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Abstract: This paper presents some of the principles underlying verification and
controller synthesis techniques for discrete dynamical systems developed within
Computer Science along with some ideas to extend them to continuous and hybrid
systems. Hopefully, this will provide control theorists and engineers with an additional
perspective of their discipline as seen by a sympathetic outsider, uncommitted to the
customs and traditions of the domain. Inter-cultural experience can be frustrating
but sometimes fun.

1. WHAT AM I DOING HERE?

Being one of those who have chosen to study com-
puter science partly due to an inability to under-
stand differential equations, I feel a bit uncomfort-
able to publish a paper in a journal whose pages
are probably full of occurrences of that terrifying∫

symbol. The scientific reason for my presence
here is perhaps being one of those few computer
scientists interested in the so-called hybrid systems
research which was supposed to bring together the
Computer Science and Control communities. So
let me first speak about what I understand.

2. WHAT IS VERIFICATION?

Verification 2 like Control is concerned with a
model-based design of systems. That is, we want
to build something (a “controller”) that makes
some part of the real world (the “environment”

1 This research was supported in part by the Euro-
pean Community projects 26270 VHS (Verification of
Hybrid Systems) and IST-2001-33520 CC (Control and
Computation).
2 The term “verification” is used as a short approximation
for the disciplines and communities interested in “model-
ing, design and analysis of reactive systems” or “formal
methods in system design”. This is not “the” mainstream
in Computer Science — I am not sure there is a mainstream
in such a diverse domain.

or “plant”) behave in a certain desired way. In-
stead of using trial-and-error methods we build a
mathematical model which describes the combined
dynamics of the environment and the controller.
On this model we can make “gedanken experi-
ments”, e.g. manipulation of formulae or numer-
ical simulations, to convince ourselves that the
controller indeed makes the environment behave
as required. If the model is a good approximation
of the real world, there is a chance that a controller
validated on the model will work properly when
implemented. 3

The description just given does not specify the
type of dynamical models considered. In classical
control these are models of continuous dynamical
systems in either continuous or discrete time,
and since examples of such systems appear in
every decent control textbook, I will move directly
to discrete systems of the type treated by the
verification community and illustrate them via an
example.

2.1 The Coffee Machine

Suppose we want to build a machine that dis-
tributes various hot drinks to customers who pay

3 I mention this trivial fact because mathematicians, dis-
crete and continuous alike, who spend much of their time
in the abstract world, sometimes tend to forget it.
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Fig. 1. The machine and its physical interface.

for them by inserting coins. Much of the interac-
tion of the machine with its external environment
is physical: users insert coins and press buttons
and the machine heats water, mixes it with certain
ingredients and releases plastic cups filled with the
appropriate drink. In modern systems it is cus-
tomary to decompose systems into two parts, the
physical interface and the information processing
component. The physical interface takes care of
the transduction between energies of various forms
and electronic signals. In our example it includes
sensors that detect the pressing of a button or
recognize the inserted coins, as well as actuators
that do the opposite transformation and imple-
ment the “decisions” of the machine to heat water
by turning a heater on or to release a cup by, say, a
pneumatic device. When we remove this envelope
we obtain the second component, the information
processing system, a system that processes infor-
mation signals regardless of the type of physical
entities they represent.

Digression: Since information processing is per-
haps the most important common aspect of con-
trol and computer science it is worth elaborating
a bit about it. We can write a reactive computer
program which responds to an input event a by
an output event b. Only the connection of the
computer I/O ports to sensors and actuators will
give an external physical meaning to the sym-
bols a and b and to the I/O relation defined by
the program: e.g. “respond to a mouse click by
starting to play a CD” or “respond to a pressed
button by launching a missile”. Similarly in the
continuous world the same servo mechanism can
be plugged into a temperature sensor and a fur-
nace to regulate temperature, and equally well
— to a velocity sensor and a motor to regulate
speed. The essence in both types of systems is
a mathematical relationship between input and
output signals whose external physical meaning
is defined by the physical interface of the system.
For the information processing system the world
consists of discrete or continuous signals at its I/O
ports, realized by low-energy electricity.

In the past, the distinction between physics and
information was not so sharp. For example, in
Watt’s governor the information about the rota-
tional velocity was “transmitted” to the controller
mechanically. Similarly, today when we press the
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Fig. 2. The information-processing component of
the machine.

throttle or the brakes of our car we still represent
the instructions that we give to the car (“faster”,
“slower”) by physical magnitudes which are just
amplified along the way from the pedal down-
wards. In the near future, however, using drive-by-
wire techniques, the distinction will become more
apparent. 4 End of Digression.

From now on we restrict our attention to the infor-
mation processing sub-system M of the machine
and denote by E its environment, i.e. its physical
interface. For simplicity we assume that there is
only one type of a coin and two choices of drinks,
coffee and tea, each costs one coin (the reader can
make the exercise of extending the example to
more complicated machines) and that there is a
button for canceling the operation. We decompose
M further into two sub-machines M1 and M2, the
first interacts with the coin collection apparatus
and the second with the choice and preparation
of drinks. In addition to the interaction with
the physical interface, the two machines should
communicate: M1 should inform M2 about the
reception of the required amount of money, while
M2 should tell M1 that drink delivery has been
accomplished. A block diagram of the machines
appears in Figure 2. The transfer of information
between the components is done via 9 communi-
cation ports described in the following table.

Port From→To Event types Meaning
1 E → M1 coin-in a coin was inserted
2 E → M1 cancel cancel button pressed
3 M1 → E coin-out release the coin
4 M1 → M2 ok sufficient money inserted
5 M1 → M2 reset money returned to user
6 M2 → M1 done drink distribution ended
7 E → M2 req-coffee coffee button pressed

req-tea tea button pressed
8 E → M2 drink-ready drink preparation ended
9 M2 → E st-coffee start preparing coffee

st-tea start preparing tea

The dynamics of the two machines is depicted in
Figure 3 using the formalism of automata, also
known as finite-state machines. 5 Devices having

4 This corresponds to the appearance of specialized nerve
cells in living organisms. It may correspond to many other
phenomena such as language, communication networks,
etc. that take us further away from physics/geometry to
information.
5 In the sequel we will use also the terms discrete dynam-
ical systems and transition systems for talking about the
same objects.
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several states, and which move from one state to
another upon the occurrence of certain events,
have become part of the daily life of people living
in the beginning of the 21st century. Almost
every one of us has experienced such machines
while withdrawing cash, setting a digital clock
or interacting with a graphical or vocal menu
systems.

Machine M1 has 2 states. In the initial state 0
it ignores all events except coin-in and upon
its reception it moves to state 1 while emitting
ok. This indicates to machine M2 that the right
amount of money has been inserted. Machine M1

returns to state 0 upon receiving the signal done
from machine M2 (this means that the whole pro-
cedure is over and the machine is ready to accept
money from the next customer). In addition, if the
customer presses the cancel button while at state
1, the machine moves back to state 0 and emits
two events: coin-out to release the money, and
reset which returns machine M2 into its initial
state as well.

Machine M2 stays in its initial state A and ignores
all inputs as long as it does not receive the ok
event from M1. Once it receives the ok it moves to
state B, and from there, upon reception of event
req-coffee (resp. req-tea), it moves to state C
(resp. D) and emits the event st-coffee (resp.
st-tea) which initiates the physical process of
preparing the respective drink. Upon receiving the
event drink-ready from the preparation machine,
machine M2 moves from C or D back to A while
sending the event done to M1.

The transition arcs between states are sometimes
labeled by input/output actions. This means
that the machine in question can perform the
transition only if it recieves input from its outside
environment (which may include other machines)
and while doing so it emits output. This is the
way one machine (or the external evironment) can
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Fig. 4. The machine M = M1||M2.

influence the behavior of another machine. For
example, M1 can move from 0 to 1 only upon
the reception of coin-in from E. Similarly it
can move from 1 to 0 only if either it receives
done from M2 or cancel from E. Such means of
coordinating the behaviors of several machines are
called synchronization mechanisms.

When two or more machines are working together,
they constitute a global system whose states are
tuples consisting of the local states of each ma-
chine. For example, the composition 6 of M1 and
M2, denoted by M = M1||M2, is an automa-
ton whose initial state is 0A. An automaton can
move from one global state to another if all its
components can take their corresponding local
transitions. For example, M can move from 0A
to 1B upon receiving coin-in because M1 can
move from 0 to 1 while emitting ok which makes
M2 move to B. For this reason, a global transition
from 0A to 0B is impossible. Machine M appears
in Figure 4, and by looking at it we can see
paths that correspond to potential behaviors. For
example the path

0A coin-in 1B cancel coin-out 0A

corresponds to a customer who changed his mind
and got his money back. Similarly, the path

0A coin-in 1B req-coffee st-coffee

1C drink-ready 0A

represents a full cycle of the normal operation of
the machines. But looking at the state-transition
graph we can see also unexpected behaviors. For
example, what happens if the user enters coin-in,

6 There are many forms of composition differing from
each other in the form of interaction between components
(via states or via events), in the nature of global time
(synchronous or asynchronous) etc. Since I don’t give here
a formal definition of synchronization mechanisms and of
composition, there are some imprecisions in the example
which can be discovered by readers who try to build the
product — a recommended activity by itself. They can be
fixed by making the model a bit more complex and less
intuitive. Note also that internal events such as ok that
serve only for the interaction between M1 and M2, are not
visible to the outside world and hence do not appear as
labels on the transitions of M1||M2.
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then req-coffee and then, before the arrival
of drink-ready, she pushes the cancel button?
According to the path

0A coin-in 1B req-coffee st-coffee 1C cancel

coin-out 0C drink-ready 0A

the machine will move to state 0C and the user
will get the money back while the process initiated
by st-coffee keeps on going. This bug can be
quite unpleasant to the machine owner and its
existence cannot be inferred immediately from by
looking at the two machines separately. Imagine
how hard it is to find such bugs in large sys-
tems composed of many interacting machines and
whose sets of behaviors consist of huge numbers
of very long sequences of events.

In order to fix the bug we add a new state 2 to
machineM1 (Figure 5). This is a “no-return” state
into which M1 enters upon receiving a lock mes-
sage from M2 after the user has selected the drink
and the prepartion has started. In Figure 6 we
can see the global system which, indeed, generates
only acceptable behaviors.

The moral of this story is summarized as follows:

(1) There are numerous systems of practical in-
terest that can be modeled as a product of

many interacting discrete components. The
global model for such a system is a finite but,
possibly, very large automaton.

(2) The set of all possible behaviors of such a
system, in the presence of all admissibe input
sequences, is represented by paths in the
global transtion graph.

(3) The desired behavior of such a system can
be specified as a set of allowed sequences of
states and events.

(4) Proving that the system is correct amounts
to showing that all sequnces generated by the
system are those allowed by the specification.

3. DISCRETE SYSTEMS

In this section I will present in a semi-formal man-
ner some of the “systems theory” for discrete sys-
tems, especially those parts motivated by solving
(4) above. Interested readers can consult books
such as McMillan (1993); Kurshan (1994); Manna
and Pnueli (1995); Clarke et al. (1999). I will
consider three models of discrete systems which
correspond roughly to the notions of simulation,
verification and controller synthesis. At the first
level of modeling we will consider closed systems
such that given an initial state x0, the state of
the system is determined for every time t. At the
second level, we add an input domain V , affecting
the dynamics of the system. We interpret this
domain as uncontrollable inputs (disturbances)
to the system, i.e. influences coming from the
external environment. Finally, at the third level of
modeling we consider an additional input domain
U , corresponding to the controller’s actions. A
system with two inputs can be seen as a two-
person game where controller synthesis amounts
to finding a winning strategy.

While I tell the discrete side of the story, the
reader is aksed to think about the possible analo-
gies with continuous systems, analogies that will
be made explicit later (see also Maler (1998)).

3.1 Model I: Closed Systems

We start with systems not exposed to external in-
fluences and hence their future evolution depends
exclusively on their current state.

Definition 1. (System D-I). A transition system
is S = (X, δ) where X is a finite set and δ : X →
X is the transition function.

The state-space X of the system is usually a set
without any additional structure, i.e. it does not
admit metric or order. We keep in mind that it
might be a Cartesian product of several domains
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but we do not take this fact into consideration. We
use X∗ to denote the set of all sequences (finite or
infinite) over X and Xk for seqeunces of length k.
The concatenation of two sequences ξ1, ξ2 ∈ X∗

is denoted by ξ1 · ξ2. Automata are presented as
directed graphs with states as nodes and with
edges of the form (x, x′) whenever x′ = δ(x) (see
Figure 7). We stress again that the embedding
of this graph on the two-dimensional page is arbi-
trary and does not carry any geometrical meaning
(unlike phase-portraits of continuous systems).

Definition 2. (Behavior). Given a system S =
(X, δ), the behavior of S starting from an initial
state x0 ∈ X, is a sequence

ξ = ξ[0], ξ[1], . . . ∈ X∗

such that ξ[0] = x0 and for every i,

ξ[i+ 1] = δ(ξ[i]).

Given a description of a dynamical system, the
most natural thing to ask is how it will behave
starting from some initial state. In many cases, we
are particularly interested in reaching or avoiding
a certain set of states. More complex desired
properties of the system may involve the presence
or absence of certain patterns in the set of system
behaviors, for example, “after a there is no b
until c”. It is also possible to express properties
concerning the behavior of a system extended to
infinity “the pattern a after b repeats infinitely
many times”. Such properties can be expressed
using various formalisms such as temporal logic,
regular expressions or automata. I will restrict the
discussion to the simplest of all properties, namely
that the system never reaches a set P of “bad”
states.

Definition 3. (Basic Reachability Problem). The
basic reachability problem for a system S is: given
x0 and a set P ⊆ X, does the behavior of S
starting at x0 reach P? In other words: does there
exist a time t such that ξ[t] ∈ P?.

For deterministic finite automata the problem ap-
pears to be trivial (just look at the automaton)
but the reader should remember that, as in the
coffee-machine example, S is not given explicitly
but as a product of interacting automata, a de-
scription from which the answer cannot be derived

just by visual inspection. The following simple
algorithm solves this problem by computing all
the states reachable from x0. In fact, it is nothing
but a “simulation” of the (single) behavior of S
starting from x0, combined with memorization of
the visited states. The algorithm produces a set
F∗ consisting of all states reachable from x0. This
set can then be tested for intersection with P .

Algorithm 1. (Forward Simulation/Reachability).

ξ[0]:=x0

F 0 := {x0}
repeat
ξ[k + 1]:=δ(ξ[k])
F k+1 := F k ∪ {ξ[i+ 1]}

until F k+1 = F k

F∗:=F k

For finite-state deterministic systems every behav-
ior is ultimately-periodic, i.e. a sequence that can
be written as r · sω = r · s · s · · · where r and s are
finite sequences denoting, respectively, the prefix
and the period of ξ. For the automaton of Figure 7,
the behavior starting from x1 is x1 ·(x2x3x5)ω and
the algorithm produces the sequence of sets

{x1}, {x1, x2}, {x1, x2, x3}, {x1, x2, x3, x5}.
Since δ(x5) = x2, the next iteration does not add
new states and the algorithm terminates.

Algorithm 1 solves the reachability problem by
forward simulation. Alternatively we could start
from P and go backward to determine all the states
from which the system can reach P (a kind of “do-
main of attraction”). Going backwards may intro-
duce non-determinism and we will discuss it in the
next section. Note that unlike systems defined by
differential equations, discrete transition systems
are rarely reverse-deterministic (going backwards
from x5 you can reach both x3 and x4).

Finiteness plays an important role in this setting:
the transition function, the set P , and the sets F k

of reachable states accumulated during the simu-
lation can all be enumerated explicitly and can be
stored in finite data-structures such as tables or
lists. Finiteness also guarantees the termination of
the algorithm. If we relax the finiteness condition
and allow a countable state-space the above does
not hold anymore. A discussion of infinite-state
systems appears in the next section.

The analog problem for continuous systems would
be to check whether the solution of the differential
equation ẋ = f(x) starting from x0 intersects with
some given subset P ⊆ R

n. This subset can be,
for example, a polyhedron or an ellipsoid. Note
that we do not restrict the question to the limit
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behavior but ask also about transient states. A
discrete-time version of this problem is concerned
with the sequence ξ[0], ξ[1], . . . such that ξ[0] = x0

and ξ[k + 1] = g(ξ[k]) where g is a function from
R
n to itself.

3.2 Model II: Systems with One Input

Definition 4. (System D-II). A one-input transi-
tion system is S = (X,V, δ) where X and V are
finite sets and δ : X × V → X is the transition
function.

The evolution of a type II system starting from
a state depends on the external influence of the
input. For example, in the system of Figure 8
δ(x1, v1) = x2 while δ(x1, v2) = x3. Hence there
is not one behavior starting from any given state
but rather a set of behaviors, each associated with
an input sequence.

Definition 5. (Behavior Induced by Input).
Given a system S = (X,V, δ) and an input
sequence ψ ∈ V ∗, the behavior of S starting from
x0 ∈ X in the presence of ψ is a sequence

ξ(ψ) = ξ[0], ξ[1], . . . ∈ X∗

such that ξ[0] = x0 and for every i,

ξ[i+ 1] = δ(ξ[i], ψ[i]).

In the automaton of Figure 8, an input starting
with v1, v2, v2, v1, v1 generates a behavior starting
with x1, x2, x3, x5, x2, x4, a fact that can be de-
noted as:

x1
v1−→ x2

v2−→ x3
v2−→ x5

v1−→ x2
v1−→ x4.

The simplest verification problem is the extension
of the basic reachability problem to open systems:

Definition 6. (Reachability for Open Systems).
Given a system S = (X,V, δ) and a set P ⊆ X, is
there some input sequence ψ ∈ V ∗ such that the
behavior ξ(ψ) reaches P?

This problem is a-priori much harder than the
problem for a type I system due to the existential
quantification of the infinite set of sequences.
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Fig. 9. An initial part of the execution tree of the
type II system of Figure 8.

To understand the various approaches for solving
this problem, let us look at the set of all behaviors
of a type II system. This set admits a tree struc-
ture with the initial state at the root and where
each branch represents the behavior induced by
one input sequence (Figure 9).

When a specific sequence ψ ∈ V ∗ is given, a
trivial extension of Algorithm 1 can be used to
simulate ξ(ψ) and compute the set of states F∗(ψ)
it visits. 7 If we could repeat this procedure for
all (infinitely-many) sequences in V ∗ we would
have computed all reachable states. A basic result
about finite automata allows us to use a finite set
of sequences: In an n-state automaton, if a state is
reachable from an initial state then it is reachable
by a path of length smaller than n. So if we repeat
Algorithm 1 with all finite sequences ψ ∈ V n, we
obtain the reachable states for all possible inputs
as

F∗ =
⋃

ψ∈V n

F∗(ψ).

This exhaustive simulation technique can be seen
as generating an input sequence for every branch
of length n in the execution tree. Although finite,
the number of such sequences is |V |n and, given
that n itself might be prohibitively large (expo-
nential in the number of system components), this
option is not so attractive.

While the simulation approach is suitable for
“black box” testing, it is rather wasteful when
we have the structure of the automaton at our
disposal. For the reachability problem we need not
explore the successors of the same state more than
once: since both v2 and v1v2 lead to the same
state x3, we know that for every input ψ, the
sequences v2 ·ψ and v1v2 ·ψ will lead to the same
state. 8 Hence we can apply more efficient search

7 In fact, the technical story is a bit more complicated for
infinite sequences, but for ultimately-periodic inputs it is
known that the induced behaviors are ultimately-periodic
as well.
8 This is, in fact, the essence of the notion of a state in the
modern theory of dynamical systems, and in particular in
automata (Myhill-Nerode theorem).



algorithms to the transition graph at the price of
losing some of the intuitive flavor of simulation.

To this end let us denote by δ(x) the set of all
immediate successors of x, i.e.

δ(x) = {x′ : ∃v δ(x, v) = x′}
and extend this notation to sets of states by letting
δ(F ) = {δ(x) : x ∈ F}. The following algorithm
computes all reachable states of a type II system:

Algorithm 2. (Forward Reachability).

F 0 := {x0}
repeat
F k+1 := F k ∪ δ(F k)

until F k+1 = F k

F∗:=F k

In essence this is a graph search algorithm and
its complexity is O(n · log n · |V |) — much better
than the simulation-based approach. This algo-
rithm explores the transition graph in a breadth-
first order and every F k consists of the states
reachable after at most k transitions. This can be
viewed as running many simulations in parallel
and aborting a simulation when it reaches a state
already visited by another simulation. The set of
tree nodes explored by this algorithm appears in
Figure 10.

Unlike the simulation of a single behavior, when
Algorithm 2 discovers that a bad state can be
reached (a non-empty intersection of some F k

with P ) we do not have immediately the input
sequence and its induced behavior that led to
P . But the extraction of such a sequence (“error
trace”, “counter-example”) from the set sequence
{F j}j=1..k is easy to do.

One can write a depth-first variant of this algo-
rithm which explores a branch of the tree until a
previously-visited state is encountered and then
backtracks (“rolling back” the simulation) and
tries another branch. The behavior of a depth-first
variant of the algorithm is depicted in Figure 11.

As mentioned earlier, verifying whether some be-
havior reaches a set P can also be done backwards.
Let

δ−1(x) = {x′ : ∃v δ(x′, v) = x}
be the set of immediate predecessors of x and
let δ−1(F ) be its obvious extension to sets. The
following algorithm computes the set of all states
from which there is an input that drives the
system into P . If this set includes x0 the answer
to the reachability problem is positive.
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Fig. 10. Nodes explored by the forward reachabil-
ity algorithm in breadth-first search regime.
The dashed line indicates the frontier be-
tween the first and subsequent occurrences
of states during the exploration.
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Fig. 11. Nodes explored by the forward reachabil-
ity algorithm in depth-first search regime.

Algorithm 3. (Backward Reachability).

F 0 := P
repeat
F k+1 := F k ∪ δ−1(F k)

until F k+1 = F k

F∗:=F k

Theorem 1. (Algorithmic Verification). There are
algorithms that take a description of a type II
system and verify whether any of the admissible
inputs drives the system into a set P . Such algo-
rithms always terminate after a finite number of
steps.

Of course, “finite” can be very large and even
too large, but the significance of this result is in
its generality: it applies to any system that can
be written as a product of finitely many finite
automata. Variants of Algorithms 2 and 3 and
their efficient implementations constitute most
of what algorithmic verification is all about. A
snapshot of the state-of-the-art in this domain
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can be observed in proceeding volumes such as
Brinksma and Larsen (2002).

Before moving to controller synthesis let us discuss
the question of admissible inputs. So far it was
implicitly assumed that the external environment
can produce any sequence in V ∗. In many real-
istic situations the environment is constrained to
follow some protocol and generate only a subset of
V ∗. An environment that, for example, does not
produce two consecutive occurrences of v1 can be
modeled by an automaton, and the set of all be-
haviors in the presence of such inputs is captured
by the composition of this automaton with the
system (see Figure 12). In such an environment,
state x4 is not reachable from x1. Likewise the
coffee machine will never exhibit its bug in an
environment where no user would press the cancel
button once the coffee started pouring.

The analogous problem for continuous systems
would be: given a system defined by the equation
ẋ = f(x, v) where v ranges over some set of
admissible input signals, check whether there is
some signal which drives the system into a set P .
Recall that v stands for disturbance, not control.

3.3 Model III: Systems with Two Inputs

Definition 7. (System III-D). A two-input transi-
tion system is S = (X,U, V, δ) where X, U and
V are finite sets and δ : X × U × V → X is the
transition function.

A type III system appears 9 in Figure 13. The
behavior of the systems in the presence of two
inputs, η ∈ U∗ and ψ ∈ V ∗ can be characterized as
before by letting ξ(η, ψ) be a sequence satisfying

9 To understand the graphical conventions note that
δ(x1, u1, v1) = x1, δ(x1, u1, v2) = x2, δ(x1, u2, v1) = x2

and δ(x1, u2, v2) = x4. We assume that the choices of U
and V are made simultaneously.
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Fig. 13. A type III system with U = {u1, u2} and
V = {v1, v2}.
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Fig. 14. The game tree for the system of Figure 13

ξ[i+ 1] = δ(ξ[i], η[i], ψ[i])

for every i. The main novelty here is in the differ-
ent interpretation we give to the two inputs. We
interpret U as a set of control actions that we can
select from and V as uncontrolled disturbances.
This model can be viewed as a game between
a controller U and an external environment V ,
each trying to steer the system toward other parts
of the state-space. Our goal is to find a winning
strategy, a rule that tells us which element of U
to choose at every reachable situation in order to
guarantee that whatever the adversary V does,
the induced behaviors satisfy some property. This
is essentially the controller synthesis problem.

Definition 8. (Strategies).
Let S = (X,U, V, δ) be a type III system. A
strategy for U is a function c : X∗ → U . A state
(or memoryless) strategy is a strategy satisfying
c(ξ · x) = c(ξ′ · x) for every ξ and ξ′ and hence it
can be written as a function c : X → U .

For this discussion we restrict ourselves to state
strategies. Each strategy c converts a type III
system into a type II system Sc = (X,V, δc) such
that δc(x, v) = δ(x, c(x), v).

Definition 9. (Synthesis for Reachability).
The controller synthesis problem for a system S =
(X,U, V, δ) is: find a strategy c such that all the
behaviors of the derived system Sc = (X,V, δc)
avoid a set P ⊆ X of “bad” states.



The set of behaviors of a type III system is struc-
tured as a game tree, also known as an alternating,
AND/OR or min-max tree (see Figure 14). Due to
space and time constraints I will only sketch the
solution of the synthesis problem whose complete
formalization is not easy due to the two types of
branching and the use of feed-back in the defini-
tion of a behavior given a strategy c.

Consider the controller synthesis problem for the
system of Figure 13 where the set of states to avoid
is P = {x5}. Looking closer we see that from state
x4 we cannot avoid the possibility of reaching x5:
if we choose u1 the environment can choose v2
and if we choose u2 the environment can choose
v1 and in both cases the outcome will be x5. On
the other hand, from x2 we can avoid reaching x5,
at least for one step, by taking u2 rather than u1.
This motivates the following definition:

Definition 10. (Controllable Predecessors).
Let S = (X,U, V, δ) be a type III system. The set
of controllable predecessors of F ⊆ X is

π(F ) = {x : ∃u ∈ U ∀v ∈ V δ(x, u, v) ∈ F}.
In other words, π(F ) denotes the states from
which the controller, by properly selecting u, can
force the system into F in the next step.

The following algorithm produces the set F∗ of
“winning states”, i.e. states from which reaching
P can be forever avoided.

Algorithm 4. (Controller Synthesis).

F 0 := X − P
repeat
F k+1 := F k ∩ π(F k)

until F k+1 = F k

F∗:=F k

This algorithm, a variant of dynamic program-
ming, when applied to the system of Figure 13,
produces the decreasing sequence of states

{x1, x2, x3, x4}, {x1, x2, x3}
and converges. In control terms the set {x1, x2, x3}
is the maximal control invariant set. The corre-
sponding strategy is c(x1) = u1, c(x2) = u2 and
c(x3) = u1 and it is computed by erasing transi-
tions that can lead outside F∗. The resulting type
II system is depicted in Figure 15. This is very
similar to the supervisory control of Ramadge and
Wonham (1989).

This concludes the story of finite-state discrete
systems where simulation, verification and con-
troller synthesis can all be performed exactly in a
fully-automatic manner (modulo size limitations).

u1
u2

v1

v2

v1
v2

u1

v1, v2

x2

x3

x1

Fig. 15. The synthesized type II system which
stays always within {x1, x2, x3}.

The continuous analogues of type III systems are
the differential games of Isaacs (1965) where the
dynamics is of the form

ẋ = f(x, u, v)

and one wants to construct a continuous control
law c : X → U such that all the behaviors of the
induced type II system,

ẋ = fc(x, v) = f(x, c(x), v)

satisfy the property in question. Traditionally in
differential games the desired controller optimizes
some performance measure over all the behaviors
induced by V , but synthesis for reachability can
be viewed as a special case of optimization with a
0−1 cost function assigned to behaviors according
to whether or not they reach P .

Before moving to continuous systems, let us see
what happens to discrete systems if we consider
an infinite state-space.

4. DISCRETE INFINITE-STATE SYSTEMS

Unlike finite transition systems which can be rep-
resented enumeratively by finite tables, infinite-
state systems need richer description formalisms
that express implicitly an infinite transition graph.
The fact that computer programs can be viewed
as representations of discrete dynamical systems
is not part of the common knowledge of the gen-
eral public, including control and even software
engineers. In Computer Science, the dynamical
system associated with a program is often referred
to as its operational semantics. As an example,
consider the following simple program which uses
one integer variable y:

repeat
y:=y + 1

until y = 4

This program can be seen as a transition system
over the state-space X × Z where X = {x1, x2}
is the set of program locations (inside and after
the loop) and Z is the set of possible values of
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Fig. 16. An infinite-state system: an implicit rep-
resentation (above) and a fragment of the
explicit transition graph (below).

y1. Such systems, although infinite, admit a finite
effective representation such as the above program
or the equivalent extended automaton 10 at the
top of Figure 16. This is an automaton augmented
with auxiliary variables which can be tested and
modified by transitions. Such representations are
effective in the sense that given any state it is
possible to compute the next-state. However this
local effectivity does not carry over to global
properties such as reachability. For example, a
forward simulation algorithm such as Algorithm 1,
when started from state (x1, 2) will converge to
the set F∗ = {(x1, 2), (x1, 3), (x1, 4), (x2, 4)}. On
the other hand, starting from (x1, 5) the algorithm
will never terminate (see Figure 16).

In general the reachability problem for infinite-
state systems is undecidable. This means that
there is no general algorithm that takes any pro-
gram with integer variables and solves its reach-
ability problem. Note that the failure of Algo-
rithm 1 to converge is not a proof of undecid-
ability. The latter means that for any conceivable
algorithm there will be a program for which it will
fail to produce the answer. For such systems all
you can do is to simulate forward until you reach
P (“yes”) or make a cycle (“no”), but none of
these is guaranteed to happen. This notion allows
theoretical computer scientists and logicians to
publish negative results concerning the provable
inability to produce certain algorithms.

There are two basic approaches to tackle such
systems. If we want to stick to the algorithmic ap-
proach one needs to use symbolic rather then enu-
merative representations of the reachable states,
that is, to encode sets of states using some for-
malism such as Boolean formulae combined with
inequalities over numerical state variables. For
example, the set of states reachable from (x1, 5)
can be finitely represented by the formula x = x1∧
y ≥ 5. The computation of the reachable set is

10Which is nothing but the good old flowchart.

performed by doing syntactic operations on these
formulae with some tricks to guarantee conver-
gence, when possible. Even in the finite-state case
symbolic techniques allow one to treat systems
with a number of states which is otherwise pro-
hibitively large.

Within the alternative deductive (or theorem-
proving) framework, reachability properties are
derived formally from axioms and rules concerning
the dynamics of the system. The main disadvan-
tage of this approach from the CAD point of view
is that it is not fully-automatic, that is, one does
not feed the computer with the description of the
system, push a button and obtain the result. Even
with the help of an automatic theorem prover, an
active participation of a human user who under-
stands the dynamics of the system in question is
required. The analog of this approach in contin-
uous systems would be, for example, proving a
reachability property using a user-supplied Lya-
punov function.

Verification of infinite-state systems is currently
a very active domain of research, where combina-
tions of algorithmic and deductive methods are in-
vestigated including questions of homomorphisms
(called “abstraction”) from infinite-state systems
to finite ones. Some of the techniques for treating
numerical variables are common to this domain
and to continuous and hybrid systems.

5. CONTINUOUS SYSTEMS

In this section I sketch some of the problems
encountered while trying to export algorithmic
verification to continuous systems. A question
that some readers will certainly pose is: “Why
bother?” Indeed, with all this Control Theory,
more than a century-old, employing all the ac-
cumulated knowledge of continuous mathematics,
equation solving, optimization and more, why use
these barbaric brute-force methods which do not
exploit the special mathematical properties of the
systems in question? My short answer 11 is that
there are systems which cannot be modeled in a
useful manner with purely continuous formalisms
and which are more adequately modeled using
hybrid automata, a combination of automata and
differential equations where each state of the au-
tomaton represents one “mode” of operation. For
such systems most “classical” methods fail while
methods based on algorithmic reachability might
work.

The state-space of continuous systems, X = R
n,

can be infinite in two senses: it can be unbounded,
like the state-space of programs over the integers,

11A longer answer can be found in the introduction to
Asarin et al. (2000b).



but, even if we restrict the analysis to bounded
subsets of R

n, we have to face dense infinitude.
The same goes for the time domain, T = R+.
Moreover, inside the computer we cannot work
with the ideal mathematical real numbers but
rather with a finite (but large) subset of the
rationals. This means that even the simulation of
a single behavior is a non-trivial matter.

Consider the reachability problem for closed sys-
tems of the form ẋ = f(x), whose discrete ana-
logue has been shown to be trivially solvable using
forward simulation. When we have a closed form
solution, e.g. ξ[t] = x0e

At for linear systems, we
can claim to have “solved” the problem because
F∗ = {x0e

At : t ≥ 0} is a representation of
all reachable states. But then, how can we check
whether F∗ ∩ P is empty where P is some simple
subset of R

n defined by, say, combination of linear
equalities? From the point of view of effective
computation, such closed-form solutions are not
much more explicit than the equations themselves.

Alternatively we can try forward simulation. For
this we need first to discretize the time domain
into a sequence TΔ = {nΔ : n ∈ N} for some time
step Δ and then produce a partial approximation
of the solution ξ by a sequence ξ′ : TΔ → X
defined by some numerical integration scheme of
the form

ξ′[(n+ 1)Δ] = ξ′[nΔ] + h(ξ′[nΔ],Δ).

Applying algorithm 1 we face two major problems:

(1) We are interested in the set

F∗ = {ξ[t] : t ∈ T}
while what we compute is

F ′
∗ = {ξ′[t] : t ∈ TΔ}.

Hence a non-empty intersection of F∗ with
P is not equivalent to such an intersection
between F ′

∗ and P (see Figure 17).
(2) The algorithm is not guaranteed to converge

(like any infinite-state system), and if it con-
verges, i.e. ξ′[t] = ξ′[t′] for some t �= t′,
this might be due to rounding errors and not
because ξ[t] = ξ[t′].

It is clear from these observations that for contin-
uous systems we cannot hope for the same strong
and exact results as for finite automata. However,
the situation is not so dramatic becasue the con-
tinuous world is less chaotic than the discrete one,
and simulation can usually be used to increase our
confidence in the correctness of a closed determin-
istic system. From now on we ignore the difference
between ξ and ξ′ and consider the simulation of a
single behavior as a solved problem.

For type II systems of the form ẋ = f(x, v) the
situation is more complicated. The set of admissi-
ble inputs is typically the set of continuous signals

P

x0

ξ

ξ′

Fig. 17. A continuous behavior ξ that intersects
P while its numerical approximation ξ′ does
not.

x0 x0

Fig. 18. The structure of the behavior of a contin-
uous type II system: on the left we see some
of the infinitely many behaviors generated by
admissible inputs and on the right — the set
of all states reachable by all the behaviors.

of the form ψ : T → V over some bounded set V
which we denote by V T . As in the discrete case we
can perform simulation for every individual input
signal ψ and compute the set F∗(ψ) of reachable
states. However, unlike finite-state systems of size
n where it is sufficient to simulate with all ele-
ments of V n ⊆ V ∗, there is no finite subset of V T

that “covers” all reachable states. The structure
of this set is a “doubly-dense” tree, both in the
vertical/temporal dimension (due to the density
of T ) and in the horizontal dimension (due to the
density of V ). Hence exhaustive generation of all
inputs for simulation is not even an option.

On the other hand, some approximate variants of
Algorithm 2 are possible. To get the idea, let us
look at Figure 18 where a sample of the behaviors
induced by some inputs is shown. As in discrete
systems, we need not explore all the (infinitely-
many) visits of trajectories to the same state but
rather find a way to construct F∗ incrementally,
not necesserily in a way that corresponds to the
simulation of individual behaviors.

We use the notation x
t−→ x′ to indicate the

existence of an input signal ψ : [0, t] → V such
that the behavior ξ(ψ) starting at x reaches x′



at time t. Let F be a subset of X and let I be
a time interval. The I-successors of F are all the
states that can be reached from F within that
time interval, i.e.

δI(F ) = {x′ : ∃x ∈ F ∃t ∈ I x
t−→ x′}.

Note that δ[0,∞) denotes all the states reachable
from F . Assuming that admissible inputs do not
depende on x, δ has the semi-group property, i.e.

δI2(δI1(F )) = δI1⊕I2(F )

where ⊕ is the Minkowski sum and, in particular,

δ[0,r2](δ[0,r1](F )) = δ[0,r1+r2](F ).

If we had a procedure for computing δ[0,r] we could
construct incrementally the set of reachable states
using the following algorithm:

Algorithm 5. (Continuous Reachability).

F 0 := {x0}
repeat
F k+1 := F k ∪ δ[0,r](F k)

until F k+1 = F k

F∗:=F k

This algorithm suffers from the same problems
as simulation, namely the inability to compute δ
exactly and the lack of guarantee for finite conver-
gence. In addition, it has to maintain representa-
tions of subsets of R

n to which the operation δ
as well as union and equivalence testing should be
applied. To overcome these problems we propose a
pragmatic solution which is based on the following
principles:

(1) The sets F k are restricted to be polyhedra; 12

(2) The successor operator δ is replaced by an an
approximate version δ′ such that δ′[0,r](F ) is
a polyhedron satisfying

δ[0,r](F ) ⊆ δ′[0,r](F ).

Under these conditions an approximate version of
Algorithm 5 can be implemented whose outcome
F ′
∗ is an over-approximation of F∗ (see Figure 19).

Hence F ′
∗∩P = ∅ implies that all behaviors of the

system under all admissible inputs never reach P .

Variants of Algorithm 5 were implemented by
Dang (2000) in a prototype tool called d/dt.
These algorithms employ two techniques for ap-
proximating δ. One technique, inspired by Green-
street (1996), is called “face lifting” and is based
on maximizing normal derivatives of f on the faces
of the polyhedron, see Dang and Maler (1998).

12For technical reasons not to be discussed here, reachable
sets are stored as orthogonal polyhedra, a sub-class of
polyhedra consisting of those that can be written as finite
unions of hyper-rectangles, see Bournez et al. (1999).

x0 x0

Fig. 19. The incremental construction of reachable
sets using an approximate version of Algo-
rithm 5 (left) and the final result, an over-
approximation of the reachable states (right).

It applies to arbitrary non-linear systems. The
other, more efficient technique is specialized for
linear systems, see Asarin et al. (2000a), and
uses some optimal control ideas due to Varaiya
(1998). A similar technique was developed inde-
pendently by Chutinan and Krogh (1998, 1999).
Other approaches to solve reachability problems
use ellipsoids instead of polyhedra, e.g. Kurzhan-
ski and Valyi (1997); Botchkarev and Tripakis
(2000) or try to apply ideas from the numeri-
cal solution of partial differential equations, e.g.
Mitchell and Tomlin (2000). In all these tech-
niques there is, of course, a trade-off between
the over-approximation error and the efficiency of
the algorithm as implied by parameters such as
integration step size. It is worth mentioning that
the whole approach for reachability computation
was first developed in Alur et al. (1995) for a
class of hybrid systems with piecewise-constant
vector fields and implemented in the verification
tool HyTech Henzinger et al. (1997).

For type III systems, differential games defined
by ẋ = f(x, u, v), no reachability based tech-
niques have been developed yet, although there
are some ideas. In Asarin et al. (2000b) a solution
of the simpler problem of synthesizing a switch-
ing controller was proposed and implemented (see
also Tomlin et al. (2000)). An experimental ap-
plication of d/dt to control by switching was
recently reported in Asarin et al. (2001). Other
examples of work on related problems can be
found in proceeding volumes such as Tomlin and
Greenstreet (2002). To be honest, much work
is still to be done before such techniques can
be used in practice for systems of high dimen-
sion. Readers who want to experiment with these
techniques are welcome to download d/dt from
www-verimag.imag.fr/∼tdang/ddt.html and
apply it to their favorite examples.
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