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Words, even infinite words, have their limits.

Abstract. We survey some of the problems associated with checking whether a
givenbehavior (a sequence, a Boolean signal or a continuous signal) satisfies a
property specified in an appropriate temporal logic and describe two such moni-
toring algorithms for the real-time logic MITL.

1 Introduction

This paper is concerned with the following problem.
Given a temporal propertyϕ how to check that a given behaviorξ satisfies it.

Within this paper we assume that the behavior to be checked isproduced by amodel
of a dynamical systemS, although some of the techniques are applicable to behaviors
generated by real physical systems. Unlike formal verification which aims at showing
thatall behaviors generated byS satisfyϕ, hereS is used to generateone behavior at a
timeand can thus be viewed as ablack box. This setting has been studied extensively in
recent years both in the context of digital hardware, under the names of “dynamic” ver-
ification, or assertion checking as well as for software, where it is referred to asruntime
verification [HR02a,SV03]. We will use the termmonitoring. In this framework the
question ofcoverage, that is, finding a finite number of test cases whose behavior will
guarantee overall correctness, is delegated outside the scope of the property monitor.
This approach can be used when the system model is too large tobe verified formally.
It is also applicable when the “model” in question is nothingbut a hardly-formalizable
simulation program, as is often the case in electrical simulation of circuits. On the other
hand, the explicit presentation ofξ itself, rather than using the generating modelS,
raises new problems.

Most of the work described in this paper has been performed within the Euro-
pean project PROSYD4 with the purpose of extending some ingredients of verification
methodology from digital (discrete) to analog (continuousand hybrid) systems. Conse-
quently, we treat systems and behaviors described at three different levels of abstraction

4 IST-2003-507219 PROSYD (Property-Based System Design).



(discrete, timed and continuous). Hence we find it useful to start with a generic model
of a dynamical system defined over an abstract state space which evolves in an abstract
time domain, see also [M98,M02]. The three models used in thepaper are obtained as
special instances of this model.

States and BehaviorsA modelS of a system is defined over a setV = {x1, . . . xn}
of state variables, each ranging over a domainXi. Thestate spaceof the system is thus
X = X1 × · · · × Xn. The system evolves over a time domainT which is a linearly-
ordered set. Abehaviorof the system is a function from the time domain to the state
space,ξ : T → X. We considercompletebehaviors, whereξ is defined all overT , as
well aspartial behaviors whereξ is defined only on a downward-closed subset ofT ,
that is, some interval of the form[0, r). We use the notationξ[t1, t2] for the restriction
of ξ to the interval[t1, t2] and letξ[t] = ⊥ whent ≥ r. We denote the set of all possible
(complete and partial) behaviors over a setX by X∗.5

Systems The dynamics of a systemS is defined via a rule of the formx′ = f(x, u)
which determines the future statex′ as a function of the current statex and current
inputu ∈ U . As mentioned earlier, we do not have access tof and our interaction with
the model is restricted to stimulating it with an inputν ∈ U∗ and then observing and
checking the generated behaviorξ ∈ X∗.

Properties Regardless of the formalism used to express it, a propertyϕ defines a subset
Lϕ of X∗. A property monitor is a device or algorithm for deciding whether a given
behaviorξ satisfiesϕ (denoted byξ |= ϕ) or, equivalently, whetherξ ∈ Lϕ.

The paper starts with properties of discrete (digital) systems, a well-studied and ma-
ture domain, where some of the problems associated with monitoring (non-causality of
the specification formalism, satisfiability by finite traces, online vs. offline) are already
manifested. We then move totimeddiscrete systems, whose behaviors can be viewed
ascontinuous-time Boolean signals, which raise a lot of new issues such as sampling,
event detection, variability bounds, etc. Most of the paperwill investigate monitoring at
this level of abstraction where we made some original contributions. Finally we move to
continuous (analog) signals which, in addition to dense time, admit alsonumerical real
values. Although for many types of properties (and in particular those expressible in our
signal temporal logic[NM07,MN04]) checking continuous properties can be reduced
to checking timed properties, there are further issues, such as approximation errors,
raised by the continuous domain and by the manner in which signals are generated by
numerical simulators.

2 Discrete (Digital) Systems: Properties

Discrete models are used for modeling digital hardware (at gate level and above) as
well as software. At this level of abstraction the setN of natural numbers is taken as

5 For discrete time behaviors, it is common to useX∗ for finite behaviors andXω for infinite
ones, but these distinctions are less meaningful when we come to continuous behaviors.



the underlying time domain. In this case the difference betweenξ[t] andξ[t + 1] re-
flects the changes in state variables that took place in the system within one clock cycle
(hardware) or one program step (software).6 The state space of digital systems is often
viewed as the setBn of Booleann-bit vectors.7 Behaviors are, hence,n-dimensional
Booleansequencesgenerated by system models which are essentially finite automata
(transition systems) which can be encoded in a variety of formalisms such as systems of
Boolean equations with primed variables or unit delays, hardware description languages
at various levels of abstraction, programming languages, etc.

Semantically speaking, a property is a subset of the set of all sequences (also known
in computer science as aformal language) indicating the behaviors that we allow the
system to have. Such subsets can be defined syntactically using a variety of formalisms
such as logical formulae, regular expressions or automata that accept them. In this paper
we focus ontemporal logic[MP92,MP95] which can be viewed as a useful syntactic
sugar for the first-order fragment of the monadic logic of order [T61]. This section does
not present new results but is rather a synthetic survey of the state-of-the-art which can
serve as an entry point to the vast literature and which, we feel, is a pre-requisite for
understanding the timed and continuous extensions.

2.1 Temporal Logic (Future)

The temporal logic of linear time (LTL) is perhaps the most popular property specifica-
tion formalism. In a nutshell it is a language for specifyingcertain relationships between
values of the state variables atdifferent time instants, that is, at different positions in the
sequence. For example, we may require that wheneverx1 = 1 at positiont thenx2 = 0
at positiont+3. A property monitor is thus a device that observes sequencesand checks
whether they satisfy all such relationships. We repeat briefly some standard definitions
concerning the syntax and semantics of LTL. Bysemanticswe mean the rules according
to which a sequence is declared as satisfying or violating a formulaϕ.
The syntax of LTL is given by the following grammar:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | © ϕ | ϕ1Uϕ2,

wherep belongs to a setP = {p1, . . . , pn} of propositions indicating values of the
corresponding state variable. The basic temporal operators arenext(©), which speci-
fies what should hold in the next step anduntil (U), which requiresϕ1 to hold untilϕ2

becomes true, without bounding the temporal distance to this becoming. From these ba-
sic LTL operators one can derive other standard Boolean operators as well as temporal
operators such aseventually(♦) andalways(¤):

♦ϕ = T Uϕ and ¤ϕ = ¬♦¬ϕ.

6 We mention here the existence and usefulness ofasynchronous(event triggeredrather than
time triggered) systems and models, where the interpretation of a step is different.

7 In software, as well as in high-level models of hardware, systems mayinclude state vari-
ables ranging over larger domains such as bounded and unbounded numerical variables or
dynamically-varying data structures such as queues and trees, but, atleast in the hardware
context, those can be encoded by bit vectors.



Models of LTL areBoolean sequencesof the formξ : N → B
n. We also usep to denote

the sequence obtained by projecting a sequenceξ on the dimension corresponding top.
The satisfaction relation(ξ, t) |= ϕ, indicating that sequenceξ satisfiesϕ starting from
positiont, is defined inductively as follows:

(ξ, t) |= p ↔ p[t] = 1
(ξ, t) |= ¬ϕ ↔ (ξ, t) 6|= ϕ

(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ©ϕ ↔ (ξ, t + 1) |= ϕ

(ξ, t) |= ϕ1Uϕ2 ↔ ∃t′ ≥ t (ξ, t′) |= ϕ2 and∀t′′ ∈ [t, t′), (ξ, t′′) |= ϕ1

(ξ, t) |= ♦ϕ ↔ ∃t′ ≥ t (ξ, t′) |= ϕ

(ξ, t) |= ¤ϕ ↔ ∀t′ ≥ t (ξ, t′) |= ϕ

A sequenceξ satisfiesϕ, denoted byξ |= ϕ, iff (ξ, 0) |= ϕ.

2.2 Temporal Logic (Past)

The past fragment of LTL is defined by a syntax similar to the future fragment where
the next and until operators are replaced bypreviously(©- ) and since(S). As with
future LTL, useful derived operators aresometime in the past♦- andalways in the past
¤- defined as

♦- ϕ = T Sϕ and ¤- ϕ = ¬♦- ¬ϕ

Their semantics is given by

(ξ, t) |= ©- ϕ ↔ t = 0 or (ξ, t − 1) |= ϕ

(ξ, t) |= ϕ1Sϕ2 ↔ ∃t′ ∈ [0, t] (ξ, t′) |= ϕ2 and∀t′′ ∈ (t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ♦- ϕ ↔ ∃t′ ∈ [0, t](ξ, t′) |= ϕ

(ξ, t) |= ¤- ϕ ↔ ∀t′ ∈ [0, t] (ξ, t′) |= ϕ

A finitesequence satisfies a past propertyϕ if it satisfies it from the last position “back-
wards”, that is,ξ |= ϕ if (ξ, |ξ|) |= ϕ.

3 Discrete Systems: Checking Temporal Properties

We describe here the fundamental problems associated with checking temporal proper-
ties as well as the common approaches for tackling them. These are problems that exist
already in the simplest model of Boolean sequences and are propagated, with additional
complications to the timed and continuous domains.

3.1 Causality and Non-determinism

A major difficulty in checking properties expressed in future LTL is due to thenon-
causaldefinition of the satisfaction relation. To see what this means it might be helpful



to look at the definition of LTL semantics as a procedure whichis recursiveon both
the structure ofϕ and on the sequential structure ofξ. This procedure is called initially
with ϕ and withξ[0] as arguments because we want to determine the satisfiabilityof
ϕ from position zero. Then the semantic rules “call” the procedure recursively with
sub formulae ofϕ and with further positions ofξ. In other words, the satisfiability of
ϕ at time t may depend on the value ofξ at somefuture time instantt′ ≥ t. Even
worse, some temporal operators refer to future time instants in aquantifiedmanner, for
example, requiring somep to hold inall future time instants. The satisfiability of such
a property may sometime be determined only at infinity, that is, “after” we can be sure
that no instance of¬p is observed.

Note that for past LTL, the recursion goesbackwardin time and the satisfaction of
a past formulaϕ by a sequenceξ at positiont is determined according to the values of
ξ at the interval[0, t] and in this sense, past LTL is causal. However it has been argued
that the futuristic specification style is more natural for humans. The past fragment of
LTL admits an immediate translation to deterministic automata and a simple monitoring
procedure [HR02b] based on this observation.

The “classical” theoretical scheme for using LTL in formal verification is based on
translating a formulaϕ into a non-deterministic automaton over infinite sequences(an
ω-automaton)Aϕ that accepts exactly the sequences that satisfy it. The non determin-
ism is needed to compensate for the non causality: the automaton has to “guess” at time
t whether future observations at somet′ > t will renderϕ satisfied att, and split the
computation into two paths according to these predictions.A path that made a wrong
prediction will be aborted later, either within a finite number of steps (if the guess is
falsified by some observation) or via theω-acceptance condition (if the falsification is
due to non-occurrence of an event at infinity). Satisfiability of the formula can thus be
determined by checking whether theω-language accepted byAϕ is not empty. This
reduces to checking the existence of an accepting cycle inAϕ which is reachable from
an initial state. Verification is achieved by checking whetherS may generate an infinite
behavior rejected byAϕ (or accepted byA¬ϕ). It should be noted that simplified pro-
cedures have been developed and implemented when the property in question belongs
to a subclass of LTL, such as safety.

3.2 Evaluating Incomplete Behaviors

In monitoring we do not exploit the modelS that generates the sequences, but rather
observe sequences as they come. The major problem here, withrespect to the standard
semantics of LTL which is defined overcomplete infinite sequences, is the impossibility
to observe infinite sequences in finite time.8 Hence, the extension of LTL semantics to
incomplete behaviorsis a major issue in monitoring.

After having observed a finite sequenceξ we can be in one of the following three
basic situations with respect to a propertyϕ:

8 To be more precise, there are some classes of infinite sequences suchas theultimately-periodic
ones, that admit a finite representation and an easily-checkable satisfiability, however we work
under the assumption that we do not have much control over the type of sequences provided by
the simulator and hence we have to treat arbitrary finite sequences. It is worth noting that ifS is
input-deterministic then an ultimately-periodic input induces an ultimately-periodic behavior.



1. All possible infinite completions ofξ satisfyϕ. Such a situation may happen, for
example, whenϕ is ♦p andp occurs inξ. In this case we say thatξ positively
determinesϕ.

2. All possible infinite completions ofξ violateϕ. For example whenϕ is ¤¬p andp

occurs inξ. In this case we say thatξ negatively determinesϕ.
3. Some possible completions ofξ do satisfyϕ and some others violate it. For exam-

ple, any sequence wherep has not occurred has extensions that satisfy, as well as
extensions that violate, formulae such as♦p or ¤¬p. In this case we say thatξ is
undecided.

It should be noted that the “undecided” category can be refined according to both
methodological, quantitative, and logical considerations. One might want to distinguish,
for example, between “not yet violated” (in the case of¤¬p) and “not yet satisfied” (in
the case of♦p). The quantitative aspects enter the picture as well because the longer
we observe a sequenceξ free of p, the more we tend to believe in the satisfaction of
¤¬p, although the doubt will always remain. On the other hand, the satisfaction of a
formula like©kp, a shorthand for©(©(. . . © p) . . .)), although undecided for se-
quences shorter thank, will be revealed in finite time. The most general type of answer
concerning the satisfiability ofϕ by a finite sequenceξ would be to give exactly the set
of completions ofξ that will make it satisfyϕ, defined as

ξ\ϕ = {ξ′ : ξ · ξ′ |= ϕ}.

Positive and negative determination correspond, respectively, to the special cases where
ξ\ϕ = X∗ andξ\ϕ = ∅. This “residual” language can be computed syntactically as
the left quotient (“derivative”) ofϕ by ξ.

In certain situations we would like to give a decisive answerat the end of the se-
quence. In the case of positive and negative determination we can reply with a yes/no
answer. More general rules for assigning semantics to everyfinite sequence have been
proposed [LPZ85,EFH+03]. Let us consider some sub-classes of LTL formulae for
which such a finitary semantics clearly makes sense. The simplest among those is
bounded-LTL where the only temporal operator isnext and where satisfiability of a
formula ϕ at time0 is always determined by the values of the sequence up to some
t ≤ k, with k being a constant depending onϕ. Note that this class is not as useless as
it might seem: one can use “syntactic sugar” operators such as¤[0,r]ϕ as shorthand for
∧r−1

i=0 (©iϕ). The implication for monitoring is that everysufficiently-longsequence is
determined with respect to such formulae (see also [KV01]).

The next class is the class ofsafetyproperties9 where the only quantification of the
time variable isuniversalas in¤ϕ. It is not hard to see thatω-languages corresponding
to such formulae consist of infinite words thatdo not have a prefixin some finitary
language. While monitoring a finite sequenceξ relative to such a formula, we can be
in either of the following two situations. Either such a prefix has been observed and
hence any continuation ofξ will be rejected andξ can be declared as violating, or no

9 To be more precise safety properties can be written as positive Boolean combinations of for-
mulae of the form¤ϕ whereϕ is a past property, and eventuality properties are negations of
safety properties.



such prefix has been observed but nothing prevents its occurrence in the future andξ is
undecided. A similar and dual situation holds for eventually property such as♦ϕ that
quantify existentially over time, and where an occurrence of a finitary prefix satisfying
ϕ renders the sequence accepted.

With respect to these sub-classes one can adopt the following policy: interpret any
quantificationQt, Q ∈ {∀,∃} asQt ≤ |ξ| and hence a safety that has not been violated
during the lifetime ofξ is considered as satisfied, and an eventuality not fulfilled by
that time is interpreted as violated. This principle may be extended to more complex
formulae that involve nesting of temporal operators but in this case the interpretation
seems less intuitive.

Let us remark that although models ofpastLTL are finite sequences, the problem
of undecided sequences still exists. Consider for example the property¤- p. As soon as
¬p is observed, we can say the the formula is negatively determined and need not wait
for the rest of the sequence. On the other hand, as long as¬p has not been observed,
although the prefix satisfies the property we cannot give conclusive results until the
“official” end of the sequence, because¬p may always be observed in the next instant.
Hence the treatment of past properties is not much differentfrom future ones, except
for the simpler construction of the corresponding automaton

Naturally many solutions have been proposed to this problemin the context of mon-
itoring and runtime verification and we mention few. The workof [ABG+00] concern-
ing the FoCs property checker of IBM, as well as those of [KLS+02] are restricted to
safety (prefix-closed) or eventuality properties and report violation when it occurs. On
the other hand, the approach of giving the residual languageis proposed in [KPA03] and
[TR04] in the context of timed properties. A systematic study of the possible adapta-
tion of LTL semantics to finite sequences (“truncated paths”) is presented in [EFH+03].
This semantics has been adopted by the semiconductor industry standardproperty spec-
ification languagePSL [EF06].

Our approach to monitoring is invariant under all these semantical choices. As a
minimal requirement for being used, the chosen semantics should associate with every
formula ϕ a functionΩϕ : X∗ → D which maps all finite sequences into a domain
D that containsB (satisfied/violated) and is augmented with some additionalvalues for
undecided formulae.

3.3 Offline and Online Monitoring

In this section we discuss different forms of interaction between the mechanism that
generates behaviors and the mechanism that checks whether they satisfy a given prop-
erty. The behaviors are generated by some kind of asimulator that computes states
sequentially. Without loss of generality we may assume thatthe systems we are inter-
ested in arenot reverse-deterministicand, hence, the natural way to generate behaviors
is from the past to the future. One may think of three basic modes of interaction (see
Figure 1):

1. Offline: The behaviors are completely generated by the simulator before the check-
ing procedure starts. The behaviors are kept in a file which can be read by the
monitor in either direction.



2. Passive Online: The simulator and the checker run in parallel, with the latter ob-
serving the behaviors progressively.

3. Active Online: There is a feed-back loop between the generator and the monitor so
that the latter may influence the choice of inputs and, hence,the subsequent values
of ξ. Such “adaptive” test generation may steer the system toward early detection
of satisfaction or violation, and is outside the scope of this paper.

Each behavior is a finite sequenceξ, whose satisfiability value with respect toϕ is
defined viaΩϕ(ξ) regardless of the checking method. However there are some practical
reasons to prefer one method over the other. First, to save time, we would like the
checking procedure to reach the most refined conclusions as soon as possible. In the
offline setting this will only reduce checking time, while inthe online setting the effects
of early detection of satisfaction/violation can be much more significant. This is because
in certain systems (analog circuits is a notorious example)simulation time isvery long
and if the monitor can abort a simulation once its satisfiability is decided, one can save
a lot of time.

The difference between online and offline is, of course, muchmore significant in
situations where monitoring is done with respect to aphysical device, not its simulated
model. We discuss briefly several instances of this situation. The first is when chips are
tested after fabrication by injecting real signals to theirports and observing the outcome.
Here, the response time of the tester is very important and early (online) detection of
violation can have economic importance. In other circumstances we may be monitoring
a system which is already up and running. One may think of the supervision of a com-
plex safety-critical plant where the monitoring software should alert the operator about
dangerous developments that manifest themselves by property violation or by progress
toward such violations. Such a situation calls for online monitoring, although offline
monitoring can be used for “post mortem” analysis, for example, analyzing the “black
box” after an airplane crash. Monitoring can be used for diagnosis and improvement of
non-critical systems as well. For example analyzing whether the behavior of an organi-
zation satisfies some specifications concerning the business rules of the enterprise, e.g.
“every request if treated within a week”. Such an application of monitoring can be done
offline by inspecting transaction logs in the enterprise data base.

In the sequel we describe three basic methods for checking satisfaction of LTL
formulae by sequences.

The Automaton-Based Method This is an online-oriented approach that follows the
principles used in formal verification. To monitor a property ϕ we first construct the
automatonAϕ that accepts exactly the sequences satisfyingϕ and then let it read every
sequenceξ as it is generated. There is a vast literature concerning theconstruction of
automata from LTL formulae [VW86] and monitoring does not depend too much on
the choice of the translation algorithm. We have, however a preference for the compo-
sitional construction, presented in [KP05] and extended for timed systems in [MNP06].
For each sub-formulaψ of ϕ, this procedure constructs a sequenceχψ(ξ) indicating the
satisfaction ofψ over time, that isχψ(ξ) has value1 at t iff (ξ, t) |= ψ.

There are two major problems that need to be tackled while employing this method.
The first problem is that the natural automaton forϕ will be an automaton overinfi-
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Fig. 1.Offline, passive online and active online modes of interaction between a test generator and
a checker.

nite sequences. This automaton needs to be transformed, via a suitable definition of
acceptance conditions, into an automaton over finite sequences that realizes the chosen
finitary semantics, as discussed in the previous section. For example, if our satisfiability
domain consists ofyes, no andundecided, we will outputyesas soon as the automaton
enters a state from which all the remaining paths are accepting (a positive “sink”) and
nowhen we enter a negative sink. From all other states the output will be undecided.

The second problem is thatAϕ is typically non-deterministic. It can be resolved
in either of the following ways: 1) Feed the non-deterministic automaton withξ while
keeping track of all the states in which it can be at every timeinstant. This amounts to
performing the classical “subset construction” on-the-fly; 2) Determinize the automaton
offline, either using Safra’s algorithm forω-automata [S88] or using a simpler algorithm
adapted to the finitary semantics.

Purely-Offline Marking This is the first method we have developed to timed and
continuous properties and will be described in more detail in Section 6.1. The procedure
consists in computingχψ(ξ) for every sub-formulaψ of ϕ from the bottom up. It starts
with the truth values of propositional formulaeχp(ξ) given by the sequenceξ itself.
Then, recursively, for each sub-formulaψ with immediate sub-formulaeψ1 andψ2 such
thatχψ1

(ξ) andχψ2
(ξ) have already been computed, we computeχψ(ξ) following the

semantic rules of LTL. The backward nature of these rules implies that the values of
ξψ1

andξψ2
at timet will “propagate” to values ofξψ at somet′ ≤ t. The satisfaction

functionχϕ for the main formula is computed at the end.



Incremental Marking This approach combines the simplicity of the offline proce-
dure with the advantages of online monitoring in terms of early detection of violation
or satisfaction. After observing a prefix of the sequenceξ[0, t1] we apply the offline
procedure. If, as a result,χϕ(ξ) is determined at time zero we are done. Otherwise we
observe a new segmentξ[t1, t2] and then apply the same procedure based onξ[0, t2].

A more efficient implementation of this procedure need not start the computation
from scratch each time a new segment is observed. It will be often the case thatχψ(ξ)
for some sub-formulaeψ is already determined for some subset of[0, t1] based on
ξ[0, t1]. In this case we only need to propagate upwards the new information obtained
from ξ[t1, t2], combined, possibly, with some additional residual information from the
previous segment that was not sufficient for determination in the previous iterations.
This procedure will be described in more algorithmic detailin Section 6.2.

The choice of the granularity (length of segments) in which this procedure is in-
voked depends on trade-offs between the computational costand the importance of
early detection.

4 The Timed Level of Abstraction

Coming to export the specification, testing and verificationframework from the digital
to the analog world, one faces two major conceptual and technical problems [M06].

1. The state variables range over subsets of the set ofreal numbersthat represent
physical magnitudes such as voltage or current;

2. The systems evolve over aphysicaltime scale modeled by the real numbers and not
over alogical time scale defined by a central clock or by events.

Mathematically speaking, the behaviors that should be specified and checked aresig-
nals, function fromR≥0 to R

n rather thansequencesfrom N to B
n or to some other

finite domain. The first problem for monitoring is the problemof how to represent a sig-
nal defined over the real time axis inside the computer, giventhat it is a function defined
over an infinite (and non-countable) domain. The very same problem is encountered, of
course, by numerical simulators that produce such signals.

Based on our conviction that the dense time problem is more profound than the
infinite-state problem we use the following approach. Usinga finite number of pred-
icates over the continuous state space, analog signals are transformed into Boolean
ones and are checked against properties expressed in a real-time temporal logic whose
atomic propositions correspond to those predicates. This allows us to tackle the problem
of dense time in isolation. Aspects specific to the continuous state space are discussed in
Section 7. Note that one can naturally combine these predicates with genuine Boolean
propositions to specify properties of hybrid systems (mixed-signal systems in the circuit
jargon).

Handling an infinite state space, such as the continuum, using finite formulae is a
fundamental mathematical problem. In finite domains one cancharacterize every indi-
vidual state by a distinct formula. For example, there is a bijection betweenBn and the
set of Boolean terms over{p1, . . . , pn} which has one literal for eachpi. The common



way to speak of subsets of infinite sets such asR
n is viapredicates, functions fromR

n

to B, for example inequalities of the formxi < d.
We thus adopt the following approach. Letµ1, . . . , µm bem predicates of the form

µ : R
n → B. These predicates define a mappingM : R

n → B
m assigning to every

real point a Boolean vector indicating the predicates it satisfies. Applying this mapping
in a pointwise fashion to an analog signalξ : R≥0 → R

n we obtain a Boolean sig-
nal M(ξ) = ξ′ : R≥0 → B

m describing the evolution over time of the truth values
of these predicates with respect toξ (see Figure 2). Events such asrising and falling
in the Boolean signal correspond to somequalitativechanges in the analog signal, for
example threshold crossing of some continuous variable. This is an intermediate level
of abstraction where we can observe thetemporal distancebetween such events and
need to confront the problems introduced by the dense time domain. Timed formalisms
such as real-time temporal logics or timed automata are tailored for modeling, spec-
ification, verification and monitoring at this level of abstraction, which in addition to
its applicability to analog circuits, is also very useful tomodel phenomena such as de-
lays in digital circuits and execution times of software and, in fact, anything in life that
can be modeled as a process where some time has to elapse between its initiation and
termination.10
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Fig. 2. A 2-dimensional continuous signal and the2-dimensional Boolean signal obtained from
it via the predicatesx1 > 0.7 andx2 > 0.7.

4.1 Dense-Time Signals: Representation

The major problems in handling Boolean signals by computerized tools are due to the
properties of the time domain. In digital systems we have thediscrete order(N, <),
which means that there is a relation (successor) that generates the whole order relation.

10 It is a pity that the study and utilization of timed models outside academic “formal methods”
circles is so negligible compared to their vast, almost universal, domain ofapplication.



In other words, for everyt andt′ such thatt < t′, there is a finite positivek such that
t′ = Suck(t). This also implies that whenever we put a boundr on the range of the
time variable, the set{t : 0 ≤ t ≤ r} is finiteand every behavior defined on the interval
[0, r] can be represented by a finite set{ξ[0], ξ[1], . . . , ξ[r]}.

The dense order(R, <) does not admit such a property, and for everyt < t′ one
can findt′′ such thatt < t′′ < t′. This implies that in order to specify a dense-time
signal, even if restricted to a bounded time interval[0, r], one might need to specify
an infinite set of values. For arbitrary analog signals the only way to provide these
values throughout the entire interval is via analytic expressions such asξ[t] = sin(t).
Otherwise an analog signal can only be partially represented by its values at a finite
subset of the time domain consisting ofsampling points(more on that in Section 7). As
for Boolean signals, let us note that functions fromR+ to B can be rather weird objects,
potentially switching between0 and1 infinitely many times in a bounded interval of
time (the so-called Zeno phenomenon).11 From now on we restrict our attention to non-
Zeno Boolean signals.

A non-Zeno Boolean signalξ defined over an interval[0, r) decomposes naturally
into a finite sequence of intervalsI0, I1, . . . , Ik such thatI0 = [0, t1), Ii = [ti, ti+1),
Ik = [tk−1, r), the value ofξ is constant in every interval, andξ(Ii+1) = ¬ξ(Ii). The
set of intervals, together with the value att = 0 determine the value ofξ at anypoint
and can serve as a basis for checking properties relative toξ.

4.2 Dense-Time Signals: Properties

The temporal operators of LTL are of two types. Thenext operator is bounded and
quantitative. It specifies something that should happen within the very next step or, if
used iteratively, within a bounded number of steps. Theuntil operator and its derivatives
are unbounded and qualitative, requiring that something should or should not hold at
some unspecified future instant. The latter properties are not affected seriously from the
passage to dense time, while quantitative operators need tobe redefined. To start with,
thenextoperator which specifies att what should hold at thesmallestt′ such thet < t′

becomes meaningless. Instead one has to use operators that specify at t what should
hold at timet+ d or during the intervalt⊕ [a, b] = [t+ a, t+ b]. Many temporal logics
over such metric time have been proposed and studied [Koy90,AH92,Hen98,HR04] and
we will focus on the logic MITL, which is a natural adaptationof LTL to dense time
[AFH96].

Dense time also has an influence on the different monitoring procedures. As we
shall see, the offline procedure based on marking the truth values of sub-formulae over
time, can be rather easily adapted to signals. However the online approaches are more
problematic. Consider the approach based on translating a formula into an automaton
that accepts its models. The appropriate automaton will be atimed automaton, which
reads signals continuously and uses auxiliary clock variables to measure times since
the occurrence of certain events. Automata corresponding to MITL formulae are, more

11 Such Zeno signals can be obtained from analog signals via Booleanization:just consider a
signal representing a damped oscillation around zero and its Boolean image via the predicate
x < 0.



often than not, non-deterministic, a feature that, in a discrete-time framework, can be
resolved using subset construction, either offline or on thefly. Dense non-determinism
is another story as the automaton may stay during an intervalin a stateq while at any
moment during the interval it may take a transition toq′, thus spawning uncountably-
many runs of the automaton. The impossibility of an offline determinization of timed
automata is a well-known fact in the domain, but in Section 6.3 we will mention some
remedies to this problem.

We can now move to more detailed definitions of signals and their corresponding
temporal logics, followed by the description of their monitoring algorithms.

5 Boolean Signals and their Temporal Logics

5.1 Signals

Two basic semantic domains can be used to describe timed behaviors. Time-event se-
quencesconsist of instantaneous events separated by time durations while discrete-
valuedsignalsare functions from time to some discrete domain. The reader may con-
sult the introduction to [ACM02] for more details on the algebraic characterization of
these domains. In this work we use Boolean signals as the semantic domain, which is
the natural choice, both for the logic MITL and the circuit application domain.

Let the time domainT be the setR≥0 of non-negative real numbers. A Boolean
signal is a functionξ : T → B

n. We useξ[t] for the value of the signal at timet and
the notationσt1

1 · σt2
2 · · · for a signal whose value isσ1 at the interval[0, t1), σ2 in the

interval [t1, t1 + t2), etc. A signal whose value is defined only on an interval[0, r) is
called finite and ofmetric12 lengthr (denoted by|ξ| = r). The restriction of a signal to
lengthd is defined as

ξ′ = 〈ξ〉d iff ξ′[t] =

{

ξ[t] if t < d

⊥ otherwise

For the sake of simplicity we restrict ourselves toleft-closed right-opensignal segments
and to timed modalities that use only closed intervals. As a consequence we exclude
signals withpunctual“intervals” which are meaningless in the algebraic definition of
signals [ACM02,A04]. The more general case was treated in [AFH96].

Different Boolean signals can be combined and separated using the standard opera-
tions ofpairing andprojectiondefined as

ξ1 || ξ2 = ξ12 if ∀t ξ12[t] = (ξ1[t], ξ2[t])
ξ1 = π1(ξ12) ξ2 = π2(ξ12)

In particular,πp(ξ) will denote the projection ofξ on the dimension that corresponds to
propositionp.

Any Boolean operationOP can be “lifted” to an operation on signals as

ξ = OP(ξ1, ξ2) iff ∀t ξ[t] = OP(ξ1[t], ξ2[t])

12 To distinguish it from thelogical length which corresponds to the number of state changes.



When we apply operations on signals of different lengths we use the convention

OP(v,⊥) = OP(⊥, v) = ⊥

which guarantees that ifξ = OP(ξ1, ξ2) then|ξ| = min(|ξ1|, |ξ2|).
Any reasonable Boolean signal can be represented using a countable number of

intervals. Aninterval coveringof a given intervalI = [0, r) is a sequenceI = I1, I2 . . .

of left-closed right-open intervals such that
⋃

Ii = I andIi ∩ Ij = ∅ for everyi 6= j.
An interval coveringI ′ is said torefineI, denoted byI ′ ≺ I if ∀I ′ ∈ I ′ ∃I ∈ I such
thatI ′ ⊆ I.

An interval coveringI is said to beconsistentwith a signalξ if ξ[t] = ξ[t′] for
everyt, t′ belonging to the same intervalIi. In that case we can use the notationξ(Ii).
Clearly, if I is consistent withξ, so is anyI ′ ≺ I. We restrict ourselves to signals
of finite variability, that is, signals admitting a finite consistent interval covering. We
denote byIξ theminimal interval covering consistent with a finite variability signal ξ.
The set of positive intervals ofξ is I+

ξ = {I ∈ Iξ : ξ(I) = 1} and the set of negative

intervals isI−
ξ = Iξ − I+

ξ .

A signalξ is said to beunitary if I+
ξ is a singleton. Any finite-variability signalξ

over a bounded interval can be decomposed into a union ofk unitary signals such that
ξ = ξ1 ∨ . . . ∨ ξk, see Figure 3.

The concatenationξ = ξ1 · ξ2 of two signalsξ1 andξ2 defined over the intervals
[0, r1) and[0, r2) respectively is a signal over[0, r1 + r2) defined as:

ξ[t] =

{

ξ1[t] if t < r1

ξ2[t − r1] otherwise

Thed-suffixof a signalξ is the signalξ′ = d\ξ obtained fromξ by removing the
prefix 〈ξ〉d from ξ, that is,

ξ′[t] = ξ[t + d] for everyt ∈ [0, |ξ| − d).

ξ

ξ1

ξ2

ξ3

Fig. 3.A signalξ and its unitary decomposition(ξ1, ξ2, ξ3).

TheMinkowski sumanddifferenceof two setsP1 andP2 are defined as

P1 ⊕ P2 = {x1 + x2 : x1 ∈ P1, x2 ∈ P2}
P1 ª P2 = {x1 − x2 : x1 ∈ P1, x2 ∈ P2}.



Of particular interest are the applications of these operations to one-dimensional sets
consisting of elements of the time domainT :

{t} ⊕ [a, b] = [t + a, t + b], [m,n) ⊕ [a, b] = [m + a, n + b)

{t} ª [a, b] = [t − b, t − a], [m,n) ª [a, b] − [m − b, n − a)

The operation that will be used for computing the satisfiability of a formula whose
major operator is a bounded temporal operator is the operation ofback shifting.

Definition 1 (Back Shifting). The[a, b]-back-shifting of a Boolean signalξ′, denoted
by ξ = SHIFT[a,b](ξ

′), is a signalξ such thet for everyt, ξ[t] = 1 iff there exists
t′ ∈ t ⊕ [a, b] such thatξ′[t′] = 1.

The resemblence of this definition to the semantics of the♦[a,b] operator (to be defined
in Section 5.2) is not a coincidence. Ifϕ = ♦[a,b]ϕ

′ then the respective satisfiability
signals ofϕ andϕ′ satisfyχϕ = SHIFT[a,b](χϕ′). This operation is easy to compute
on a representation based on an interval covering of the signals. Whenξ′ is a unitary
signal withI+

ξ′ = {I ′}, the result of back shifting is the unitary signalξ with I+
ξ = {I}

whereI = I ′ ª [a, b]∩ T (the intersection withT is needed to remove negative values,
see Figure 4).

I′ = [m, n)

I′ ª [a, b]

0 0 0
(c)(b)(a)

Fig. 4. Three instances of back shiftingI = [m, n) ª [a, b]: (a) I = [m − b, n − a); (b) I =
[0, n − a] becausem − b < 0; (c) I = ∅ becausen − a < 0

5.2 Real-time Temporal Logic

The syntax of MITL is defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1Uϕ2

wherep belongs to a setP = {p1, . . . , pn} of propositions andb > a ≥ 0 are ratio-
nal numbers.13 From basicMITL operators one can derive other standard Boolean and
temporal operators, in particular the time-constrainedeventuallyandalwaysoperators:

♦[a,b]ϕ = T U[a,b]ϕ and ¤[a,b]ϕ = ¬♦[a,b]¬ϕ

13 In fact, it is sufficient to consider integer constants.



We interpretMITL overn-dimensional Boolean signals and define the satisfiability re-
lation similarly to LTL.

(ξ, t) |= p ↔ p[t] = T

(ξ, t) |= ¬ϕ ↔ (ξ, t) 6|= ϕ

(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ϕ1Uϕ2 ↔ ∃t′ ≥ t (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

ξ, t) |= ϕ1U[a,b]ϕ2 ↔ ∃t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ♦[a,b]ϕ ↔ ∃t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ

(ξ, t) |= ¤[a,b]ϕ ↔ ∀t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ

The past version of MITL is obtained by replacing theU[a,b] operator by thesince
operatorS[a,b], from which one can derive the time-constrainedsometime in the past
(♦- ) andalways in the past(¤- ), operators. The semantics of the past operators is defined
as

(ξ, t) |= ϕ1S[a,b]ϕ2 ↔ ∃t′ ∈ t ª [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ♦- [a,b]ϕ ↔ ∃t′ ∈ t ª [a, b] (ξ, t′) |= ϕ

(ξ, t) |= ¤- [a,b]ϕ ↔ ∀t′ ∈ t ª [a, b] (ξ, t′) |= ϕ

In this paper we focus on the more difficult future fragment ofMITL.

6 Checking Timed Properties

In this section we describe two procedures for checking MITLproperties:

1. An offline marking procedure that propagates truth valuesupwards from propo-
sitions via super-formulae up to the main formula. This procedure has been first
presented in [MN04].

2. An incremental marking procedure that updates the marking each time a new seg-
ment of the signal is observed. This procedure is described in [NM07].

A central notion in all these algorithms is that of thesatisfaction signalξ′ = χϕ(ξ)
associated with a formulaϕ and a signalξ. In this signalξ′[t] = 1 whenever(ξ, t) |= ϕ.
We remind the reader that due to non-causality the value ofξ′[t] is not necessarily
known at timet, that is, after observingξ[t], and may depend on future values ofξ.
Whenever the identity ofξ is clear from the context, we will use the shorthand notation
χϕ.

6.1 Offline Marking

This algorithm [MN04] works as follows. It has as input a formulaϕ and ann-dimensional
Boolean signal of lengthr. For every sub-formulaψ of ϕ it computes its satisfiability



signalχψ(ξ). To simplify the discussion we restrict the presentation toa bounded ver-
sion of MITL where the unboundeduntil is not used. Hence we have properties that
are fully determined if the signal is sufficiently long. In the case where the signal is too
short the output isundecided, denoted by⊥. The procedure is recursive on the struc-
ture (parse tree) of the formula. It goes down until the propositional variables whose
values are determined directly byξ, and then propagates values as it comes up from the
recursion. We will useOP1 andOP2 for arbitrary unary and binary logical or temporal
operators. As a preparation for the incremental version, wedo not passξ andχϕ as
input or output parameters but rather store them in global data structures.

Algorithm 1 : OFFLINEM ITL

input : an MITL Formulaϕ

switch ϕ do
casep

χϕ := πp(ξ);
end
caseOP1(ϕ1)

OFFLINEM ITL (ϕ1);
χϕ := COMBINE(OP1, ϕ1);

end
caseOP2(ϕ1, ϕ2)

OFFLINEM ITL (ϕ1);
OFFLINEM ITL (ϕ2);
χϕ := COMBINE (OP2, χϕ1 , χϕ2);

end
end

Most of the work in this algorithm is done by the COMBINE function which for
ϕ = OP2(ϕ1, ϕ2) computesχϕ from the signalsχϕ1

andχϕ2
, which may differ in

length. We describe briefly how this function works for each of the operators, with a
sufficient detail to understand how it operates on the representation of the input and
output signals by their sets of positive intervals. For the sake of readability we omit the
description of various mundane optimizations.

χϕ := COMBINE (¬, χϕ1
) The negation is computed by simply changing the Boolean

value of each minimal interval in the representation ofχϕ1
.

χϕ := COMBINE (∨, χϕ1
, χϕ2

) For the disjunction we first construct a refined interval
coveringI = {I1, . . . , Ik} for χϕ1

||χϕ2
so that the mutual values of both signals

become uniform in every interval. Then we compute the disjunction interval-wise,
that is,ϕ(Ii) = ϕ1(Ii) ∨ ϕ2(Ii). Finally we merge adjacent intervals having the
same Boolean value to obtain the minimal interval coveringIχϕ

. This procedure is
illustrated in Figure 5.

χϕ := COMBINE (♦[a,b], χϕ1
) This is the most important part of our procedure which

computesχϕ := SHIFT[a,b](ξϕ1
). For every positive intervalI ∈ I+

ϕ1
we com-

pute its back shiftingI ª [a, b] ∩ T and insert it toI+
ϕ. Overlapping positive



intervals inI+
ϕ are merged to obtain a minimal consistent interval covering. In the

process, all the negative intervals shorter thanb − a disappear.14

χϕ := COMBINE (U[a,b], χϕ1
, χϕ2

) The implementation of the timeduntil operator is
based on the equivalenceϕ1U[a,b]ϕ2 ↔ (♦[a,b](ϕ1 ∧ ϕ2)) ∧ ϕ1 whenχϕ1

is a
unitary signal. This is because for a unitary signal, ifϕ1 holds att1 and att2 it
must hold during the whole interval. This does not hold for arbitrary signals, see
Figure 6. In order to treat the general case whereχϕ1

is a non-unitary signal we
first need to decompose it into the unitary signalsχ1

ϕ1
, . . . , χk

ϕ1
and then compute

χi
ϕ = (SHIFT[a,b](χ

i
ϕ1

∧ χϕ2
)) ∧ χi

ϕ1

for eachi ∈ [1, k]. Finally we recompose the resulting signals as

χϕ =

k
∨

i=1

χi
ϕ.

p

q

p
′

q
′

p
′
∨ q

′

p ∨ q

Fig. 5.To computep∨q we first refine the interval covering to obtain the semantically-equivalent
representationsp′ andq′. We then perform interval-wise operations to obtainp′ ∨ q′ and then
merge adjacent positive intervals.

6.2 Incremental Marking

Incremental marking is performed using a kind of piecewise-online procedure invoked
each time a new segment ofξ, denoted by∆ξ, is observed. For each sub-formulaψ

the algorithm stores its already-computed satisfaction signal partitioned into a concate-
nation of two signalsχψ · ∆ψ with χψ consisting of values already propagated to the
super-formula ofψ, and∆ψ consists of values that have already been computed but
which have not yet been propagated to the super-formula and can still influence its
satisfaction.

14 This procedure can be viewed alternatively as shifting thenegativeintervals by[b, a].



p = p1 ∨ p2

q = q1 ∨ q2

s1 = p ∧ q

s2 = s1 ª [a, b]

s3 = s2 ∧ p

s3 6= pU[a,b]q

(a)

p2

q1

s4 = p2 ∧ q1

s5 = s4 ª [a, b]

s6 = s5 ∧ p2

p2

q2

s7 = p2 ∧ q2

s9 = s8 ∧ p2

s8 = s7 ª [a, b]

s6 ∨ s9 = pU[a,b]q

(b)

Fig. 6.Computing satisfiability ofpU[a,b]q via the satisfiability of♦[a,b](q∧ p)∧ p. (a) wrong re-
sults obtained with non-unitary signals; (b) correct results obtained with a unitary decomposition
p = p1 ∨ p2 andq = q1 ∨ q2. The computation withp1 is omitted as it has an empty intersection
with q.



Initially all signals are empty. Each time a new segment∆ξ is read, a recursive
procedure similar to the offline procedure is invoked, whichupdates everyχψ and∆ψ

from the bottom up. The difference with respect to the offlinealgorithm is that only the
segments of the signal that have not been propagated upwardsparticipate in the update
of their super-formulae. This may result in a lot of saving when the signal is very long,
as has been demonstrated empirically in [NM07].

As an illustration considerϕ = OP(ϕ1, ϕ2) and the corresponding truth signals of
Figure 7-(a). Before the update we always have|χϕ · ∆ϕ| = |χϕ1

| = |χϕ2
|: the parts

∆ϕ1
and∆ϕ2

that may still affectϕ are those that start at the point from which the
satisfaction ofϕ is still unknown. We apply the COMBINE procedure on∆ϕ1

and∆ϕ2

to obtain a new (possibly empty) segmentα of ∆ϕ. This segment is appended to∆ϕ in
order to be propagated upwards, but before that we need to shift the borderline between
χϕ1

and∆ϕ1
(as well as betweenχϕ2

and∆ϕ2
) in order to reflect the update of∆ϕ.

The procedure is described in Algorithm 2.

χϕ ∆ϕ

χϕ1

χϕ2

∆ϕ

χϕ1
∆ϕ1

χϕ2
∆ϕ2

∆ϕ1

χϕ

∆ϕ2

α

(a) (b)

Fig. 7. A step in an incremental update: (a) A new segmentα for ϕ is computed from∆ϕ1 and
∆ϕ2 ; (b) α is appended to∆ϕ and the endpoints ofχϕ1 andχϕ1 are shifted forward accordinly.

6.3 Monitoring using Timed Automata

Our contribution to the automaton-based approach for checking timed properties will
be described elsewhere and we mention the relevant results briefly. In [MNP05] we
have shown how to build deterministic timed automata from past MITL properties
and gave an alternative proof of the impossibility to do so for future MITL. The dif-
ference in dererminizability between the past and future fragments turned out to be
a syntactical accidentnot relatedto the difference in the causality between past and
future (note that the logic MTL, admittingpunctualmodalities such as♦d is non-
deterministic in both directions). The reason is that interval-based modalities, when they



Algorithm 2 : INC-OFFLINE-M ITL

input : an MITL Formulaϕ and an increment∆ξ of a signal

switch ϕ do
casep

∆ϕ := ∆ϕ · πp(∆ξ);
end
caseOP1(ϕ1)

INC-OFFLINE-M ITL (ϕ1, ∆ξ);
α := COMBINE(OP1, ∆ϕ1);
d := |α| ;
∆ϕ := ∆ϕ · α ;
χϕ1 := χϕ1 · 〈∆ϕ1〉d ;
∆ϕ1 := d\∆ϕ1

end
caseOP2(ϕ1, ϕ2)

INC-OFFLINE-M ITL (ϕ1, ∆ξ);
INC-OFFLINE-M ITL (ϕ2, ∆ξ);
α := COMBINE(OP2, ∆ϕ1 , ∆ϕ2);
d := |α| ;
∆ϕ := ∆ϕ · α ;
χϕ1 := χϕ1 · 〈∆ϕ1〉d ;
∆ϕ1 := d\∆ϕ1 ;
χϕ2 := χϕ2 · 〈∆ϕ2〉d ;
∆ϕ2 := d\∆ϕ2

end
end

point backwards, erase the effect of small fluctuations in Boolean signals, see [MNP05].
In [MNP06] we adapted the compositional construction of non-deterministic automata
from LTL [KP05] to MITL. Finally we have shown in [MNP07] how to construct de-
terministic timed automata for theboundedfragment of the more general logic MTL
underbounded variabilityassumptions. More technical details concerning the tech-
niques used can be found in those papers. We mention the worksof [Tri02,KT04] and
[GD00,Gei02,Gei03] which inspired part of our work.

7 Continuous Signals

The algorithms developed for dense-time Boolean signals, provide a solid basis for
monitoring continuous signals when the properties belong to thesignal temporal logic
(STL) [MN04,NM07] which is nothing but MITL, parameterizedby a set of numerical
predicates playing the role of atomic propositions. For such properties, each continuous
signal is transformed, via the numerical predicates appearing in the property, into a
Boolean signal which is checked against the MITL “skeleton”of the formula. In the
rest of this section we discuss technical problems related to the applicability of the
“Booleanization” procedure.



As we have seen, non-Zeno Boolean signals, albeit the fact that they are defined
over dense time domain, admit anexact finite representationvia the switching points
that define theirtrue andfalseintervals. This is no longer the case for continuous sig-
nals where we have a contrast between theideal mathematical object, consisting of an
uncountable number of pairs(t, ξ[t]) with t ranging over some interval[0, r) ⊆ R≥0,
and anyfinite representation which consists of a collection of such pairs, with t re-
stricted to range over a finite set ofsampling points. The values ofξ at sampling points
t1 andt2 may, at most, impose some constraints on the values ofξ inside the interval
(t1, t2). Such constraints can be based on the dynamics of the generating system and
the manner in which the numerical simulator produces the signal values at the sampling
points. Numerical analysis is a very mature domain with a lotof accumulated experi-
ence concerning tradeoffs between accuracy and computation time. Its major premise
is that given a model of the system as a continuous dynamical system defined by a dif-
ferential equation15, one can improve the quality of a discrete-time approximation of its
behavior by employing denser sets of sampling points and more sophisticated numerical
integration procedures.16

In order to speak quantitatively about the approximation ofa signal by another we
need the concept of adistance/metricimposed on the space of continuous signals. A
metric is a function that assigns to two signalsξ1 andξ2 a non-negative valueρ(ξ1, ξ2)
which indicates how they resemble each other. Using metricsone can express the “con-
vergence” of a numerical integration scheme as the condition thatlimd→0 ρ(ξ, ξd) = 0
whereξ is the ideal mathematical signal andξd is its numerical approximation using an
integration stepd.

Metrics and norms for continuous signals are used extensively in circuit design,
control and signal processing. There are, however, major problems concerned with their
application to property monitoring due to the incompatibility between the continuous
nature of the signals and the discrete nature of{0, 1}-properties, a phenomenon which
is best illustrated using the following simple example. Consider the property¤(x > 0)
and an ideal mathematical signalξ that satisfies the property but which passes very
close to zero at some points. We can easily transformξ into a signalξ′ which is very
closeto ξ under any reasonable continuous metric, but according to the metric induced
by the property, these signals are as distant as can be: one ofthem satisfies the property
and the other violates it (see Figure 8).

Moreover, if the sojourn time of a signal below zero is short,an arbitrary shift in
the sampling can make the monitor miss the zero-crossing event and declare the signal
as satisfying (see Figure 9). In this sense properties are not robustas small variations in
the signal may lead to large variations in its property satisfaction. Let us mention some
interesting ideas due to P. Caspi [KC06] concerning new metrics for bridging the gap
between the continuous and the discrete points of view. Suchmetrics are expressible,
by the way, in STL [NM07].

The abovementioned issues can be handled pragmatically in our context, without
waiting for a completely-satisfactory theoretical solution to this fundamental prob-

15 It is worth noting that some models used for rapid simulation of transistor networks cannot
always be viewed as continuous dynamical systems in the classical mathematical sense.

16 For systems which are stable the quality can be improved indefinitely.
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Fig. 8. Two signals which are close from a continuous point of view, one satisfying the property
¤(x > 0) and one violating it.
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Fig. 9.Shifting the sampling points, zero crossing can be missed.



lem. The following assumptions facilitate the monitoring of sampled continuous signals
against STL properties, passing through the timed abstraction:

1. Sufficiently-dense sampling: the simulator detects every change in the truth value of
any of the predicates appearing in the formula at a sufficientaccuracy. This way the
positive intervals of all the Boolean signals that correspond to these predicates are
determined. This requirement imposes some level of sophistication on the simulator
that has to perform several back-and-forth iterations to locate the time instances
where a threshold crossing occurs. Many simulation tools used in industry have
already such event-detection features. A survey of the treatment of discontinuous
phenomena by numerical simulators can be found in [Mos99].

2. Bounded variability: some restrictive assumptions can be made about the values of
the signal between two sampling pointst1 andt2. For example one may assume
that ξ is monotone so that ifξ[t1] ≤ ξ[t2] thenξ[t′1] ≤ ξ[t′2] for everyt′1 andt′2
such thatt1 < t′1 < t′2 < t2. An alternative condition could be a condition a-la
Lipschitz: |ξ[t2] − ξ[t1]| ≤ K|t2 − t1|. Such conditions guarantee that the signal
does not get wild between the sampling points, otherwise property checking based
on these values is useless.

Under such assumptions every continuous signal which is given by a discrete-time rep-
resentation, based on sufficiently-dense sampling, induces a well-defined Boolean sig-
nal ready for MITL monitoring. Let us add at this point a general remark that the stan-
dards of exactness and exhaustiveness as maintained in discrete verification cannot and
should not be exported to the continuous domain, and even if we are not guaranteed
that all events are detected, we can compensate for that by using safety margins in the
predicates and properties.

8 Monitoring STL Properties

In this section we illustrate the monitoring of STL properties against signals produced
by the numerical simulator Matlab/Simulink, used mainly for control and signal-processing
applications, but also for modeling analog circuits at the functional level of abstraction.
The waveforms presented here are the output of our first prototype of analog monitoring
tool, which parses STL properties and applies the offline marking procedure described
in Section 6.1.

8.1 Following a Reference Signal

As a first example consider the property

ϕ1 : ¤[0,300]((x1 > 0.7) ⇒ ♦[3,5](x2 > 0.7))

which requires that wheneverx1 crosses the threshold0.7, so doesx2 within t ∈ [3, 5]
time units. We fixx1 to be the sinusoid

x1[t] = sin(ωt),



d1

d2

Fig. 10. Sufficiently-dense sampling with respect to the two thresholdsd1 andd2. The set of
sampling points consists of a uniform grid augmented with the threshold-crossing points.

and letx2 be a signal generated by

x2[t] = sin(ω(t + d)) + θ

whered is a random delay ranging in[3, 5] degrees andθ is an additive random noise.
The marking procedure is illustrated in Figure 11. The Boolean signals corresponding
to the atomic propositionsp1 andp2 are derived from the sampled analog signal. From
there the truth values of the sub-formulae♦[3,5](x2 > 0.7), (x1 > 0.7) ⇒ ♦[3,5](x2 >

0.7) are marked as intermediate steps toward the marking ofϕ1 which is satisfied in
this example. In Figure 12 we apply the same procedure to check ϕ1 against a signal
in which x2 was generated with a much larger additive noiseθ ∈ [−0.5, 0.5]. The
fluctuations in the value ofx2 are reflected in the Boolean abstractionp2 and lead to a
violation of the property at some points wherex1 > 0.7 is not followed byx2 > 0.7
within the pre-specified delay.

8.2 Stabilizability

The second example is a very typical stabilizability property used extensively in control
and signal processing. The system in question is supposed tomaintain a controlled
variabley around a fixed level despite disturbancesx coming from the outside world.
The actual system used to generate this example is a water-level controller for a nuclear
plant. The disturbances come from changes in the system loadthat trigger changes in
the operations of the reactor which, in turn, influences the water level, see [Don03].
Other instances of the same type of problem may occur when thevoltage of a cirucit
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Fig. 11. A 2-dimensional signal satisfying the property¤[0,300]((x1 > 0.7) ⇒ ♦[3,5](x2 >

0.7)). Boolean signals correspond to the evolution of the truth values of sub-formulae over time.
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has to be kept constant despite variations in the current dueto changes in the circuit
workload.

We wanty to stay always in the interval[−30, 30] (except, possibly, for an initial-
ization period of duration300) and if, due to a disturbance, it goes outside the interval
[−0.5, 0.5], it should return to it within150 time units and stay there for at least20 time
units. The whole property is

ϕ2 : ¤[300,2500]((|y| ≤ 30) ∧ ((|y| > 0.5) ⇒ ♦[0,150]¤[0,20](|y| ≤ 0.5))).

The results of applying our offline monitoring procedure to this formula appear in
Figures 13 and 14. When the disturbance is well-behaving, theproperty is verified,
while when the disturbance changes too fast, the property isviolated both by over-
shooting below−30 and by taking more than150 time units to return to[−0.5, 0.5].

9 Conclusions

Motivated by the exportation of some ingredients of formal verification technology to-
ward analog circuits and continuous systems in general, we embarked on the develop-
ment of a monitoring procedure for temporal properties of continuous signals. During
the process we have gained better understanding of temporalsatisfiability in general as
well as of the relation between real-time temporal logics and timed automata. The ideas
presented in this paper have been implemented into ananalog monitoring toolAMT
[NM07] that has been applied to real-life case studies.
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