
Modeling and Analysis of Switched Buffer

Networks using Hybrid Automata

Goran Frehse and Oded Maler

Verimag, {goran.frehse,oded.maler}@imag.fr,
WWW home page: http://www-verimag.imag.fr/~{frehse,maler}

Abstract. In this work we develop a methodology for modeling and an-
alyzing switched buffer networks. Within our modeling framework one
can represent the topology of such a network along with bounds on capac-
ities of buffers and communication channels, and controllers that decide
when to open and close these channels. This high-level description is
then transformed into a product of hybrid automata which can accomo-
date for disturbances in the flow rates between buffers, while remaining
faithful to conservation laws. The hybrid automaton model can be used
to verify properties of the controlled system (as we demonstrate in the
paper using the PHAVer tool) and eventually for automatic synthesis
of controllers that satisfy requirements or optimize some performance
measures.

1 Introduction

Many situation in various application domains can be formalized as switched

buffer networks, that is, networks of buffers (containers) in which quantities of
some substances (liquids, materials, bits) are stored, transformed from one form
to another and transported at various rates to other buffers. Among the phenom-
ena that can thus be modeled we mention chemical plants, whole enterprises with
their logistics (value chains), communication networks and stream-processing ap-
plications (audio, video). A mode of such a system is defined by the channels
that are active at a given time, which determine the rates of change in the
quantities of the substances in all the buffers. Switching occurs while opening
or closing channels, starting or stopping a reaction, thus causing the system to
move from one mode to another. Hybrid automata provide a natural modeling
formalism for such systems, a model on which one can verify properties (lack
of overflow or deadlock, arrival of products to certain buffers at pre-specified
times and quantities) and even automatically synthesize switching controllers
that achieve such goals in an efficient manner. Such verification and synthesis
techniques can complement traditional analytic techniques that are harder to
apply as the switching aspects become more dominant. Looking from the other
side of the spectrum, reachability-based methods can be seen adding more rigor
and coverage to simulation-based methodologies.

As a first step toward a computer-aided methodology for designing such
systems, we present a simple class of such networks, motivated by chemical en-
gineering applications. For this class of networks we define an automatic and

compositional translation into “linear” hybrid automata (LHA), that is, au-
tomata where in each mode the derivatives of all continuous state variable are
constant or bounded by some linear relation over constants.

The modeling of switched buffer networks in a manner that can express non
determinism in flow rates while obeying conservation laws, requires a syntactic
departure from the standard LHA model by allowing continuous variables that
are shared by several processes. Fortunately, this variation does not change the
expressive power. The automatic translation preserves the semantics and avoids
many modeling errors that are likely to occur in a manual process. Once a
translation is established, we use the tool PHAVer for verifying the correct
functioning of the system [1].

The rest of the paper is organized as follow: In Section 2 we define the class
of networks that we deal with. Section 3 describes the automatic translation
to hybrid automata. Section 4 illustrates the modeling and translation using a
case-study from the VHS project, inspired by chemical engineering applications.
We finish with conclusions and plans for future work.

2 Switched Buffer Networks

In this paper we focus on a simple class of networks where substances are only
transported between buffers without being subject to “reactions” that change
their type. Most of the modeling problems and solutions are demonstrated al-
ready by this type of networks and their generalization is a topic of ongoing
work. The basic entities in our system are

– Buffers (nodes, containers): These correspond to physical locations where
material can be stored, and between which material can be transferred.
Buffers are characterized by their storage capacities.

– Channels: (transfers, pipes): These can transport substances between buffers.
In this work we focus on continuous channels that reduce at some rate the
quantity at a source buffer and augment the quantity with the same rate on
the target buffer. Channles are characterized by their rates of transfer.

Let I
+ be the set of positive closed intervals over R.

Definition 1 (Switched Buffer Network). A switched buffer network B =
(S, C, σ, γ) consists of:

– A set of buffers S = {s1, . . . , sn},

– a set of channels C ⊆ S × S,

– a storage capacity over S given by a function σ : S → R+, stating an upper

bound on the quantity of material at each buffer, and

– a channel capacity over C given by a function γ : C → I
+, determining the

rates at which material can be transported through an active channel.

The interval γ(c) = [γ(c), γ(c)] reflects outside influences (disturbances) on the
flow rate in an active channel. The state of a switched buffer network has two
components: The discrete global state (mode) of the system is a function p :
C → {0, 1} with p(c) = 1 indicating that channel c is active. The continuous

global state of the system is a function x : S → R+ indicating the quantities of
substances at buffers. We use P ×X to denote the set of global states of the form
(p, x).

The decisions whether to open or close channels is done by a controller which
observes the state of the system. In this paper we restrict ourselves to memoryless
controllers, that is, controllers that do not have a state of their own and can be
expressed as a function of the form u : P × X → P meaning that when the
network is in state (p, x), it will switch immediately to (p′, x) = (u(p, x), x).
Note that this restriction is just for notational convenience and our framework
can accomodate for any controller specified as a LHA. The long-term goal of our
work is to synthesize such switching controllers automatically from specifications,
and as a first step we attack a slightly-easier problem, the verification of a given

controller.

2.1 Stationary Behavior

The dynamics of the network in a given mode is rather straightforward where
each active channel pulls substance from it source buffer and transfers it to
its target buffer. There are however two major subtleties in the modeling. The
first is related to the proper handling of rate nondeterminism, and the second to
situations of starvation and saturation where buffers, respectively, become empty
or reach their maximal capacity. We first describe the stationary dynamics of
buffers which are not starved nor saturated.

The continuous state x evolves in a discrete state p according to a derivative ẋ

that depends on the active channels. Due to the nondeterminism in the channel
capacities, this derivative is only known up to an interval. However, we wish
to impose conservation of material, that is, the material leaving a buffer via
some channel must appear in the exact same quantity in the target buffer of the
channel. So while the change is only known up to some bounds, there must be
a pairwise match across channels that we describe with a function v : C → R

+

called throughput and satisfying

v(s, s′)

{

∈ γ(s, s′) if p(s, s′) = 1
= 0 otherwise

(1)

The inflow and outflow of a buffer s are defined as

vin(s) =
∑

s′

v(s′, s) and vout(s) =
∑

s′

v(s, s′)

for any throughput v satisfying (1), and thus the derivative of each buffer satisfies

ẋ(s) = vin(s) − vout(s). (2)

Note that due to the non deterministic choice in (1) this is a differential inclusion.

2.2 Starvation and Saturation

When a buffer becomes empty in a discrete global state in which one or more of
its outgoing channels is active, we need to fix the throughput of this channel.1

One solution would be to set the throughput to zero but then, if the buffer
admits also an active incoming channel, its quantity will become immediately
positive and will lead to a Zeno behavior (infinite number of switchings in the
channel throughput). One solution to this problem would be to use hysteresis,
that is, using a condition like x(s) = 0 to deactivate the channel and condition
of the form x(s) > d > 0 to reactivate it. Another modeling approach would
be to declare situations where a buffer overflows or where an empty buffer has
an active outgoing channel as error states (“never pump from an empty tank”).
The form of the appropriate modeling solution may depend on the application
domain, and each solution has its cost in terms of adding auxiliary variables or
making the dynamics more complex.

For the purpose of this paper we use the following modeling approach. When
a buffer s is empty we relax the lower bounds on the throughput of its outgoing
channels, allowing them to be as low as zero. The system can stay for a non-zero
duration at a state where x(s) = 0 only if vin(s) = vout(s), otherwise it moves
immediately to a state where x(s) > 0. Likewise, when a buffer is full we relax
the lower bounds on the rates of incoming channels.

Example 1. An example shall illustrate saturation under the presence of nonde-
terminism. Consider the buffer network shown in Fig. 1(a). Figure 1(b) shows
how the levels can change over time, starting from x(S1) = 1000, x(S2) = 850,
and x(S3) = 0. If S2 drains fast enough, it is empty by the time S3 reaches satura-
tion. Otherwise, material is left in both S1 and S2. While at the end the possible
levels of S1,S2,S3 each cover an interval, it is important that the correlation
between the possible levels satisfies the material balance x1 + x2 + x3 = const.

We defer the discussion of changes in the discrete state (corresponding to
opening or closing of channels) to the hybrid automaton model.

3 Modeling with Hybrid Automata

We will now show how we transform buffer networks into products of hybrid
automata whose set of runs correspond to the possible evolutions of the network.
At a first glance, the class of hybrid automata that we use seems richer than
LHA, because the derivative of x(s) is a function of the throughput variables of
the forms v(s, s′) and v(s′, s) but since these variables have no “state” of their
own (their future value does not depend on their current value), they can be
projected away and the obtained automaton, as we shall see, is a LHA.

For the sake of readability we do do not give formal definitions but rather
write down the two building blocks that we use, the automata for buffers and
for channels.
1 The case when a buffer becomes full when it has an active incoming channel is

symmetric.

S1
[0,1700]

S3
[0,1275]

[8,11]

S2
[0, 850]

[16,22]

(a) Network graph

0 20 40 60 80
0

200

400

600

800

1000

1200

1400

(b) Levels over time

Fig. 1. Saturation and nondeterminism

Modeling Buffers and Channels We model each buffer s with the one-state au-
tomaton shown in Fig. 2(a). This automaton just realizes the basic balance equa-
tion (2) letting x(s) evolve according to the value of the throughput variables
that it observes but does not control.

The major ingredient of our modeling approach is the automaton for a chan-
nel (s, s′) depicted in Fig. 2(b). This automaton has 5 states, one representing
an inactive state (closed) and 4 states that refine the active (open) state ac-
cording to whether the source buffer s is empty and whether target buffer s′ is
full. The automaton thus observes the values of x(s) and x(s′) which determine
its discrete state. In each of these states the automaton may choose non deter-
ministically the throughput v(s, s′) while satisfying the respective constraints
as described in the previous section. The transitions between the open states
and closed state are initiated by the controller. It is not hard to see that these
automata represent faithfully the semantics of the buffer network.

Not surprisingly, the number of states in the product automaton grows ex-
ponentially with the number of channels: 5m states for m channels. A common
partial remedy to this problem is to generate the states on the fly from an ini-
tial set and thus restrict the analysis to reachable states. The exponent can be
reduced from 5m to 2m if we assume that starvation or saturation of any buffer
is considered an error.

Modeling Control Strategies We consider control strategies in which the target
state p′ differs from the source state p only one channel.2 Given the network
as a hybrid automaton N , the controlled network can be obtained by modi-
fying the transitions as follows: For a location l in the automaton, let l↓P be
the discrete global state in location l. For each transition from location l to l′

and a controllable label (either open or close, not τ), intersect the guard with
{x|u(p, x) = p′}. Make the transition urgent if p 6= p′, i.e, the transition is taken
immediately when the guard is entered.

2 Every implementable strategy can be brought to this form by splitting transitions.

0 ≤ x(s) ≤ σ(s)
ẋ(s) = vin(s) − vout (s)

(a) Buffer s

open-normal
v(s, s′) ∈ γ(s, s′)

open-starved
x(s) = 0

v(s, s′) ∈ [0, γ̄(s, s′)]
vin(s) = vout (s)

open-saturated
x(s′) = σ̄(s′)

v(s, s′) ∈ [0, γ̄(s, s′)]
vin(s′) = vout (s

′)

open-starv.-satur.
x(s) = 0

x(s′) = σ(s′)
v(s, s′) ∈ [0, γ̄(s, s′)]

vin(s) = vout (s)
vin(s′) = vout (s

′)

closed
v(s, s′) = 0

open(s, s′)

close(s, s′)

x(s′) = σ(s′)

x(s′) ≤ σ(s′)

x(s′) = σ(s′)

x(s′) ≤ σ(s′)

x(s) = 0x(s′) ≥ 0 x(s) = 0x(s′) ≥ 0

(b) Channel (s, s′)

Fig. 2. Hybrid automata models

A simple controller automaton C can be constructed if the initial state of the
network is known, say p = p0: Let the locations of C be all possible p, and let
there be transitions from all p to all p′ when p 6= p′, with guard {x|u(p, x) = p′}.
The transitions do not change the continuous state of the automaton, and all
transitions of C are urgent.

Transformation into LHA The composed hybrid automaton model has a linear
continuous dynamics as ẋ is a function of the throughput variables v. However,
since the values of these variables are selected by the channel automata without
reference to their previous values, and since we do not really care about their
values, we can apply quantifier elimination on v and change the dynamics from
the form ẋ = f(v) to the form ẋ ∈ F where F = {y : ∃vf(v) = y}. Since
polyhedral sets are closed under projection we obtain a LHA.

This concludes the description of our modeling framework which leads to an
automatic translation of arbitrary buffer networks with uncertainty in flow rates
into linear hybrid automata. In the next section we demonstrate the advantage of
having such models by analyzing the behavior of a scheduling policy (controller)
for an 8-buffer batch plant.

(a) Physical plant

P3

LIS
11

B11

M

LIS
22

QIS
22

R22

M2

LIS
32

B32

LIS
31

B31

M

LIS
23

QIS
23

R23

M3

M

LIS
21

QIS
21

R21

M1

LIS
13

B13

LIS
12

B12

V113

V111 V112

V131

V121 V123

V212

V122

V221 V222

V231

V133

V132

V211

V232

P2

P1

to B51to B51

to B51 to B51 to B51

to B51 to B51

B51

P5

P4

V312

V311

from B11-B32

H321H311

H511

H312

to B51

from B41

from B42

from B43 and B44

(b) Piping diagram

Fig. 3. Multi-product batch plant

4 Multi-Product Batch Plant

We demonstrate the approach by modeling and analyzing the multi-product
batch plant from [2], shown in Fig. 3. The plant has three levels: On the top
level, three buffer tanks B11 to B13 contain the raw materials yellow, red and
white. On the second level, there are three reactors R21 to R23 that can be
filled from B11, B12, B13. Mixing Yellow and White in a reactor results in
the product Blue, while Red and White become Green. From the reactors, the
product is drained into either of two buffer tanks B31 and B32 on the third
level, from which it is extracted by the consumer. We verify for a given strategy
that it never results in overflow of the buffers and reactors (exceed capacity by
more than 100ml), and that the buffers B31 and B32 are never empty, i.e., the
consumer demand is always met.

4.1 Plant Model

The plant is readily modeled as a switched buffer network. Figure 4 shows the
network graph for the plant with deterministic rates. The network includes the
site delivery for the source of the raw materials, and a site representing the
consumer. We examine different scenarios, like variations in consumer demand,
for which we replace the deterministic rates by intervals.

delivery

B11
[0,1700]

95

B12
[0,1700]

95

B13
[0,1700]

95

R21
[0,1700]

57

R22
[0,1700]

71

R23
[0,1700]

71 7765 61 8595 65

B31
[0,5100]

71

B32
[0,5100]

6571 7171 71

consumer

[30,40] [30,40]

Fig. 4. Network graph

In total, our model has 8 buffers and 20 channels. Since saturation (overflow)
is considered a failure case, we can omit the two locations in each channel au-
tomaton that correspond to saturation. Each channel then has only 3 locations,
and our network model 320. Since the level of buffers representing the delivery
and consumer is not of interest, we replace the differential equation in their au-
tomata models with a constraint that fixes the level to be constant – neither in
saturation nor starvation.

The automata, together with an automaton modeling the controller, are com-
posed in PHAVer and then the throughput variables as well as the level of source
and sink are projected away (composition and projection can be alternated to
improve speed).

4.2 Verifying Control Strategies

We verify a control strategy that uses R21 solely to produce Blue, and R22 to
produce Green, while R23 is alternatingly used to produce either one, with a
timing ratio that slightly in favor of Blue. It is constrained by the specifications
that, apart from the product buffers, a buffer should not have more than one
active incoming channel, and that White must always enter a reactor after Yellow
or Red. The strategy is represented in Table 1 as a sequence of transfers of one
or two batches from one buffer to another. Each row represents the transfer of
one batch (850ml) of material. The source is indicated by the column and the
target by the row. A circle indicated that the buffer or reactor of that column
is being filled. After the last row is finished, the process goes back to the first
row. The transfers from a reactor to a buffer comprise two batches of material,
and so span two rows. Their beginning is indicated with ↑ and their end with

Table 1. Control strategy as sequence of batch transfers (column: from, rows: to)

row delivery∗ B11 B12 B13 R21 R22 R23

1 B11,B132 ◦ – ◦ – B32↓ B32↑

2 – – R22 R21∗

1 ◦ ◦ B32↓

3 B12 R23 ◦ R220 B31↑ ◦ ◦

4 B11,B132 ◦ – ◦ B31↓ B32↑ –

5 – R21 – R23∗

1 ◦ B32↓ ◦

6 B11 ◦ R22 R210 ◦ ◦ B31↑

7 B12,B132 – ◦ ◦ B31↑ – B31↓

8 – – R23 R22∗

1 B31↓ ◦ ◦

9 B12 R21 ◦ R230 ◦ B32↑ ◦

∗ time critical; 2,1,0 fill/drain to level xB13 = 1700, 850, 0

↓. When a specific quantity must be transferred and the level at the end of the
transfer is larger than zero, the channel must be closed in order to keep more
material from passing through. We call such transfers time critical, and they are
indicated in the table with ∗.

The strategy is modeled with a hybrid automaton as discussed in Sect. 3. The
initial state of the network is fixed (all channels closed), and the controller au-
tomaton is simply a sequence of transitions to open and close channels, process-
ing the strategy as indicated in Table 1 row by row. E.g., the transfer from B12
to R22 on the second row is modeled by a transition with label open(B12, R22)
and guard B12 ≥ 850, followed by a transition with label close(B12, R22) and
guard B12 ≤ 0. The controller initializes the network by delivering raw material
to B11,B12,B13, and then starts with at first row. The strategy has a parameter
xSpace, which determines how much space must be in a product buffer before the
reactor is emptied into it. In rows 1 and 7 of Table 1 two reactors drain simulta-
neously into the same buffer. If not enough space is available, the product buffer
will overflow. The controller automaton could be a simple cycle without branch-
ing were it not for time critical transfers. When several time critical transfers
are running in parallel, it must be taken account in which sequence they could
possibly finish. In the controller automaton, whose discrete structure is shown
in Fig. 5, this is reflected in the classic diamond shape of interleaving transitions
known from concurrent processes. The figure also shows the discrete structure
of the controlled process, which shows the superposition of the controller with
the nondeterministic transitions between stationary and starved locations in the
network model.

We verify the following scenarios:

BP8.1: Deterministic Case The consumer draws at a fixed rate of 1 batch/30sec.
from both product buffers B31 and B32. Figure 6(a) shows a plot of the B31 and
B32 over time. B32 drops considerably below B31 because of the asymmetry in

Table 2. PHAVer performance∗

Automaton Reachable Set

Instance Time [s] Mem. [MB] Deptha Checksb Loc. Trans. Loc. Poly.

BP8.1 120 267 173 279 266 823 130 279
BP8.2 139 267 173 422 266 823 131 450
BP8.3 845 622 302 2669 266 823 143 2737
BP8.4 1243 622 1071 4727 266 823 147 4772

∗ on Xeon 3.20 GHz, 4GB RAM running Linux; a lower bound on depth in breadth-first
search; b number of applications of post-operator

the strategy, but the specification holds. PHAVer is able to show this within a
couple of minutes, see Table 2 for performance measurements. Note that about
90sec of that time are spent composing and projecting the automaton, which is
also responsible for the memory consumption.

BP8.2: Varying Initial States We allow the top level buffers to contain anywhere
between zero and one batch, and the product buffers to be between 5 and 6
batches. The specification still holds, as PHAVer shows in about the same time,
although it finds about 50% more polyhedra. The corresponding plot is shown
in Fig. 6(b).

BP8.3: Varying Consumer Demand The initial state is deterministic, as in
BP8.1, but the consumer demand varies by ±1sec/batch. PHAVer detects the
violation after 845s, and a set of error traces is shown in Fig. 6(c).

BP8.4: Varying but Slow Demand Similar to BP8.3, but with the consumer
drawing only 1 batch/100sec. Nonetheless, the strategy fails. PHAVer detects
the violation after 1243s, and a set of error traces is shown in Fig. 6(d). In fact,
the strategy fails if either one or the other product is consumed quicker. Lowering
the demand on B32 leads to starvation of B31. In row 7 the strategy waits for
B31 to empty until it may be too late for B32, compare Fig. 6(d).

5 Related and Future Work

The idea of modeling switched buffer systems using hybrid automata is quite
natural and has been explored, to a certain extent, in the early days of hy-
brid systems research, see, for example, [3] or [4] or modeling approaches based
on continuous Petri Nets [5]. Dynamic properties, such as stability, of switched
buffer network has been the object of study of many papers, e.g., [6, 7], but as
in other domains, methods based on hybrid automata are not restricted to the
steady-state behavior of the network but can handle also transients. The contri-
bution of our approach is in the combination of a general rigorous translation

combined with the availability of a powerful tool like PHAVer that can han-
dle automata derived from non trivial networks and find subtle bugs in their
controllers.

In industrial applications, controller for buffer networks are usually imple-
mented on a Programmable Logic Controller (PLC), which operates in a cycle
of input acquisition, computation and update of outputs, with a cycle time in
the tens or hundreds of milliseconds. Its control functions are usually specified
in high level languages such as Sequential Function Charts (SFCs) that include
some degree of concurrency. In the low level implementation, the controller is
purely sequential as well as deterministic. A generic approach to translate SFCs
into timed automata was proposed in [8], but it models the cycles of the PLC
explicitly and introduces the cycle time explicitly into the model. The disparity
between the dynamics of the network and the relatively small cycle time dramat-
ically increase the verification costs. For this reason, we prefer the macroscopic
view of a controller as a control strategy, which abstracts the cycles to instan-
taneous (urgent) transitions of the controller.

Timed automata suggest an alternative modeling formalism which can be
analyzed more efficiently, but their lack of expressive power will lead to overly-
conservative verification results. Using timed automata, buffer levels should be
discretized into a finite range from empty to full, and timing bounds assigned to
transitions between these states. While the assignment of timing bounds can be
made exact in the case where each buffer admits only one active channel at any
time, more general situation will lead to large over approximation.

For future work we consider three major directions:

1. Scaling up: like any model of interacting components, ours suffers from the
state-explosion problem that will not allow us to analyze networks with more
than a dozen channels. In order to scale up, an accompanying methodology
for abstracting sub-networks (in the spirit of the technique of [9] for timed
automata) and compositional reasoning in general [10, 11] should be devel-
oped.

2. Expressivity: We work on enriching the model to capture more complex sit-
uations such as reactions that change substance types, channels that may
have several speeds or discrete transportation (quantities are removed from
the source buffer and put at the target after some delay).

3. Synthesis: We work on adapting the synthesis algorithms described in [12–14]
to derive controllers automatically from specifications.

We believe to that the effective analysis of switched buffer networks is a
topic of both theoretical and practical interset whose importance will increase
in the future, especially for communication and computation application. Our
work lays the foundation for a class of promising modeling, analysis and design
techniques.

References

1. Goran Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech.
In Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Computation and
Control (HSCC’05), Mar. 9–11, 2005, Zürich, CH, volume 2289 of LNCS. Springer,
2005. PHAVer is available at http://www.cs.ru.nl/~goranf/.

2. Nanette Bauer, Stefan Kowalewski, Guido Sand, and Thomas Löhl. A case study:
Multi product batch plant for the demonstration of control and scheduling prob-
lems. In Sebastian Engell, Stefan Kowalewski, and Janan Zaytoon, editors, 4th Int.
Conf. on Automation of Mixed Processes: Hybrid Dynamic Systems (ADPM 2000),
Berichte aus der Automatisierungstechnik, pages 383–388, Aachen, Germany, 2000.
Shaker Verlag.

3. Michael Tittus. Control Synthesis for Batch Processes. PhD thesis, Chalmers
University of Technology, 1995.

4. Stefan Kowalewski, Sebastian Engell, Jörg Preußig, and Olaf Stursberg. Verifica-
tion of logic controllers for continuous plants using timed condition/event-system
models. Automatica, 35(3):505–518, mar 1999. Special Issue on Hybrid Systems.

5. René David and Hassane Alla. Discrete, Continuous and Hybrid Petri Nets.
Springer, 2005.

6. C. Horn and P.J. Ramadge. Dynamics of switched arrival systems with thresholds.
In IEEE Conf. Decision and Control, volume 1, pages 288–293, 1993.

7. P.R. Kumar and S.P. Meyn. Stability of queueing networks and scheduling policies.
IEEE Transactions on Automatic Control, 40(2):251–260, February 1995.

8. Nanette Bauer, Ralf Huuck, Ben Lukoschus, and Sebastian Engell. A unifying
semantics for sequential function charts. In Hartmut Ehrig, Werner Damm, Jörg
Desel, Martin Große-Rhode, Wolfgang Reif, Eckehard Schnieder, and Engelbert
Westkämper, editors, SoftSpez Final Report, volume 3147 of LNCS, pages 400–
418. Springer, 2004.

9. R. Ben Salah, M. Bozga, and O. Maler. Automatic abstraction of timed compo-
nents. unpublished manuscript.

10. Goran Frehse, Zhi Han, and Bruce H. Krogh. Assume-guarantee reasoning for
hybrid i/o-automata by over-approximation of continuous interaction. In Proc.
IEEE Conf. Decision & Control (CDC’04), Dec. 14–17, 2004, Atl., Bahamas, 2004.

11. Goran Frehse. Compositional Verification of Hybrid Systems using Simulation
Relations. PhD thesis, Radboud Universiteit Nijmegen, October 2005.

12. Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller synthesis for
discrete and timed systems. In Panos J. Antsaklis, Wolf Kohn, Anil Nerode, and
Shankar Sastry, editors, Hybrid Systems, volume 999 of Lecture Notes in Computer
Science, pages 1–20. Springer, 1994.

13. H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In IEEE
Conf. Decision and Control, pages 4607–4612, 1997.

14. E. Asarin, O. Bournez, T. Dang, A. Pnueli, and O. Maler. Effective synthesis of
switching controllers for linear systems. Proc. of the IEEE, 88(7):1011–1025, 2000.

0

1

2

3

4 5 6

7 8 9

10

11

12

13 14 15

16 17 18

19

20

21

22

23

24

25

26

27

28

29 30

31

32

33

34

35

36 37 38

39 40 41

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56

57

58

59 60 61

62 63 64

65

66

67

68

69

70

71

72

73

74

75 76

77

78

(a) Controller

0

1

2

3

4 5 6

7 8 9

10

11

12

13 1415

161718 19

202122

2324

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47

48 49

50 5152

53

5455

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

7677

78

79

8081

8283 8485

86 8788

89

90 91 92

93 94

95

96

97

9899

100

101

102

103 104

105

106

107

108109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128 129

130 131132

133

134135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161 162163164

165 166167 168

169

170

171172 173 174

175

176

177

178

179

180

181

182

183184

185 186

187

188 189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207208

209210

211212 213

214

215 216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237 238

239

240

241 242

243 244245 246

247248 249

250

251252253

254

255

256

257

258

259 260

261

262

263264

265

(b) Controlled network

Fig. 5. Discrete structure of hybrid automata models

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

(a) BP8.1: nominal case
0 200 400 600 800 1000

0

1000

2000

3000

4000

5000

6000

(b) BP8.2: varying initial cond.

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

(c) BP8.3: varying demand
0 500 1000 1500 2000 2500 3000

1000

2000

3000

4000

5000

6000

(d) BP8.4: varying but slow demand

Fig. 6. Levels of product buffers B31 and B32 [ml] over time [s]

