentatioa tmunded ver-
sion of MITL where the unboundeghtil is not used. Hence we have properties that
are fully determined if the signal is sufficiently long. Irethase where the signal is too

short the output isindecideddenoted byl . The procedure is recursive on the struc-
ture (parse tree) of the formula. It goes down until the psifganal variables whose

values are determined directly fyand then propagates values as it comes up from the

recursion. We will useop; andop, for arbitrary unary and binary logical or temporal
operators. As a preparation for the incremental versiondweot pasg and x,, as
input or output parameters but rather store them in glob@l skauctures.

Algorithm 1: OFFLINEMITL
input : an MITL Formulap

switch ¢ do
casep
| X == mp(8);
end
caseoP; (p1)

OFFLINEMITL (¢1);
X := COMBINE(OPy, ¢1);
nd

aseor (¢1, p2)
OFFLINEMITL (¢1);

OFFLINEMITL (¢2);
Xo := COMBINE (OP2, Xoy» Xs )

o D

end
end

Most of the work in this algorithm is done by theo®BINE function which for
© = OPy(p1, p2) computesy,, from the signalsy,, and x,,, which may differ in
length. We describe briefly how this function works for ea¢tihe operators, with a
sufficient detail to understand how it operates on the regmtasion of the input and
output signals by their sets of positive intervals. For thieesof readability we omit the
description of various mundane optimizations.

X, := COMBINE (-, x4, ) The negation is computed by simply changing the Boolean

value of each minimal interval in the representatioryof .

X, := COMBINE (V, X, , X,) FOrthe disjunction we first construct a refined interval
coveringZ = {Iy,...,I;} for x,, || xe, SO that the mutual values of both signals
become uniform in every interval. Then we compute the digjon interval-wise,
that is,p(I;) = v1(1;) V p2(1I;). Finally we merge adjacent intervals having the
same Boolean value to obtain the minimal interval covefipg. This procedure is
illustrated in Figure 5.

X := COMBINE (O(4,5], X,,) This is the most important part of our procedure which
computesy,, := SHIFT[, (&, ). For every positive interval € 7+, we com-
pute its back shifting/ & [a,b] N T" and insert it toZ . Overlapping positive



intervals inZ ", are merged to obtain a minimal consistent interval covelimthe
process, all the negative intervals shorter thana disappeat?

X¢ = COMBINE (Uq5], X1 Xy») The implementation of the timeahtil operator is
based on the equivalengglfy, yjv2 — (Oap)(¢1 A @2)) A w1 Wheny,,, is a
unitary signal. This is because for a unitary signalpif holds att; and att, it
must hold during the whole interval. This does not hold fdiitaary signals, see
Figure 6. In order to treat the general case whgge is a non-unitary signal we
first need to decompose it into the unitary sigrp@%, cee, X’jgl and then compute

X5 = (SHIFT44 (Xb, A X)) A XD,

for eachi € [1, k]. Finally we recompose the resulting signals as

k
Xe =V XL
=1
) e N
. N —
. i B e
y T—T1
Ve o o o i O
Ve — -

Fig. 5. To computep V g we first refine the interval covering to obtain the semantically-equivalent
representationp’ andq’. We then perform interval-wise operations to obtain/ ¢’ and then
merge adjacent positive intervals.

6.2 Incremental Marking

Incremental marking is performed using a kind of piecevaséne procedure invoked
each time a new segment §f denoted byA,, is observed. For each sub-formula

the algorithm stores its already-computed satisfactignadipartitioned into a concate-
nation of two signals¢,, - Ay with x,, consisting of values already propagated to the
super-formula ofy, and A,, consists of values that have already been computed but
which have not yet been propagated to the super-formula andstill influence its
satisfaction.

1% This procedure can be viewed alternatively as shiftingigativeintervals by[b, a].
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Fig. 6. Computing satisfiability ofil{, )¢ via the satisfiability of)(, ;) (¢ A p) A p. (a) wrong re-
sults obtained with non-unitary signals; (b) correct results obtained witlitary decomposition

p = p1 Vp2 andg = ¢1 V g2. The computation withp; is omitted as it has an empty intersection
with q.



Initially all signals are empty. Each time a new segmehtis read, a recursive
procedure similar to the offline procedure is invoked, whipllates every.,, and A,
from the bottom up. The difference with respect to the offligorithm is that only the
segments of the signal that have not been propagated uppanritspate in the update
of their super-formulae. This may result in a lot of savingawtthe signal is very long,
as has been demonstrated empirically in [NMO7].

As an illustration considep = OP(p1, p2) and the corresponding truth signals of
Figure 7-(a). Before the update we always have - A,| = |x,, | = |xe.|: the parts
A, and A, that may still affecty are those that start at the point from which the
satisfaction ofp is still unknown. We apply the GMBINE procedure om\,, andA,,
to obtain a new (possibly empty) segmentf A,. This segment is appended4y, in
order to be propagated upwards, but before that we needftehehborderline between
Xo, @andA,, (as well as betweeg,,, andA,,) in order to reflect the update af,.
The procedure is described in Algorithm 2.

I
,,,,,, I
X1 Am ‘ X1 A«Pl ‘
X2 Asﬂz ‘ X2 A4P2 ‘
@ (b)

Fig. 7. A step in an incremental update: (a) A new segmefidr ¢ is computed fromA,,, and
Ay, (b) ais appended ta\, and the endpoints of,, andx.,, are shifted forward accordinly.

6.3 Monitoring using Timed Automata

Our contribution to the automaton-based approach for chgdkned properties will

be described elsewhere and we mention the relevant residftybin [MNPO5] we
have shown how to build deterministic timed automata froret pITL properties
and gave an alternative proof of the impossibility to do softdure MITL. The dif-
ference in dererminizability between the past and futuagrfrents turned out to be
a syntactical accidentot relatedto the difference in the causality between past and
future (note that the logic MTL, admittingunctual modalities such a®, is non-
deterministic in both directions). The reason is that vaebased modalities, when they



Algorithm 2 : INC-OFFLINE-MITL
input : an MITL Formulayp and an increment\, of a signal

switch ¢ do
casep
| Ap = Ay - mp(Ae);
end
caseoP: (1)

INC-OFFLINE-MITL (¢1, A¢);
o := COMBINE(OP;, Ay, );

d:=|al;
Ay i=A, - a;
Xe1 = X1 * <Av1>d ;
Ay = d\A4P1
end

o

aseor:(p1, p2)
INC-OFFLINE-MITL (¢1, A¢);

INC-OFFLINE-MITL (g2, A¢);
o= COMB|NE(OP27AL/)17A<P2);

d:=|al;
A=A, -
Xe1 = X1 * <Atp1>d ;
Apy = d\Ay, ;
Xez 1= Xea " (Apz)d s
Atﬁ’z = d\Atﬂz

end

end

point backwards, erase the effect of small fluctuations iol8an signals, see [MNPO5].

In [MNPO6] we adapted the compositional construction of-deterministic automata
from LTL [KPO5] to MITL. Finally we have shown in [MNPO7] howotconstruct de-
terministic timed automata for tHeoundedfragment of the more general logic MTL
underbounded variabilityassumptions. More technical details concerning the tech-
niques used can be found in those papers. We mention the wbfks02,KT04] and
[GDO00,Gei02,Gei03] which inspired part of our work.

7 Continuous Signals

The algorithms developed for dense-time Boolean signatsige a solid basis for
monitoring continuous signals when the properties belongésignal temporal logic
(STL) [MNO4,NMQ7] which is nothing but MITL, parameterizdxy a set of numerical
predicates playing the role of atomic propositions. Fohguoperties, each continuous
signal is transformed, via the numerical predicates appgan the property, into a
Boolean signal which is checked against the MITL “skeletof'the formula. In the
rest of this section we discuss technical problems relatetthé applicability of the
“Booleanization” procedure.



As we have seen, non-Zeno Boolean signals, albeit the fattitiey are defined
over dense time domain, admit aract finite representatiovia the switching points
that define theitrue andfalseintervals. This is no longer the case for continuous sig-
nals where we have a contrast betweenideal mathematical objectonsisting of an
uncountable number of paifs, {[¢]) with ¢ ranging over some intervéd, r) C Ry,
and anyfinite representation which consists of a collection of such pawth ¢ re-
stricted to range over a finite setsdmpling pointsThe values of at sampling points
t; andt, may, at most, impose some constraints on the valuésirgide the interval
(t1,t2). Such constraints can be based on the dynamics of the giegesgstem and
the manner in which the numerical simulator produces thaasigplues at the sampling
points. Numerical analysis is a very mature domain with afaiccumulated experi-
ence concerning tradeoffs between accuracy and computéatie. Its major premise
is that given a model of the system as a continuous dynamyjstém defined by a dif-
ferential equatiot?, one can improve the quality of a discrete-time approxioratif its
behavior by employing denser sets of sampling points an@ saphisticated numerical
integration procedure’$.

In order to speak quantitatively about the approximatioa sfgnal by another we
need the concept of distance/metrimposed on the space of continuous signals. A
metric is a function that assigns to two signélsand¢, a non-negative valug(&y, &2)
which indicates how they resemble each other. Using magriexcan express the “con-
vergence” of a numerical integration scheme as the comditiatlim,_.o p(§,&4) = 0
where( is the ideal mathematical signal afis its numerical approximation using an
integration stepl.

Metrics and norms for continuous signals are used extdgsinecircuit design,
control and signal processing. There are, however, majdni@ms concerned with their
application to property monitoring due to the incompaittipibetween the continuous
nature of the signals and the discrete natur€0ofl }-properties, a phenomenon which
is best illustrated using the following simple example. €ider the propert{l(z > 0)
and an ideal mathematical signathat satisfies the property but which passes very
close to zero at some points. We can easily transfoinio a signal¢’ which isvery
closeto £ under any reasonable continuous metric, but accordingetangétric induced
by the property, these signals are as distant as can be: dnemofsatisfies the property
and the other violates it (see Figure 8).

Moreover, if the sojourn time of a signal below zero is shart,arbitrary shift in
the sampling can make the monitor miss the zero-crossing evel declare the signal
as satisfying (see Figure 9). In this sense properties an@bostas small variations in
the signal may lead to large variations in its property fation. Let us mention some
interesting ideas due to P. Caspi [KC06] concerning newiogetor bridging the gap
between the continuous and the discrete points of view. $athics are expressible,
by the way, in STL [NMO7].

The abovementioned issues can be handled pragmaticallyrinamtext, without
waiting for a completely-satisfactory theoretical sabatito this fundamental prob-

15 It is worth noting that some models used for rapid simulation of transistovanks cannot
always be viewed as continuous dynamical systems in the classicalmaibal sense.
16 For systems which are stable the quality can be improved indefinitely.



Fig. 8. Two signals which are close from a continuous point of view, one satipfyia property
O(z > 0) and one violating it.

Fig. 9. Shifting the sampling points, zero crossing can be missed.



lem. The following assumptions facilitate the monitoriffggampled continuous signals
against STL properties, passing through the timed abgiract

1. Sufficiently-dense samplintipe simulator detects every change in the truth value of
any of the predicates appearing in the formula at a suffiecieowiracy. This way the
positive intervals of all the Boolean signals that corregpto these predicates are
determined. This requirement imposes some level of sapiiin on the simulator
that has to perform several back-and-forth iterations tat® the time instances
where a threshold crossing occurs. Many simulation tooéxl us industry have
already such event-detection features. A survey of thentreat of discontinuous
phenomena by numerical simulators can be found in [M0s99].

2. Bounded variabilitysome restrictive assumptions can be made about the vdlues o
the signal between two sampling poirtisandt,. For example one may assume
that ¢ is monotone so that if[t1] < £[t2] then[t]] < ¢[th] for everyt) andt)
such thatt; < | < t§, < t¢2. An alternative condition could be a condition a-la
Lipschitz: [£[ta] — £[t1]| < K|t2 — t1]. Such conditions guarantee that the signal
does not get wild between the sampling points, otherwispgaty checking based
on these values is useless.

Under such assumptions every continuous signal which enddy a discrete-time rep-
resentation, based on sufficiently-dense sampling, irclacgell-defined Boolean sig-
nal ready for MITL monitoring. Let us add at this point a gexieemark that the stan-
dards of exactness and exhaustiveness as maintained iietdiserification cannot and
should not be exported to the continuous domain, and ever i@ not guaranteed
that all events are detected, we can compensate for thatity s&fety margins in the
predicates and properties.

8 Monitoring STL Properties

In this section we illustrate the monitoring of STL propestiagainst signals produced
by the numerical simulator Matlab/Simulink, used mainlydontrol and signal-processing
applications, but also for modeling analog circuits at tnectional level of abstraction.
The waveforms presented here are the output of our firstfyrmaf analog monitoring
tool, which parses STL properties and applies the offlinekmgrprocedure described

in Section 6.1.

8.1 Following a Reference Signal
As a first example consider the property
¢1: Ojo,zo0) (1 > 0.7) = Q3,5 (w2 > 0.7))

which requires that whenevey crosses the threshold?7, so doesc, within ¢ € [3, 5]
time units. We fixz; to be the sinusoid

x1[t] = sin(wt),



dy

d>

Fig. 10. Sufficiently-dense sampling with respect to the two threshdldand d,. The set of
sampling points consists of a uniform grid augmented with the threshos$iagpoints.

and letz, be a signal generated by
xo[t] = sin(w(t + d)) + 0

whered is a random delay ranging i8, 5] degrees and is an additive random noise.
The marking procedure is illustrated in Figure 11. The Banlsignals corresponding
to the atomic propositions; andp, are derived from the sampled analog signal. From
there the truth values of the sub-formuldg 5 (22 > 0.7), (z1 > 0.7) = O35 (22 >
0.7) are marked as intermediate steps toward the marking, ofhich is satisfied in
this example. In Figure 12 we apply the same procedure tokche@gainst a signal

in which 2, was generated with a much larger additive ndise [—0.5,0.5]. The
fluctuations in the value of, are reflected in the Boolean abstractjgnand lead to a
violation of the property at some points wherg > 0.7 is not followed byxy > 0.7
within the pre-specified delay.

8.2 Stabilizability

The second example is a very typical stabilizability préypoased extensively in control
and signal processing. The system in question is supposethitttain a controlled
variabley around a fixed level despite disturbanaesoming from the outside world.
The actual system used to generate this example is a watdetmntroller for a nuclear
plant. The disturbances come from changes in the systenttaadrigger changes in
the operations of the reactor which, in turn, influences tlatewlevel, see [Don03].
Other instances of the same type of problem may occur whewndltege of a cirucit
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Fig.11. A 2-dimensional signal satisfying the propeffyy ;o0 ((z1 > 0.7) = O35 (2 >
0.7)). Boolean signals correspond to the evolution of the truth values of sulufae over time.



& LR )
s = e !
p1=x1 > 0.7 %J—\ [ ] [ 1] [
p2 =19 > 0.7 JHUH_LH RN 1 i 111
o
p1 — QP2 ‘ ‘ ‘ ‘ ‘ ‘L
D[0,300] (p1 - 0[3,5]?2) ‘ ‘ ‘ ‘ ‘ ‘

Fig.12. A 2-dimensional signal violating the properiyjo so0)((z1 > 0.7) = O3,5(z2 >
0.7)).



has to be kept constant despite variations in the currentalghanges in the circuit
workload.

We wanty to stay always in the intervél-30, 30] (except, possibly, for an initial-
ization period of duratio300) and if, due to a disturbance, it goes outside the interval
[—0.5,0.5], it should return to it within 50 time units and stay there for at le@6ttime
units. The whole property is

w2t D[300,2500]((\y| <30) A ((Jlyl >0.5) = <>[0,150]D[0,20](|3/\ <0.5))).

The results of applying our offline monitoring procedurehis tformula appear in
Figures 13 and 14. When the disturbance is well-behavingptbperty is verified,
while when the disturbance changes too fast, the propernyolated both by over-
shooting below-30 and by taking more thatb0 time units to return t¢—0.5, 0.5].

9 Conclusions

Motivated by the exportation of some ingredients of formeification technology to-
ward analog circuits and continuous systems in general mzaeked on the develop-
ment of a monitoring procedure for temporal properties ofticmous signals. During
the process we have gained better understanding of tengagrsfiability in general as
well as of the relation between real-time temporal logiad @med automata. The ideas
presented in this paper have been implemented intanatog monitoring tooAMT
[NMO7] that has been applied to real-life case studies.
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