
From Control Loops to Real-Time Programs

Paul Caspi and Oded Maler

Verimag-CNRS
2, av. de Vignate
38610 Gires
France
www-verimag.imag.fr

Paul.Caspi@imag.fr

Oded.Maler@imag.fr

1 Introduction

This article discusses what we consider as one of the central aspects of embed-
ded systems: the realization of control systems by software. Although comput-
ers are today the most popular medium for implementing controllers, we feel
that the state of understanding of this topic is not satisfactory, mostly due to
the fact that it is situated in the frontier between two different cultures and
world views (control and informatics) which are not easy to reconcile. The
purpose of this article is to clarify these issues and present them in a uniform
and, hopefully, coherent manner.

The article is organized as follows. We start with a short high-level dis-
cussion of the two phenomena involved, control and computation. In Section 2
we explain the basic issues related to the realization of controllers by software
using a simple proportional-integral-derivative (PID) controller as an exam-
ple. In Section 3 we move to more complex multi-periodic control loops and
describe various approaches for scheduling them on a sequential computer.
Section 4 is devoted to discrete event (and hybrid) systems and their software
implementation. Finally, in Section 5 we briefly discuss distributed control
and fault tolerance.

1.1 Control

A controller is a mechanism that interacts with part of the world (the “plant”)
by measuring certain variables and exerting some influence in order to steer
it toward desirable states. The rule that determines what the controller does
as a function of what it observes (and of its own state) is called the feedback
function. In early days of control, the feedback function was “computed” me-
chanically: for example, in the famous Watt governor, analyzed mathemati-

http://www-verimag.imag.fr


2 P. Caspi and O. Maler

cally by Maxwell, the angle of the governor was determined by the angular
velocity by purely mechanical means.

With the advent of electronics, the process of computing that function was
decoupled from measurement and actuation. Physical magnitudes of different
natures were transformed into low-power electric signals. These signals were
fed into an analog computer whose output signals were converted into physical
quantities and fed back to the plant. From a mathematical standpoint, this
architecture posed no conceptual problems. The underlying model of the plant
and of the analog computer were of the same nature. The former was a con-
tinuous dynamical system with evolution defined by the differential equations
of the corresponding physical theory (mechanics, thermodynamics, etc.), and
the latter consisted of an electrical circuit with dynamics governed by simi-
lar types of laws. Schematically, we can define the evolution of the plant by
the equation ẋ = f(x, d, u) with x being the state of the plant, d some ex-
ternal disturbance and u the control signal. The dynamics of the controller
implemented by an analog circuit can be likewise written as u̇ = g(u, x, x0),
with x0 being a reference signal, and the evolution of the controlled plant is
obtained by the composition of these two equations. This is the conceptual
framework underlying classical control theory, where the feedback function is
“computed” continuously at each and every time instant.

The introduction of digital computers changed this picture completely. To
start with, the computation of a function by digital means is an inherently
discrete process. Numbers are represented by binary encoding rather than
by physical magnitudes. Consequently, sensor readings should be transformed
from analog to digital representation before the computation; conversely, the
results of the computation should be transformed back from digital to analog
form. The computation is done by a sequence of discrete steps that take
time, and the electrical values on different wires are meaningless until the
computation terminates. Thus it makes no sense to connect the computer
to the plant in a continuous manner. The transition from physical to digital
control is illustrated in Fig. 1.

Computer

Digital control

Digital

DA

AD

Actuator

Sensor

PlantAnalog

Computer

Actuator

Plant

Sensor

Analog control

Controller Plant

Direct physical control

Fig. 1. From physical to analog to digital control



From Control Loops to Real-Time Programs 3

To cope with these changes a comprehensive theory of digital “sampled”
control has been developed [2]. Within this theory, the interaction of the
controller and the plant is restricted to sampling points, a (typically periodic)
discrete subset of the real-time axis. At these points sensors are read, and the
values are digitized and handed over to the computer, which computes the
value of the feedback function, which is converted to analog and fed back to
the plant via the actuators. From the control point of view, the sampling rate
is determined by the dynamics of the plant, with the obvious intuition that
a faster and more complex dynamics requires more frequent sampling. The
sampling period is determined by the desired level of approximation and by
the properties of the signal.

The role of the computer in this collaboration is to be able to compute the
value of the function, (including the analog-to-digital (A/D) and digital-to-
analog (D/A) conversions) fast enough, that is, between two sampling points.
Once this is guaranteed, the control engineer can regard the computer as yet
another (discrete-time) block in the system and ignore its “computerhood”.
This is certainly true for simple single-input-single-output (SISO) systems,
but, becomes less and less so when the structure of the control loops becomes
more complex. Before discussing these issues, let us take a look at computa-
tion.

1.2 Computation

In the early days of digital computers, their interaction with the outside world
was rather limited. A typical batch program for producing a payroll or for per-
forming an intensive numerical computation did not interact with the external
world during execution. Such systems, termed “transformational” systems by
Harel and Pnueli [12], read their input at the beginning, embark on the com-
putation process and output the result upon termination. The fundamental
theories of computability and complexity are tailored to this type of “autistic”
computation. They can say which types of function from input to output can
be computed at all, and for those that can, how the number of computation
steps grows asymptotically with the size of the problem.

If we insist on philosophical rigor, we must admit that even computations
of this type are “embedded” in some sort of a larger process. The batch nu-
merical computation could have been, for example, a finite element algorithm
to determine the stability of a building. Such a computation is part of the
construction process and should be invoked each time a new building is de-
signed or when a change is initiated by the architect. The computation time
of such a program, even in the early days when it was measured by hours and
days, was still reasonable with respect to the time scale of a typical construc-
tion project. Likewise, a payroll program is part of the “control loop” of an
organization which reads the time sheet of the employees and prints checks
at the end of the month. If the execution time of such a program were on the
order of magnitude of weeks, it could not fulfill its role in that control loop.



4 P. Caspi and O. Maler

So the difference with respect to the progressively more interactive compu-
tations, that will be described in the sequel, is also a quantitative matter of
time scales.

With the development of time-sharing operating systems, the nature of
computation became more interactive. A typical example would be a text
editor, a command shell or any other program interacting with one or more
users via keyboards and screens.1 What is the function that such an interactive
program “computes”? People familiar with automata theory can see that it is
a sequential function, something that transforms sequences of input symbols
(commands) to sequences of output symbols (responses). The important point
in such functions is that the process of computation is no longer isolated from
the input/output process but is rather interleaved with it: the user types
a command, the computer computes a response (and possibly changes its
internal state) and so on. These are called “reactive” systems in [12].

While such interactive systems differ considerably from batch programs
that operate within a static environment which does not change during com-
putation, they still operate under certain restricting assumptions concerning
their environment, which is typically a human user or a computer program
that follows some protocol. The implicit assumption is that the environment
behaves in a manner similar to a player in a turn-based game like chess; that
is, the user waits for the response of the computer before entering the next
input. As in the case of batch systems, this metaphor is valid as long as the the
computer is not slower than the external environment against which it works.
When a person’s typing speed exceeds the reaction speed of the text editor,
or when a transmitter transmits faster than a receiver receives, everything
breaks down.

Digital implementations of continuous control systems, the subject of this
chapter, interact with the physical world, a player which is assumed to be gov-
erned by differential equations, and which evolves independently of whether
the computer is ready to interact with it. Of course, in the same way as a text
editor may ignore characters that are typed too fast, a slow computer may
ignore sensor readings or not update actuator values fast enough. However, in
many “time-critical” systems, the ability of the computer to meet the rhythm
of the environment is the key to the usefulness of the system. Failing to do
so may lead in some cases to catastrophic results, and in others, to severe
degradation in performance. Such systems are often called real-time systems
to distinguish them from the types of programs previously described and to
indicate the tight coupling between the internal time inside the computer
and the time of the external world.2 In the next section we discuss various
differences between such programs and the control loops that they realize.
1 Today it is hard to imagine how computing could be otherwise, but the passage

from batch to terminal-based computation was revolutionary at the time, and the
authors are old enough to remember that.

2 Sometimes the terms online versus offline are used for similar purposes.



From Control Loops to Real-Time Programs 5

2 From Mathematical Descriptions to Programs

Programs implementing control systems differ from their corresponding
discrete-time recurrence equations in several aspects, the first of which is
not particular to control systems but is concerned with different levels of ab-
straction in which algorithms can be described. For instance, algorithms for
searching directed graphs may be defined in terms of the abstract structure of
the graph, the mathematical G = (V,E), without paying attention to the way
the graph is stored in memory. An abstract algorithm may contain statements
such as “for each successor of a vertex v do” without being explicit about the
way the successors of a node are retrieved from the data structure representing
the graph. More concrete programs, written in languages such as C, need to
specify these details. Between these levels and the actual physical realization
there are many intermediate levels (assembly and machine code, micro code,
architecture, etc.) and one of the great achievements of computer science and
engineering is that most of the transformations between these levels are done
automatically using computer programs.

As an illustrative example we consider one of the most popular forms of
control, the PID controller, and see how it is transformed into a program.
An important feature of feedback functions is that they are typically dynam-
ical systems by themselves, admitting a state which influences their output
and future behavior. Fig. 2 shows the Simulink diagram of a typical sampled-
data PID controller. The annotation of the Simulink blocks is written in the
z-transform formalism, which is a discrete version of a frequency-domain rep-
resentation of systems, where delay and memory are expressed using the 1/z
operator. An explanation of this formalism can be found elsewhere in the
handbook, and we focus here on a more “mechanical” state-space description
of the controller. What a PID controller essentially does is to take the input
signal I, compute its derivative D and integral S and then compute the output
O as some linear combination of I, S and D. The state variables of the system
include the integral S and the previous value of the input J , which is needed
for computing the derivative. The following system of recurrence equations
defines the semantics of the controller as a set On of output sequences whose
relation with the input sequence In is defined by

S−1 = I−1 = 0.0
Sn = Sn−1 + 0.1 · In

On = 5.8 · In + 4 · Sn + 3.8 · 10.0 · (In − In−1)
(1)

The first line defines the initial values of state variable S and the second line
defines its subsequent value for every n ≥ 0. The last line determines the
output, using In−In−1 as the derivative. Since old values of the input are not
typically kept in memory, we will need to store this information in an auxiliary
state variable J satisfying Jn = In, and replacing In−1 in the definition of On

by Jn−1.



6 P. Caspi and O. Maler

1

Out1

0.1z

z−1

Integrator

5.8

Gain2

3.8

Gain1

4

Gain

z−1

0.1z

Derivative

1

In1

Fig. 2. A PID controller represented by a Simulink block diagram

Before showing the corresponding program, let us note that since (1) in-
volves memory that has to be maintained and propagated between successive
invocations of the program, the corresponding programming construct is bet-
ter viewed as a class in an object-oriented language such as C++ or Java.
However, since this point of view is probably not so familiar to most readers,
we will realize it as a C program with global variables. These variables con-
tinue to exist between successive invocations of the program (like latches in
sequential digital circuits when the clock signal is low). The program shown
in Table 1 is a result of a rather straightforward transformation of (1).

/* memories */

float S = 0.0, J = 0.0;

void dispid cycle (){
float I,O;

float J 1,S 1;

I = Input();

J 1 = I;

S 1 = S + 0.1 * I * 4.0;

O = I * 5.8 + S 1 + 10.0 * 3.8 * (I-J);

J = J 1;

S = S 1;

Output(O);

}

Table 1. A program realizing a PID controller



From Control Loops to Real-Time Programs 7

The first part of the program is the declaration and initialization of the
global variables J and S. The second part, the dispid cycle procedure, de-
scribes the computation to be performed at each invocation of the program. It
uses auxiliary variables J 1 and S 1 into which the new state is computed. The
procedure presupposes two auxiliary functions Input and Output provided by
the execution platform, which take care of bringing (digitized) sensor inputs
into I and writing O onto the actuators. The implementation details of these
functions are outside the scope of this article. The computational part of the
procedure consists of taking the input and propagating it through a network
of computations to produce the output. We first compute the next values of
the state variables, then compute the output, write the new state values into
the global variables and finally write the output and exit.

Upon closer inspection one can see that we do not really need the auxiliary
variable S 1 because only the new value of S is used while computing O. Con-
sequently, we can replace the computation of S 1 by direct computation of S,
use S in the computation of O and discard the assignment statement S = S 1.
In fact, we can do similar things with J, by putting the statement J=I after
the computation of the output, to obtain the optimized program in Table 2.

/* memories */

float S = 0.0, J = 0.0;

void dispid cycle (){
float I,O;

I = Input();

S = S +0.1 * I * 4.0;

O = I * 5.8 + S + 10.0 * 3.8 * (I-J);

J = I;

Output(O);

}

Table 2. An optimized program for the PID controller

Saving two variables and two assignment statements is not much, but
for complex control systems that should run on cheap micro controllers, the
accumulated effect of such savings can be significant.

The reader can easily appreciate that the process of writing, modifying and
optimizing such programs manually is error prone and that it would be much
safer to derive it automatically from the high-level Simulink model. We have
derived a program similar to the program in Table 2 from the Simulink model
of Figure 2 in two steps. First, the Simulink-to-Lustre translator [6] was used to
transform the model into a program in Lustre, a language [11] which provides



8 P. Caspi and O. Maler

rigorous syntax and semantics for expressing data-flow equations such as (1).
Then the Reluc Lustre-to-C code generator [9] produced the program after
automatic analysis of state variables, dependencies and other optimizations.

The story does not end with the generation of machine code by the C com-
piler, as there are some additional conditions associated with the execution
platform that need to be met. To begin with, the platform should support the
I/O functions and be properly connected to all the machinery for conversion
between digital and analog data. Second, the proper functioning of the pro-
gram depends crucially on its being invoked every T time units, where T is the
sampling period of the discrete-time system according to which the parame-
ters of the PID controller were derived. Not adhering to this sampling period
may result in a strong deviation of the program behavior from the intended
one. This is a very particular (and rather unexpected) class of software errors
inherent in control applications.

To ensure the correct periodic activation of the program we need access
to a real-time clock that will trigger the execution every T time units. But
this is not enough due to yet another important difference between an ab-
stract mathematical function and a program that computes it: the former is
timeless while the latter takes some time to compute. For a program such
as dispid cycle to function, the condition C < T should hold, where C is
its worst-case execution time (WCET). If this requirement is not met, the
program will not terminate before its next invocation (see the timing diagram
in Fig. 3). Measuring and estimating the WCET of a program on a given
architecture is not an easy task, especially for modern processors, and it is
subject to extensive ongoing research [25].

Read Compute Idle Read Compute

C

T

. . .IdleWriteWrite

Fig. 3. The execution of a control program with a period T

Once these conditions are fulfilled, several implementation techniques can
be used. Historically, such controllers were first implemented on a bare ma-
chine, without using any operating system (OS). The real-time clock acts as
an interrupt that transfers control to the program. If the scheduling condition
C < T is satisfied, this interrupt occurs after the program has terminated and
the computer is idle. Hence, unlike preemptive scheduling, there is no need for
context switching and complex OS services. This implementation technique
is thus both simple and safe and does not need to rely on a complex piece



From Control Loops to Real-Time Programs 9

of software like an OS, which is difficult to validate. Much progress has been
made in real-time OS (RTOS) technology, and today commercial systems are
available that have been exercised and debugged by a large number of users
and can be considered quite safe. Hence the role of monitoring the real-time
clock and dispatching the program for execution can be delegated to an OS.

This concludes the discussion on the implementation of simple control
programs where we have tried to touch upon the key relevant computational
aspects. In the next section we focus on the timing-related aspects of imple-
menting more complex control loops.

3 Complex Periodic Controllers

In many control applications, systems have several degrees of freedom that
must be controlled simultaneously. Mathematically each controller ci is just
another recurrence equation that coexists with the other equations. Compu-
tationally, these loops should be realized on a sequential computer that can
do one thing at a time. The problem of how to “sequentialize” and schedule
these parallel processes is one of the major topics in real-time systems. It is
important that each invocation of a controller will have its relevant inputs
ready before it starts executing and that the computation of all its outputs
and their transmission to the outside world terminate in due time. This is the
basic functional requirement from real-time control software, a fact sometimes
obscured by details of operating systems and scheduling policies.

3.1 Single period

We start with the simple case where all controllers share the same sampling
period T . This means that all of them should be invoked at every cycle of the
system. A necessary condition for realizing these controllers sequentially on a
given architecture is that all the computations (including input and output)
should fit inside the cycle or, in other words, the condition

∑
Ci < T is

satisfied where each Ci is the WCET of controller ci on that architecture.
In this setting, the code of each controller can be generated separately as

described in Section 2. The sequential implementation of the whole control
program can be achieved by a simple scheduler that invokes the controllers
one after the other. However, a somewhat less modular but more efficient
method consists of gathering all the controllers into a single program and
using an optimizing compiler to generate the code of the global controller.
By analyzing the structure of the controllers and their data dependencies, a
smart code generator can find out that some parts of the computation are
shared by several controllers and need not be computed more than once. Such
optimizations may reduce the number of operations and a slower computer can
be used to achieve the required sampling rate. With the progress of these code
generators, this technique is becoming more popular. Verifying the correctness
of such optimizing compilers is, by itself, an active research topic.



10 P. Caspi and O. Maler

3.2 Multiple periods

When a system has to control several variables, it is often the case that the
variables follow dynamics of different speeds and need to be controlled at
different sampling rates. The specification of such a multi-rate system can be
given by a collection of pairs {(ci, Ti)}i=1..n where Ti is the period of controller
ci, which can be considered as an integer. With such a task specification we
associate two numbers, the basic period T = gcd(T1, . . . , Tn), and the super-
period P = lcm(T1, . . . , Tn), where gcd and lcm are, respectively, the greatest
common divisor and the least common multiple of the task periods. As a
running example we consider the 3 task system S123 = {(c1, 1), (c2, 2), (c3, 3)}
with T = 1 and P = 6, depicted graphically in Fig. 4. The implementation of
this abstract specification consists of allocating portions of the timeline of the
processor to instances of the controllers (tasks) so that their execution times
satisfy the implied constraints. Due to periodicity, if a schedule is found for
the first P cycles, it can be repeated indefinitely for the rest of the timeline.

c2

c1

0 41 2 3 5 6

c3

Fig. 4. A multi-rate specification S123 = {(c1, 1), (c2, 2), (c3, 3)}

Cyclic Executive

The most straightforward solution is to execute c1 every cycle, c2 every second
cycle and c3 every third cycle (see Fig. 5). While this solution is simple and
natural, it is not very efficient in utilizing the computer time. As we can see,
there are very “busy” cycles where all three controllers need to be executed,
while in others the computer is mostly idle. Using this approach, it is the
most busy cycle which determines the relation between platform speed and
feasibility of the schedule. In this example the schedule is feasible only on
platforms satisfying C1 + C2 + C3 < T .3

More efficient solution schemes are based on the assumption that the nth
instance of task ci can be executed anywhere in the interval [(n−1) ·Ti, n ·Ti].
3 Improvements can sometimes be achieved by using different phases (offsets) for

the periodic computations.



From Control Loops to Real-Time Programs 11

c1 c2

c1

c3

c22c21 c32c31 c33

1 2 3 4 5 60

Fig. 5. Schedules for example S123: a simplistic imbalanced schedule versus static
partitioning

The lower and upper bounds of the interval are often called, respectively, the
release time and deadline of the task. The set of all such intervals for our
example is depicted below:

c1: [0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]
c2: [0, 2], [2, 4], [4, 6]
c3: [0, 3], [3, 6]

Instead of restricting the execution of the slow controllers c2 and c3 to
the cycle where they need to produce their outputs, we can execute parts of
them in earlier cycles when the processor is available. Technically there are
different methods for splitting the execution of the slow tasks to obtain a more
balanced distribution of the computational effort.

Offline splitting

One approach consists in partitioning the code of every slow controller offline
into pieces of approximately equal execution times and distributing their exe-
cution over all cycles inside its period. In our example this means splitting c2

into c21 and c22, splitting c3 into c31, c32 and c33 and using a cyclic executive
to schedule the modified tasks, leading to a schedule like the one illustrated
in Fig. 5. The corresponding schedulability condition becomes:

max
j

∑
i

Cij < T.

This solution, which has many advantages, is quite popular in practice. For
instance, it is the one adopted in the time-triggered architecture (TTA) frame-
work [15], where it is handled by several commercial tools. One disadvantage
of this approach is that the splitting of a control loop into subparts of similar
execution time is not easy to accomplish at the application level (Simulink



12 P. Caspi and O. Maler

model) and possibly requires several iterations until a feasible schedule is
found. Doing it directly on the code of the control program one loses some of
the methodological advantages of automatic code generation. The variability
in the execution times of the same program on modern processors does not
make this job easier.

c1 c22c21 c32c31 c33

c1 c2 c3

0 654321

Static

EDF

RM

Fig. 6. Schedules for the S123 example: static splitting, EDF and RM

Preemptive solutions

The other class of solutions is more dynamic and is based on the preemption
services of an RTOS. Every controller is compiled into a simple program, each
instance of which is viewed as an independent task dispatched for execution by
a scheduler according to some policy. The basic principle is that a slow process
may execute when the computer is available, but when a more urgent task
is released, the active computation is stopped and resumes when the urgent
task terminates. This “context switching” (saving the contents of registers)
takes some time, which we ignore in this discussion. The classical result of
Liu and Layland [18] shows that, for preemptive scheduling, a set of tasks is
schedulable if the amount of computation time to be consumed in P cycles is
smaller than P · T , that is, ∑

i

Ci/Ti < 1.

The two most popular scheduling policies are earliest deadline first (EDF)
and rate-monotonic (RM).



From Control Loops to Real-Time Programs 13

Earliest deadline first: The simplest and most natural way to allocate the
time budget of the processor is to prefer most urgent tasks: at any moment,
choose among the enabled tasks the one with the nearest deadline. If two
or more tasks have the same deadline, an arbitrary choice can be made, with
preference to tasks that are already executing (to minimize context switching).
An example of an EDF schedule obtained for S123 appears in Fig. 6. Note that
when the third instance of c1 arrives, it does not preempt the first instance
of c3, because they have the same deadline. EDF was introduced in [18] and
has been proven to be optimal.
Rate-monotonic: The alternative and rather popular approach is to use a
static priority relation among tasks based on their frequency (c1 ≺ c2 ≺ c3 in
our case). Then at every time instant the task with the highest priority among
the enabled ones is selected for execution. RM schedules tend to make many
more preemptions than EDF and, even if we ignore context switching, they
are provably less efficient than EDF schedules. As one can see in Fig. 6, S123

is not schedulable by RM on the same platform for which it is schedulable
by EDF as the computation of the first instance of c3 misses its deadline.
The popularity of RM can be partly explained by the fact that fixed priority
policies are easier to implement in existing operating systems, and that the
degradation in performance with respect to EDF is only 1/3 in the worst case.

3.3 Semantic issues

The discussion in the previous section was based on a simplified abstract
view of the controllers, assuming their I/O to be atomic operations that take
place within zero time at the endpoints of each of their respective periods.
We also implicitly assumed that the controllers are independent and do not
communicate. In reality, the I/O operations are often part of the code of
each task, and the timing of their execution may depend on the scheduling
policy used. We mention two issues related to this fact: data consistency and
determinism.

Data consistency

The first low-level problem to be resolved is due to the possibility that pre-
emption occurs in the middle of an I/O operation, leading to corrupted data.
For example, a task may be interrupted after having read some part of a long
piece of data and resume operation only after some other task has modified
it. Several solutions exist for this problem:

1. Protection by semaphores: This technique, used extensively in operating
systems when resources are shared by several tasks, consists of preventing
the interruption from occurring during I/O operations. From the point of
view of priority-based scheduling this means that the task increases its pri-
ority when it enters its “critical section”. This feature makes the schedul-
ing problem more complex because the blocking time has to be evaluated



14 P. Caspi and O. Maler

and added to the WCET of the corresponding tasks. This can raise the
well-known priority inversion problem for which solutions such as the pri-
ority inheritance or priority ceiling protocols have been invented [24].

2. Lock-free methods: Here the reading task may detect the fact that the data
it has been reading has changed and it may restart reading, attempting
to get uncorrupted data [17, 16, 1]. Although the number of times this
may happen is finite, the time that can be spent on retrying should be
accounted for in the schedulability analysis.

3. Wait-free methods: Here data that are shared by several tasks are du-
plicated (double- or triple-buffers) so that the reader and the writer use
different “lock-free” copies and than toggle between them. Consequently,
the schedulability analysis need not be modified, but more space is needed
to store the shared data [8, 14].

Determinism

Under this title we group all phenomena related to the deviation of the imple-
mentation from the “nominal” control loop that may result from the potential
variability in execution times of different instances of the same task. We il-
lustrate this class of problems and compare the influence of such variability
on the three types of scheduling policies previously mentioned (simple, static
splitting and preemptive). No attempt is made to cover the whole panorama
of considerations and practical solutions.

Consider example S123 where controller c1 has a state variable y1 which is
computed every iteration as y′1 = f(y1, y2, y3) where y2 and y3 are computed
by c2 and c3, respectively (note that this also covers the special case where
y2 and y3 are just inputs sampled at a lower frequency). Before continuing,
it is worth contemplating the definition of the computed controller in terms
of the external time of the controlled environment. If we were dealing with
continuous time or with uniform sampling, the values of y1, y2 and y3 used in
every invocation of c1 would be of the same real-time “age”, that is, something
of the form

y1(t′) = f(y1(t), y2(t), y3(t)). (2)

Since the y’s are computed/sampled at different rates, each invocation of
c1 inside the super-period can use only the most recent values of y2 and
y3 that are available, which leads to six different variations on (2), one for
each cycle (see Fig. 7). For example, in the last cycle we compute y1(t) =
f(y1(t− 1), y2(t− 2), y3(t− 3)).

This “non-uniform” relation, expressed naturally using the under-sampling
features of Simulink, is the starting point of multi-periodic control loops.4

Under the simple scheduling policy, this relation is robust under variations
4 In fact, the exact definition of this relation may vary according to the details of

the I/O mechanism, but the important point is that the same pattern repeats
every P cycles.



From Control Loops to Real-Time Programs 15

y1

y2

y3

1 2 3 4 5 6

Fig. 7. Six different computations of y′
1 = f(y1, y2, y3), each with a different

external time characterization of the relation between the variables

in execution time because each task is executed in a predefined cycle. The
situation is not much different if we use the static splitting approach, because
the I/O operations appear in fixed portions of the code of each task, which
are executed at predefined cycles.

On the other hand, preemptive methods are less robust in this sense as the
I/O operations of a given instance of a task may occur at different cycles in
different instances of the super-period depending on the point in the program
where preemption takes place. For example, in the EDF schedule of Fig. 6,
if c3 takes less time and terminates within the second cycle, then the third
invocation of c1 may use this value, i.e., y3(t−1), instead of y3(t−3). A similar
type of non-determinism, also known as jitter, is associated with the varia-
tion in the timing of the output operations. These types of non-determinism
constitute one of the main criticisms of preemptive solutions for control ap-
plications. To alleviate this problem, various “time-triggered” solutions for
the communication between different parts of the controller and for I/O in
general have been proposed. Among them are the time-triggered architecture
[15], to be discussed in Section 5, and the Giotto language [13] which allows
preemption but isolates the execution of I/O operations from the rest of the
code and forces them to take place in predefined time slots.

Let us remark that the attempts to maintain this determinism seem some-
what questionable, at least for periodic implementation of continuous control.
The fact that the age of the value used by a controller deviates by a cycle or
two between invocations need not have a significant effect on the performance
of the control loop, given that such age variability already exists between con-
secutive cycles. Moreover, due to the measurements process and the variability
of the external environment, there is not much sense in speaking of determin-
ism in the actual execution of the control loop, although determinism is a
convenient feature for debugging and simulation purposes. The situation may
be different for a hybrid system where continuous and discrete event control
are combined (see Section 4.3).



16 P. Caspi and O. Maler

4 Discrete Events and Hybrid Systems

So far we have focused on classical continuous control, whose implementation
by computers is supported by the mature theories of sampled-data control
and periodic scheduling. In this section we address the implementation of
discrete event control systems, which constitute an important ingredient of
any modern control system and whose interaction with continuous control
led to the emergence of a new field of research known as hybrid systems.
Although such systems have been intensively studied in recent years, there
is no comprehensive theory concerning their implementation, despite some
recent efforts [10, 5].

4.1 Comparison with continuous control

The specification of a discrete event controller is given in terms of a transi-
tion system, a generic term which covers automata, Petri nets or variants of
Statecharts (state machines augmented with features such as parallelism and
hierarchy). A transition system is defined over a discrete set of states and
discrete sets of input and output events (alphabets). The dynamics is given in
terms of a transition function consisting of tuples of the form (q, a, b, q′) with
the following intended meaning: when an input event a occurs while in state
q, an output event b is generated and the controller moves to state q′ (see
Fig. 8). Note that the execution of the transition is not merely a table lookup
operation as in textbook finite-state automata, but may involve manipula-
tion of complex data structures which are part of the state of the system.
The software implementation of a transition system is a program that decides
according to the current state and the input event which reaction to compute.

q
a/b

q′ c/d

Fig. 8. A transition system

Although discrete event systems are defined using the same abstract
scheme of dynamic systems, that is, read input, update state and write out-
put, their nature is quite different from that of continuous systems (see a
more detailed discussion in [19]). In the latter, the dependence of the dynam-
ics on the values of the state and the input is more or less continuous as these
are variables appearing in the numerical recurrence equation. In discrete sys-
tems, the dynamics is defined by if-then-else statements where the values of
state and input variables serve to choose among the branches of the program.



From Control Loops to Real-Time Programs 17

This leads to a much larger variability in the execution time for subsequent
invocations of the controller.

The second major difference is associated with the time axis with respect
to which the system is defined. The specification of continuous control systems
is tightly and explicitly embedded in the real-time axis through the sampling
rates which determine when inputs are read and what the deadline is for each
invocation of a controller. Discrete transition systems are typically defined
with no reference to real time and operate on a logical time scale, defined
by the events. In other words, the model says that after input a there will
be an output b, but any amount of time may separate the two events. The
only implicit constraint is that the transition should be completed before the
arrival of the next input event.

Without constraints on the environment, only an infinitely fast controller
that reacts in zero time can respond to any event at any time. Assuming
the existence of such a fast machine is often called the synchrony hypothesis,
and it is advocated, among others, by the proponents of the Esterel language
[4]. Although such machines do not exist, it is claimed that this zero time
approximation provides reactive programming languages with a much cleaner
and simpler semantics. As benefits, programs are easier to understand, debug
and validate. Let us also note that this assumption is implicitly accepted
during simulation, for example, with tools such as Simulink/Stateflow: each
time the controller has an action to perform, the simulation time is frozen,
and resumes only after the action is completed. Of course, stopping “real”
time is much more difficult. We mention a recent variation on the synchrony
hypothesis proposed in [21] where zero is replaced by a fixed and uniform
delay (the logical execution time) in the semantics of the specification. The
choice of this number, however, requires looking into the properties of the
execution platform, except, perhaps, for systems where the reactions are very
simple.

When moving to software implementations of such systems, we must bring
real metric time into the picture, both at the specification level (refining the
response time requirements, adding assumptions concerning the speed of the
environment) and at the implementation level (execution times of the reac-
tions on a given platform, event detection mechanisms). As no system can
detect and handle events that arrive with an unbounded frequency, we need
to convert the ideal “untimed” specification into a realistic one by adding
constraints to the model of the environment so that such “Zeno behaviors”
are prevented.

A simple and natural way to restrict the environment is to assume a pos-
itive lower bound on the inter-arrival time of events (events that violate this
constraint are ignored by the controller). This is a very sensible requirement
when the events are determined by changes in the values of discrete signals.
An implementation of a system admitting such a lower bound d is guaranteed
to meet the specifications if the WCET of each transition is smaller than d.
Sometimes it is reasonable to assume such a lower bound for each type of



18 P. Caspi and O. Maler

input event separately. This does not prevent an event of one type from arriv-
ing while the (sequential) implementation is busy reacting to another event.
However, if the respective WCETs are small enough, the system can cope
with these events using a bounded buffer that stores pending events (this is
similar to the schedulability of multi-period systems discussed in Section 3).

Alternatively, one can explicitly set deadlines for each reaction or simply
assign priorities so that the system will respond to the more important events
and postpone the treatment of others while it is overloaded (this approach
is common in “soft” real-time systems). As we have already noted, the de-
termination of the real-time requirements is less systematic than in the case
of continuous systems, and in many cases this part of the specification will
be derived a posteriori from the constraints of the execution platform rather
than in a top-down fashion.5

4.2 Implementation strategies

Let us illustrate two popular implementation styles without attempting to be
exhaustive in the coverage of all existing approaches.

Single program time-triggered implementation

This is probably the most popular implementation strategy. It attempts to
treat discrete event systems using the same principles used for continuous
ones. It is similar to the cyclic executive for multi-rate systems with which
it can be easily combined, although no deep theory has been developed for
it. We assume without loss of generality that events correspond to changes
in values of Boolean signals. The set of controllers that specify the system is
compiled into a single program, a sampling rate is chosen and it determines
the deadline for the reactions to events. The input signals are sampled at a
fixed rate and if a signal value is found to be different than in the previous
sampling point, an event is declared. The reactions to all detected events are
then executed sequentially and should terminate within the sampling period.

To see how this approach integrates easily with continuous control, con-
sider, e.g., a train controller which must maintain a reference velocity using
standard continuous control but which should react as well to events such
as requests for emergency stops or other user commands. At every sampling
point such a controller will read the continuous variables as well as the events.
Then, it will execute the reaction for the events (some of which may cause
mode switching in the continuous dynamics) followed by the computation of
the continuous feedback function. Typically, no preemptive scheduling is used
in this implementation style and no attempt is made to make efficient use
5 In fact, this is also sometimes the case in continuous control where sampling

rates are determined based on known limitations of the intended implementation
platform.



From Control Loops to Real-Time Programs 19

of the computer. To be schedulable, the sum of WCETs of all the possible
reactions (computed over the set of all input events that may occur within
one sampling period) plus the WCET of the continuous control loop should
be smaller than the sampling period.

Tasks and event-triggered implementation

Another popular implementation strategy starts with a collection of discrete
controllers, each handling one class of events. Each controller is compiled into
a separate task which is invoked when the event occurs. This approach requires
using an RTOS and some scheduling policy: each event generates an interrupt
and the scheduler decides whether to execute the corresponding task or wait
for the termination of a task already being executed.

Fixed priority scheduling seems to be the most popular policy for this
implementation style where, naturally, higher priority is assigned to tasks with
closer deadlines (deadline monotonic policy). A nice schedulability analysis
has been proposed in [3] for this policy under a minimum inter-arrival time
condition. When such a condition holds, the approach does not suffer from
the “unpredictability” charges that proponents of the time-triggered solutions
tend to put on event-triggered systems [15].

The approach combines nicely with periodic and multi-periodic activa-
tions, for instance, by using a fixed priority preemptive scheduling policy
for the periodic tasks. Actually, real-time clock activations can be seen as
events among others, which are naturally endowed with a minimum inter-
arrival time, the period itself. In this sense, this approach generalizes the
multi-periodic one and is well adapted to hybrid systems.

Note that the two aspects mentioned, a single program versus separate
tasks and periodic versus event-triggered sampling, are somewhat orthogonal.
For example the implementation of a program written in the Esterel language
is compiled into a single application task as in the time-triggered implemen-
tation. Then, this application task runs concurrently with another task, the
event handler, which detects events and dispatches them for execution when
the application task is idle.

4.3 Semantic issues

As we have noted in Section 3.3, variations in execution or communication
time may cause changes in the external I/O behavior of controllers. In contin-
uous systems this is restricted to the age of data used by the controller, but
in discrete interacting systems the effect of such variations on the behavior of
the controller can be more dramatic.

To illustrate this important phenomenon, consider the two automata ap-
pearing in Fig. 9 together with their composition. The first automaton reacts
to a while the second reacts to b but its reaction depends on the state of the
first. As one can see, the state of the system depends on the order in which



20 P. Caspi and O. Maler

the two events arrive. In particular, according to the standard synchronous
composition of automata, if a and b occur simultaneously, the outcome (for
this example) is different than in the case where a occurs before b. Hence, in
order to be faithful to the semantics of the model, the implementation should
be able to make unrealistic distinctions. Only “confluent” automata admit-
ting a diamond-like shape (as the one depicted on the right of Fig. 9) have
their semantics robust under such variations, but such global automata are
obtained only when the individual controllers are practically independent.

As an illustration, consider a periodic sampling implementation and the
two signals of Fig. 10 whose respective risings generate the events a and b.
A slight shift in the sample times may lead to two different interpretations:
in the first a and b are perceived as occurring at the same time while in
the second a occurs before b. How do designers take this phenomenon into
account? It seems that they apply (consciously or not) tricks borrowed from
the asynchronous hardware domain where such phenomena are called hazards
or critical races.6 For instance, they try to ensure that any possible race acts
on independent state variables, and if this is not possible, they try to avoid the
critical race by forbidding the inputs from changing at almost the same time.
This, in turn, is obtained by imposing delays or causality relations between
any two inputs that could possibly be involved in a critical race.

q1

q2

a

q4 q5

q3

b ∧ q1

q1, q3

q2, q3

q2, q4

q1, q5

a

b

b

a

q2, q5

b

a b

a

b ∧ q2

a, b

a, b

Fig. 9. Two interacting systems and their composition (the transition label a, b
indicates that a and b occur simultaneously); a confluent automaton

For event-triggered preemptive implementations this problem is, of course,
more severe, and several solutions for it have been proposed. As mentioned
previously, the Giotto approach and its extension to discrete events [21] guar-
antee semantic consistency by deterministic timing of the I/O operations. On

6 In many applications, software-based control has evolved from previous hardware
implementations and the hardware culture is still vivid.



From Control Loops to Real-Time Programs 21

a, b a b

Fig. 10. A pair of signals interpreted differently depending on the sampling

the other hand, the solution proposed in [22] using a multi-buffer protocol
achieves the same goal without insisting on timing determinism.

5 Distribution and Fault Tolerance

The preceding sections dealt with control systems implemented on a single
computer. However, many large control applications are distributed for var-
ious reasons such as location of sensors and actuators, performance or fault
tolerance. As a matter of fact, distribution and fault tolerance are strongly
related issues: on one hand, fault tolerance usually requires some redundancy
which can be implemented as distribution and, on the other hand, distribution
raises consistency problems [20] that make fault tolerance more difficult to im-
plement. For this reason we treat them in the same section, which is somewhat
superficial, given the huge amount of work dedicated to distributed comput-
ing during the past thirty years. We simply mention the major problems and
discuss briefly two classes of solutions used in control applications.

A distributed platform consists of several computers, sensors and actua-
tors (nodes) linked together via some communication network through which
data can be transmitted. An implementation of a control system on such an
architecture consists of assigning controllers to processors, scheduling them
and specifying the communication protocol according to which different nodes
in the network interact. This architecture aggravates the semantic problems
associated with a single computer implementation, namely, variability in exe-
cution times and ordering of events, due to communication delays, clock drifts
between different processors, etc.

5.1 Local clocks solutions

This is the most widely adopted solution in distributed control systems up to
now. The idea is quite simple:

• Each computer has a local real-time clock and runs a periodic (or multi-
periodic) application as described in Section 3.



22 P. Caspi and O. Maler

• Each computer samples its external world periodically based on its lo-
cal clock. This world is made of its physical environment and variables
produced by other computers. This amounts to a shared buffer (shared
memory) inter-computer communication mechanism.

This solution has many advantages as each computer is complete and acts
autonomously. This feature matches pretty well modern aspects of computa-
tion and control, as manifested in sensor networks and Internet-based control.
The implementation does not require specialized hardware and can thus take
advantage of the fast performance improvements and world-wide debugging
of mass market products.

Yet, this approach has several drawbacks. Due to the lack of clock syn-
chronization, it yields large jitters that may become larger than the periods.
For a purely continuous system this problem is not so severe, because the de-
viation in the real-time age of data items is always bounded. However, it can
become more serious when discrete events are involved. Another drawback is
that when two systems are not synchronized, they should observe each other
more frequently in order not to miss events.

As shown in [7], redundancies can be implemented on top of such systems
in order to achieve fault tolerance.

5.2 Global clock solutions

These are emerging solutions which have been subject to a large research effort
in the past years. They are best known as time-triggered solutions [15, 23] and
are based on the following principles:

• A redundant bus dispatches a common fault-tolerant real-time clock to
each computer.

• Communication between computers takes place at fixed points in time
determined by the global clock.

• Each computer runs a periodic or non-preemptive multi-periodic (see Sec-
tion 3.2) application driven by the global clock.

The major advantage of this solution is that it yields small jitters as the timing
is very deterministic. It comes equipped with built-in fault-tolerance strate-
gies and with toolboxes integrated with Simulink/Stateflow which alleviate
the transition from models to implementation. The drawbacks are exactly the
opposite of the advantages noted in Section 5.1: the approach is less flexi-
ble and may be more expensive and less efficient as it requires specialized
hardware.

As a matter of fact, these two solutions can be seen more as complementary
rather than competing. The local clock solution is well adapted to loosely
coupled (autonomous, asynchronous) systems while the global clock solution
matches tightly coupled ones. Moreover, in control systems distributed over



From Control Loops to Real-Time Programs 23

large distances, there will always be subsystems that are not synchronized
and will need the local clock solution.

Another striking fact about this landscape is that both solutions are time
triggered. It seems as if the event-triggered option has not been considered
for control-dominated distributed systems, while it is the dominant approach
for most distributed systems oriented toward communication and computing.
This could be a topic for future research, especially as control and communi-
cation become more and more interdependent.

References

1. J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-
free shared objects. In Proceedings of the 16th Real-Time Systems Symposium,
pages 28–37. IEEE Computer Society, 1995. 14

2. K. J. Ȧström and B. Wittenmark. Computer Controlled Systems — Theory and
Design. Prentice-Hall, Englewood Cliffs, NJ, 1996. 3

3. N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-
Time Scheduling: The Deadline Monotonic Approach. In Proceedings 8th IEEE
Workshop on Real-Time Operating Systems and Software, Atlanta, GA, 1991.
19

4. G. Berry and G. Gonthier. The esterel synchronous programming lan-
guage, design, semantics, implementation. Science of Computer Programming,
19(2):87–152, 1992. 17

5. P. Caspi and A. Benveniste. Toward an approximation theory for computerised
control. In A. Sangiovanni-Vincentelli and J. Sifakis, editors, 2nd International
Wokshop on Embedded Software, EMSOFT02, volume 2491 of Lecture Notes in
Computer Science, pages 294–304, 2002. 16

6. P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating
discrete-time Simulink to Lustre. In R. Alur and I. Lee, editors, 3rd Interna-
tional Conference on Embedded Software, EMSOFT03, volume 2855 of Lecture
Notes in Computer Science, pages 84–99, 2003. 7

7. P. Caspi and R. Salem. Threshold and bounded-delay voting in critical control
systems. In Mathai Joseph, editor, Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 1926 of Lecture Notes in Computer Science, pages
68–81, 2000. 22

8. J. Chen and A. Burns. Loop-free asynchronous data sharing in multiprocessor
real-time systems based on timing properties. In Proceedings of the Real-Time
Computing Systems and Applications Conference, pages 236–246, 1999. 14

9. J.-L. Colaço and M. Pouzet. Clocks as first class abstract types. In R. Alur
and I. Lee, editors, Third International Conference on Embedded Software (EM-
SOFT’03), volume 2855 of Lecture Notes In Computer Science, pages 134–155,
2003. 8

10. V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
O. Maler, editor, Hybrid and Real-Time Systems, HART’97, volume 1201 of
Lecture Notes in Computer Science, pages 331–345, 1997. 16

11. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991. 7



24 P. Caspi and O. Maler

12. D. Harel and A. Pnueli. On the development of reactive systems. In Logic and
Models of Concurrent Systems, volume 13 of NATO ASI Series, pages 477–498.
Springer–Verlag, Berlin, 1985. 3, 4

13. T. A. Henzinger, B. Horowitz, and Ch. M. Kirsch. Giotto: A time-triggered
language for embedded programming. Proceedings of the IEEE, 91:84–99, 2003.
15

14. H. Huang, P. Pillai, and K. G. Shin. Improving wait-free al-
gorithms for interprocess communication in embedded real-time sys-
tems. In USENIX 2002 Annual Technical Conference, pages 303–316.
http://www.usenix.org/publications/library/proceedings/, 2002. 14

15. H. Kopetz. Real-Time Systems Design Principles for Distributed Embedded
Applications. Kluwer, Dordrecht, 1997. 11, 15, 19, 22

16. H. Kopetz and J. Reisinger. Nbw: A non-blocking write protocol for task com-
munication in real-time systems. In Proceedings of the 14th Real-Time System
Symposium, pages 131–137. IEEE Computer Society, 1993. 14

17. L. Lamport. Concurrent reading and writing. Communications of ACM,
20(11):806–811, 1977. 14

18. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. Journal of the Association for Computing
Machinery, 20(1):46–61, 1973. 12, 13

19. O. Maler. Control from computer science. Annual Reviews in Control, 26:175–
187, 2002. 16

20. M. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228–237, 1980. 21

21. M. A. A. Sanvido, A. Ghosal, and T. A. Henzinger. xgiotto Language Report.
Technical Report UCB/CSD-3-1261, Computer Science Division (EECS) Uni-
versity of California Berkeley, July 2003. 17, 20

22. N. Scaife and P. Caspi. Integrating model-based design and preemptive schedul-
ing in mixed time- and event-triggered systems. In Euromicro Conference on
Real-Time Systems (ECRTS’04), Catania, June 2004. IEEE Computer Society.
21

23. C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz, and C. Temple. Time-
Triggered Architecture (TTA). In Proceedings EMMSEC’97, Florence, Italy,
November, 1997. 22

24. L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990. 14

25. R. Wilhelm. Determining bounds on execution times. Handbook on Embedded
Systems, CRC Press, Boca Raton FL, 2005. 8


	From Control Loops to Real-Time Programs
	Paul Caspi cl@@auth, Oded Maler

