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Control Strategies for hierachical tree-like probabilistic inference 

networks are formulated and investigated. Strategies that utilize staged 

look-ahead and temporary focus on subgoals are formalized and refined using 

the Depth Vector concept that serves as a tool for defining the 'virtual 

tree' regarded by the control strategy. The concept is illustrated by four 

types of control strategies for three-level trees that are characterized 

according to their Depth Vector, and according to the way they consider 

intermediate nodes and the role that they let these nodes play. 

INFERENTl is a computerized inference system written in Prolog, which 

provides tools for exercising a variety of control strategies. The system 

also provides tools for simulating test data and for comparing the relative 

average performance under different strategies. 
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1. Problem and Knowledge Representaton 

Problem and knowledge representation for evidential reasoning tasks may 

be based on uncertain hierarchical inference networks. An example of a 

network from the MEDAS expert system [1] is shown in Figure 1. In such 
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networks leaf nodes typically represent observable events (indicators), while 

higher level nodes represent events (hypotheses) whose truth may be inferred 

from other nodes in the tree; typically in lower levels but not necessarily. 

Node values represent our belief in the validity of the corresponding event. 

To simplify the discussion we will assume that all nodes represent binary 

events (true = 1, false = 0); and hence one value will be sufficient to 

describe our degree of belief in the event represented by node E. • In 1 
probabilistic terms, P(E.) will denote the probability that the event is 1 
true. A link between nodes E. and E. represents evidential relevancy between 

1 J 
the two corresponding events. Each link is assigned value(s) that represent 

the degree of significance for inferring Ei from E
j. Once an observable 

indicator is reported we propagate the evidence that it carries along the 

network links to determine its impact on our belief in the validity of the 

hypotheses. Methods for evidence propagation in tree-like probabilistic 

inference networks, first appeared in the context of traditional decision 

analysis; e.g. [2] and more recently in the context of AI systems; e. g. [3] 
[ 4 J • 

Root nodes represent the target hypotheses whose resolution is the 

ultimate objective of the system. Intermediate nodes may also be on the list 

of target hypotheses; .and, in any case, we use them to form defensible 

argumentation of the resolution of higher level hypotheses. 

1 • 

2. 

3. 

4. 

Several comments, however, are in order: 

An intermediate or top level hypothesis may sometimes be directly 

observable, but at a higher cost than inferring it from the observable 

lower level indicators. 

We may sometimes wish to bypass low level nodes and report a value 

directly into an intermediate or top level node. This value is not an 

observation but rather a deducion which the problem solver (PS) prefers 

not to delineate by lower level nodes. 

An observalbe indicator may sometimes be observed with noise, in which 

case its value is no longer 0 or 1, but rather in between, much the same 

as an intermediate node. 

Although a hierarchical structure indicates that evidence is propagated 

bottom up; top-down and sideways propagation may sometimes be found very 

useful. 

Using this framework, we may represent evidential reasoning tasks by a 

state space representation as follows. The state of the system at any given 
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stage is characterized by the current values on the network nodes. For the 

initial state s
0 

we assign to all top level hypotheses their prior 

probabilities. The values on intermediate nodes and bottom layer nodes may 

be derived from the values of their parents and the values on the links. 

Observable nodes whose values were inferred rather than observed are 

additionally assigned the value UNOBSERVED designated by "?". These nodes 

are candidates for direct observation to be suggested for the information 

acquisition process. 

From the goal state point of view; the network nodes are divided into 

target and non-target nodes. Target nodes represent hypotheses that need to 

be resolved by the end of the process. That is, only their values take part 

in the termination criteria. Goal states may be defined in a variety of ways 

such as follows 

The values of the top level hypotheses (is ) are above or below certain 

thresholds 

The values of the top level hypotheses (is ) and a selected group of 

intermediate hypotheses are above or below certain thresholds. 

S� would fit problems where at the final stage the only important 

decision is about the top-level hypotheses and decisions about other nodes do 

not lead to any operational consequences. S� would fit problems where the 

state of intermediate nodes also impact the action plan (in addition to their 

role as a mediator for higher level deductions ). For instance, in medical 

diagnosis of critical care disorders a node representing the state of SHOCK 

(Figure 1) is an intermediate node. Yet, to device a treatment plan it is 

very important to know whether the patient is or is not in SHOCK. Evidential 

reasoning is the problem of transferring the network from its initial state 

G0 to a goal state S
G

. 

In this paper we are mainly interested in control strategies for 

tree-like structures and more specifically in the information acquisition 

aspects of these strategies. Uncertainty is expressed in terms of 

probabilities. 

2. Control Strategies 

A control strategy is responsible for the following functions: 

1) Termination Criterion: to decide at each stage, whether or not to 

continue gathering information in order to update the 

probability(ies) of the target hode (s ). 
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2) Decision Function: if a termination decision has been made, a 

decision about the value of the target node(s) must be made or 

recommended - i.e. to map the posterior probabilities of these nodes 

into a final set of decisions such as {+,-,?}. 

3) Information Acquisition Policy: if the termination criterion has not 

yet been met, the strategy should supply rules for comparing the 

observable nodes in order to determine the one to be queried 

next. 

Control strategies for traditional Bayesian models were extensiely 

investigated in statistical pattern recognition theory e. g. [5] [6] . Control 

strategies for hierarchical problems were developed for MEDAS and PROSPECTOR. 

In this paper we propose a general framework for investigating such 

strategies for the case of a tree-£1Ke hierarchical inference network. 

In order to bypass the discussions abut utility functions, and to 

minimize the number of parameters to be compared, let us initially assume 

that at the final stage, the only meaningful decision is about the root node 

N
1

, and that decisions abut other intermediate nodes do not lead to any 

operational consequences. That is the goal state is determined by the value 

of N
1 

only and intermediate nodes only serve as a conceptual tool for a 

clearer presentation of the inference network and its states, and to enable 

generating explanations. 

Control strategies for hierarchical inference networks differ from each 

other in the degree to which they consider the values of the nodes in various 

levels. On one end of the spectrum of control strategies lies the strategy 

that completely ignores the intermediate nodes. This strategy does not 'see' 

the original tree, but rather its transformation into a 2-level tree. Such a 

transformation is achieved by calculating the conditional probabilities of a 

leaf node given the root node i. e. chaining the conditional probabilities of 

the links that lead from that leaf node to the root [2] . This process forms 

direct virtual links between the leaf nodes and the root node (Figure 2) . 

This approach presents two problems: 

1. Since the net structure is taken into consideration only implicitly; 

the order of queries suggested by such a strategy might look peculiar 

or arbitrary to a person who tries to see the direction in which the 

inference process is proceeding based on the net structure. (This 

deficiency is, of course, more emphasized when we attribute meaning 

to the decisions about the intermediate nodes). 
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Rigure 1: HIERARCHIAL STRUCTURE OF DISORDERS 
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2. The transformation into a 2-level tree places quite a burden on the 

computational resources because it has to be recalculated after every 

step. 

The severity of this problem increases as the tree gets to be wider and 

deeper. We can overcome these problems by utilizing the net structure in 

two ways that complement each other: 

1. By a staged look-ahead policy that compresses several layers into 

one layer. This is done by creating virtual links between a node at 

level k and its ancestor nodes at level k + k'. 

2. By limiting the scope for any give stage. That is; by focusing on a 

small subtree and setting its root as a temporary subgoal for the 

next immediate stages. 

Staged look-ahead is achieved by replacing a jump that goes all the way 

up by smaller jumps that skip only a few levels at a time. In a 3-level tree 

there exists only one level that we may possibly ignore, therefore there are 

two ways to refer to the tree (2 or 3 levels). A 4-level linkage can be 

transformed into two different 3-level links and into one 2-level link, as in 

Figure 3. 

These four variations of the linkage might be represented by the 

following four Depth Vectors: 

a [1,1, 1] 

b [1,2] 

c [2,1] 

d [3] . 

The first element of each vector represents the depth of 'looking down' the 

tree from the root node, while ignoring intermediate levels. The next 

element represents the depth of 'looking down' from the level reached by the 

previous element, etc. This can alternatively be represented by a Level 

Vector, that represents the numbers of the referred levels (in addition to 

level 1) : 

a' [2,3,4] 

b' [2, 4] 

C I [3,4] 

d I [4] . 
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If we do not totally ignore the intermediate nodes, but rather refer to 

the original tree or to its transformation into a tree with fewer (but more 

than two) levels, we can extend the definitions of the components of the 

control strategies to include reference to the intermediate nodes i.e. 

termination critertion, decison function and information acquisition that are 

oriented to an intermediate node. Let us demonstrate the various degrees of 

consideration to intermediate nodes using the tree in Figure 4. 

Without loss of generality let us assume, that at each level the nodes 

are ordered according to their a priori inferential influence on their 
\ 

parent, i.e., if the function EV(Ni,Nj) represents the potential influence of 

Nj on N
i

, then EV(Nl,Nll) � EV(N1,N12), EV(N11,N111) > EV(N11,N112), etc. We 

also assume that EV is a fixed evaluation function, i.e. one that does not 

depend on the prior probability of the parent node. 

If we ignore the intermediate level, the indicators will be selected 

according to their effect on N1• The first selected indicator might be N111 
or N121, depending on the parameters of the virtual link between these nodes 

and N1• Ignoring the intermediate level will only preserve the order among 

indicators that belong to the same parent node. A possible sequence·of 

selected indicators might be: N111,N121,N122,N112,N113,N123• 
For human-engineering considerations, we might want to check the 

indicators in groups, i.e. initially focus on an intermediate node, then 

select its indicators, and only after we are through with that node move to 

another intermediate node and its indicators, etc. In such a manner we 

substitute the global information acquisition criterion (influence of the 

indicators on N1) by a criterion that is composed of two local criteria: the 

influence of the intermediate node on N1, and that of the observable node 

(indicator) on the intermediate node. A typical sequence of selected 

indicators might be: N111,N112,N113,N121, ••• • In such a strategy, as well 

as in the previous one, the termination criterion considers only P(N1), thus 

it is not necessary to attribute probabilities to the intermediate nodes, but 

merely to recognize the probabilistic links with the root and with their 

children. 

An additional degree of consideration is achieved by distributing the 

termination criterion. In order to do so, after each iteration we must 

update, not only the probability of N1, but also that of the intermediate 

node. If the termination criterion of, say ;N 11, has been met, we abandon N 11 
and turn to N1

2 • If in the meanwhile the cr:f.terion for N1 has been met, the 
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whole process is terminated. Such a strategy needs to supply parameters to 

each node in order to define its own termination criterion. 

A higher degree of intermediate level consideration is achieved by 

complete isolation of the termination criteria on the various levels. In 

such a way the intermediate node is temporarily set as the new sub goal, and 

the original goal is ignored until the solution of the new one is terminated. 

This isolation may often result in wasteful behavior; the process is 

continued until some intermediate level is solved, even though the 

accumulated information is sufficient for solving N
1

• The advantage of this 

strategy is that we do not have to update P(N 
1

) after each o bserv at ion, 

but only after terminating the solution of the intermediate node. This may 

not be relevant in our model, but in extended models of distributed inference 

the difference might be significant if prices are set for inter-node 

communications. 

3. INFERNET1 - A System to Test the Strategies 

To test the behavior of the various strategies a computer system 

INFERNET1 was implemented that offers the following functions: 

1. Definition of various inference networks, and of elementary 

relational queries on these networks. 

2. Management of interactive evidential reasoning e.g. diagnosis 

sessions based on a given network. 

3. Generation of random data files according to a given network. 

4. Diagnosis of patterns from the above mentioned data files 

using various control strategies. 

5. Statistical analysis of the data collected during the offline 

diagnosis in order to measure the performance and cost of various 

strategies. 

INFERNETl was implemented in C-Prolog running under Unix on a DEC VAX 

computer. In a forthcoming article we will report the findings of extensive 

experiments with INFERENETl. 

5. Summary 

In this article we formulated control strategies that utilize staged 

look-ahead and temporary focus on subgoals using the concept of Depth Vector, 

that essentially represents a condensed tree in which only the nodes that are 

considered by the control strategy are included. To improve 
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human-machine communication; we would like to implement in expert systems 

control strategies that utilize these means since they are more 

human-oriented. A key issue is how much, if at all, efficiency we sacrifice 

by giving up mathematically-oriented strategies. A partial answer to this 

issue will hopefully be given by the experiments with INFERNETl. 
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