
Online Timed Pattern Matching
using Automata?

Alexey Bakhirkin1, Thomas Ferrère2, Dejan Nickovic3, Oded Maler1, and
Eugene Asarin4

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
2 IST Austria

3 AIT Austrian Institute of Technology
4 IRIF, Université Paris Diderot

Abstract. We provide a procedure for detecting the sub-segments of an
incrementally observed Boolean signal w that match a given temporal
pattern ϕ. As a pattern specification language, we use timed regular ex-
pressions, a formalism well-suited for expressing properties of concurrent
asynchronous behaviors embedded in metric time. We construct a timed
automaton accepting the timed language denoted by ϕ and modify it
slightly for the purpose of matching. We then apply zone-based reacha-
bility computation to this automaton while it reads w, and retrieve all
the matching segments from the results. Since the procedure is automa-
ton based, it can be applied to patterns specified by other formalisms
such as timed temporal logics reducible to timed automata or directly
encoded as timed automata. The procedure has been implemented and
its performance on synthetic examples is demonstrated.

1 Introduction and Motivation

Complex cyber-physical systems and reactive systems in general exhibit tem-
poral behaviors that can be viewed as dense-time signals or discrete-time se-
quences and time-series. The correctness and performance of such systems is
based on properties satisfied by these behaviors. In formal verification, a system
model is used to generate all possible behaviors and check for their inclusion in
the language defined by the specifications. In runtime verification, interpreted
as lightweight simulation-based verification, property satisfaction by individual
system behaviors is checked. In many situations, we would like to monitor the
ongoing behavior of a real system, already deployed and running, rather than
traces of a simulation model during design time. In this context we want to
detect property violation and other patterns of interest such as suspicious ac-
tivities, degradation of performance and other alarming signs known to precede

? This research was supported in part by the Austrian Science Fund (FWF) under
grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), and by
the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”.

http://erc.europa.eu/
http://stator.imag.fr

unpleasant or even catastrophic situations. The detection of such patterns and
the reaction to them can be the basis of another level of supervisory control that
reacts to situations as they occur without achieving the challenging and often
impossible task of verifying offline against all possible scenarios. In fact, in the
software engineering literature for safety-critical systems there is an actuator-
monitor decomposition (safety bag) where one module computes the reaction
while the other checks the results. Such an architecture has been proposed re-
cently as a way to handle autonomous systems such as driver-free cars [15].

Properties traditionally used in verification often correspond to complete
behaviors or their prefixes that start from time zero. In pattern matching one is
interested in segments that may start and end in any time point. To be useful,
the detection of patterns should be done online, as soon as they occur. In this
paper we provide an automaton-based online pattern matching procedure where
patterns are specified using timed regular expressions, a formalism suitable for
describing patterns in concurrent and asynchronous behaviors. Before moving
to our contribution, let us make a brief survey of some well-known classical
results on string pattern matching. A regular expression ϕ defines a regular
language L(ϕ) consisting of sequences that match it. It can be transformed into
a non-deterministic automaton Aϕ that recognizes L(ϕ) in the sense that L(ϕ)
is exactly the set of words w that admit a run from an initial to a final state. [19]
The existence for such an accepting run in Aϕ can be checked by exploring the
finitely many such runs associated with w. As a byproduct of classifying w, the
automaton can classify any prefix w[0..j] of w for j < k, just by observing the
states reachable by the runs at time j. It is worth noting that the determinization
procedure (subset construction) due to Rabin and Scott [21] corresponds to a
breadth-first exploration of these runs for all words, combined with the fact
that runs that reach the same state can be merged (see Figure 3). A simple
modification of Aϕ, to our knowledge first described in [23], allows also to find
all sub-segments w[i..j] of w that match ϕ. First, a counter t′ is used which
increments each time a symbol is read – such a counter exists anyway in any
implementation of a membership tester as a pointer to the current symbol in
the sequence. Then a new initial state s is added to Aϕ, and in this state the
automaton can self-loop indefinitely and postpone the selection of the point in
time when it starts reading w. When it moves to the original initial state of
Aϕ, it records the start time in an auxiliary variable t (see Figures 1 and 2 for
an example). Then whenever there is a run reaching an accepting state with
t = r and t′ = r′, one can conclude that w[r..r′] matches ϕ. This modification,
also pointed to in [1], enabled the later implementation of fast and reliable
string matching tools [2,20] which are now standard. The application of regular
expressions since extends beyond text processing but also occurs, e.g. in DNA
analysis and programming languages.

To reason about the dynamic behaviors of complex systems, cyber-physical or
not, one needs a language richer than traditional expressions [26]. To start with,
the behaviors of such systems, unlike sequential text, are multi-dimensional by
nature, involving several state variables and components working in parallel. In

2

1

a, b

2
b, c

b, c

Fig. 1. A non-deterministic automaton
for (a ∪ b)∗ · (b ∪ c)+.

0

a, b, c;
t = t+ 1

1
ε

a, b

2
b, c

b, c

Fig. 2. A non-deterministic matching au-
tomaton for (a ∪ b)∗ · (b ∪ c)+. Note the
new initial state and the counter t.

1

1

a

2

b

2

b

1

b

2

b

1

b

1

a

2

b

2

c

1

b

2

c

1

1

a

1, 2

b

1, 2

b

1

a

1, 2

b

2

c

Fig. 3. Runs of the automaton in Fig. 1.
Left – all runs for the word abbabc. Right –
breadth-first on-the-fly subset construction.

principle, it is possible to express patterns in the behavior of such systems using
a global product alphabet, but such a flattening of the structure is impractical
for both readability and complexity reasons. Instead we use a more symbolic
variant of regular expressions (first used in the timed setting in [27], see also the
proposal [13] to add timing to the regular expressions of the industrial specifica-
tion language PSL which admits variables) where one can refer to state variables
and write expressions like p · q rather than (pq ∪ pq̄) · (pq ∪ p̄q). Needless to say,
the whole practice of verification, starting with temporal logic specifications, via
compositional system descriptions to their symbolic model-checking [9] is based
on such an approach, which seems to be less developed in formal language theory.
To reason about what happens in various parts of the system, we also employ in-
tersection in our syntax. In the one-dimensional untimed case it does not increase
the expressive power, but affects the complexity of online membership testing
since the minimal DFA translating such expressions can be exponentially larger
[12]. The second observation is that system components need not be synchro-
nized and they may operate on different time scales. Consequently, reasoning in
discrete time with a pre-selected time step is wasteful and we use instead the
timed regular expressions of [4,5], a formalism tailored for specifying properties
of timed behaviors such as Boolean signals [4] or time-event sequences [5], where
value changes and events can occur anywhere along the time axis. Thus the ex-
pression p∩ (true · q · true) is matched by any segment of a Boolean signal where
p holds continuously and a burst of q occurs anywhere inside this segment. Us-

3

ing duration constraints we can refine the patterns, for example the expression
p∩ (true · 〈q〉[a,∞] · true) considers only q-bursts that last for at least a time. The
problem of timed pattern matching has been introduced and solved in [27]: find
all the sub-segments of a multi-dimensional Boolean signal of a bounded vari-
ability that match a timed regular expression. This work was automaton-free
and worked inductively on the structure of the formula in an offline manner.
An online version of that procedure has been developed in [28] based on a novel
extension of Brzozowski derivatives [8] to timed regular expressions and dense
time signals. Both works, which have been implemented in the tool Montre [25]
did not use the full syntax of timed regular expressions and hence did not match
the expressive power of timed automata (see [14]). In this paper we explore an
alternative automaton-based procedure whose scope of application is wider than
the expressions used in [27,28] as it works with any timed language definable
by a timed automaton and is agnostic about the upstream pattern specification
language. Let us mention another recent automaton-based approach is the one
of [29], a real-time extension of the Boyer-Moore pattern matching method. In
contrast to our work, the procedure in [29] works on TA defined over time-event
sequences and it requires pre-computing the region graph from the TA specifi-
cation. The same authors improve this result in [30], by using a more efficient
variant of the Boyer-Moore algorithm and by replacing the region automaton by
the more efficient zone-simulation graph.

The essence of our contribution is the following. Starting with an expression
ϕ, we build a non deterministic timed automaton Aϕ which accepts L(ϕ). Then
by a small modification, similar to the discrete case, we convert it to a matching
automaton A′ϕ with two additional clocks x0 and xs that record, respectively
the time since the beginning of the signal (absolute time) and the time since we
started reading it. Then, given a bounded variability Boolean signal we compute
the reachability tree of the automaton whose nodes are pairs of the form (q, Z)
where Z is a zone in the extended clock space of A′ϕ. This tree captures all
(possibly uncountably many) runs induced by w. By projecting zones associated
with accepting states of the automaton on x0 and x0 − xs, we retrieve the
matches. We combine this procedure with incremental observation of the input
signal to obtain an online matching procedure. We implemented this procedure
using the zone library of IF [7].

2 Preliminaries

Signals Let B = {0, 1} and let P = {p1, . . . , pn} be a set of propositions. A state
over P is an element of 2P or equivalently a Boolean vector u ∈ Bn assigning
the truth value for any p ∈ P . The time domain T is taken to be the set of
non-negative reals. A Boolean signal w of duration |w| = d is a right-continuous
function w : [0, d)→ Bn whose value at time t is denoted by w[t]. We use w[t..t′]
to denote the part of signal w between absolute times t and t′. The concatenation
of two signals w and w′ of respective durations d and d′ is the signal ww′ of
duration d + d′ defined as ww′[t] = w[t] for all t < d, ww′[t] = w′[t − d] for all

4

t ∈ [d, d + d′). We consider signals of finite variability, which can be written as
a finite concatenation of constant signals. The empty signal of duration zero is
denoted ε. We use w‖w′ to denote the parallel composition of two signals of the
same duration defined over disjoint sets of propositions.

Timed Regular Expressions To specify sets of signals we use the timed reg-
ular expressions (TRE) of [4], augmented with the use of a structured alphabet
represented by a set P of atomic propositions [27]. The set of state constraints,
denoted by Σ(P) is simply the set of Boolean formulas over P . The syntax of
TRE is given by the grammar

ϕ ::= ε | σ | ϕ ∪ ϕ | ϕ ∩ ϕ | ϕ · ϕ | ϕ+ | 〈ϕ〉I | ∃p.ϕ

where σ ∈ Σ(P) and I ⊆ T is an integer-bounded interval. As customary,
iterations of ϕ are denoted in exponent with ϕ0 ≡ ε and ϕk ≡ ϕk−1 ·ϕ for k ≥ 1.
The Kleene star is defined as ϕ∗ ≡ ε ∪ ϕ+.

Any TRE ϕ is associated with a set of signals, the timed language L(ϕ), via
the following inductive definitions:

L(ε) = {ε} L(ϕ1 · ϕ2) = {w1 · w2 | wi ∈ L(ϕi), i = 1, 2}
L(σ) = {w | ∀t ∈ [0, |w|) w[t] |= σ} L(ϕ+) =

⋃∞
k=1 L(ϕk)

L(ϕ1 ∪ ϕ2) = L(ϕ1) ∪ L(ϕ2) L(〈ϕ〉I) = {w | w ∈ L(ϕ) ∧ |w| ∈ I}
L(ϕ1 ∩ ϕ2) = L(ϕ1) ∩ L(ϕ2) L(∃p.ϕ) = {w | ∃w′ over {p}, w‖w′ ∈ L(ϕ)}

Note that signals in L(σ) need not be a constant, for example L(pi) consists of
all signals in which pi is constantly true but pj , for j 6= i may go up and down.
Note also that the semantics of σ does not specify any duration, and in this
sense it resembles σ∗ in classical regular expressions. The duration restriction
is expressed using the 〈ϕ〉I operation. The ∃p.ϕ operation corresponds to the
renaming operation in [4] which has been proven in [14] to be necessary in order
to match the expressive power of timed automata.

Timed Automata We use a variant of timed automata, finite-state automata
extended with real-valued clock variables, as acceptors of timed languages over
signals. Unlike the automata introduced originally in [3] and used in [5], which are
event-based with alphabet symbols associated with transitions, we use a state-
based approach [4] where signal values are associated with time passage inside
states. Let X = {x1, . . . , xm} be a set of clock variables. A clock constraint is a
Boolean combination of inequalities of the form x ./ c where c ∈ N is a constant,
x ∈ X is a clock variable, and ./ ∈ {<,≤,=,≥, >} is a comparison sign. The set
of clock constraints over X is written Φ(X). A valuation v ∈ Tm associates any
x ∈ X with a delay denoted v(x) ∈ T.

Definition 1 (Timed Automaton). A timed automaton over signals is a
tuple A = (P,X,L, S, i, o,∆) with locations L, initial locations S ⊆ L, in-
put labeling i : L → Σ(P), output labeling o : L → Φ(X), and set of edges
∆ ⊆ L× Φ(X)× 2X × L.

A state (configuration) of the automaton is a pair (`, v) where ` is a location
and v is a clock valuation. The behavior of the automaton while reading a signal
consists of an alternation of two types of steps:

5

– A time step (`, v)
w
 (`, v + r) where the automaton consumes a signal w

of duration r while advancing all clocks in the same pace provided that the
signal satisfies continuously the state invariant specified by the input label:
∀t ∈ [0, r) w[t] |= i(`);

– A discrete step (`, v)
δ−→ (`′, v′) for some transition δ = (`, ϕ,R, `′) ∈ ∆ such

that v |= ϕ (clocks satisfy transition guard) and v′ = v[R← 0] (clocks in R
are reset while taking the transition).

A run of automaton A over a signal w is a sequence

(`0, 0)
w0 (`0, v0)

δ1−→ (`1, v
′
1)

w1 (`1, v1)
δ2−→ . . .

δn−→ (`n, v
′
n)

wn (`n, vn)

of discrete and time steps such that w = w1w2 . . . wn, starting with an initial
configuration, that is, `0 ∈ S and v0(x) = 0 for all x ∈ X. A run is accepting if
it ends in an accepting configuration: vn |= o(`n). The language L(A) is the set
of signals admitting an accepting run.

The object that we are going to compute is the match set of a signal w with
respect to a timed language L defined either by an automaton A or a timed
regular expression: M(w,L) = {(t, t′) : w[t..t′] ∈ L}. In [27] it has been proved
that for an expression ϕ,M(w,L(ϕ)) is a finite union of two-dimensional zones.
Our results extend it to languages accepted by timed automata where (t, t′)
belong to the match set if w[t..t′] admits an accepting run in A.

Translating TRE into Automata We now demonstrate, following [4], how a
timed regular expression translates into a timed automaton accepting the same
language. The construction is rather straightforward and the reader is referred
to [4] for a more lengthy intuitive presentation. The construction of an automa-
ton Aϕ = (P,Xϕ, Lϕ, Sϕ, iϕ, oϕ, ∆ϕ) accepting L(ϕ), is obtained by structural
induction. In the description that follows we assume that automata given by in-
duction hypothesis have disjoint sets of locations, but may share the same clocks
except for the case of intersection.

– Empty word: Aε is defined by letting Xε = {x}, Lε = Sε = {`}, iε(`) ≡ true,
oε(`) ≡ (x = 0), and ∆ε = ∅.

– State expressions: Aσ is defined by Xσ = ∅, Lσ = Sσ = {`}, iσ(`) ≡ σ,
oσ(`) ≡ >, and ∆σ = ∅.

– Union: Aϕ∪ψ is defined as the component-wise union of Aϕ and Aψ.
– Intersection: Aϕ∩ψ is given by Xϕ∩ψ = Xϕ]Xψ, Lϕ∩ψ = Lϕ×Lψ, Sϕ∩ψ =
Sϕ×Sψ, with input labels iϕ∩ψ(`,m) = iϕ(`)∧ iψ(m) for every ` ∈ Lϕ,m ∈
Lψ, similarly for output labels. For a pair of edges (`, β,Q, `′) ∈ ∆ϕ,
(m, γ,R,m′) ∈ ∆ψ, Aϕ∩ψ has the edges ((`,m), β,Q, (`′,m)),
((`,m), γ, R, (`,m′)), and ((`,m), β ∧ γ,Q ∪R, (`′,m′)).

– Concatenation: we let Xϕ·ψ = Xϕ ∪ Xψ, Lϕ·ψ = Lϕ ∪ Lψ and Sϕ·ψ = Sϕ.
Labels are given by iϕ·ψ(`) ≡ iϕ(`) if ` ∈ Lϕ, iϕ·ψ(`) ≡ iψ(`) otherwise;
oϕ·ψ(`) ≡ false if ` ∈ Lϕ, oϕ·ψ(`) ≡ oψ(`) otherwise. Edges are given by
∆ϕ·ψ = ∆ϕ ∪∆ψ ∪ {(f, oϕ(f), Xψ, s) | f ∈ Lϕ, s ∈ Sψ}.

– Iteration: Aϕ+ is obtained from Aϕ by adding edges (f, oϕ(f), Xϕ, s) for
every pair f ∈ Lϕ and s ∈ Sϕ.

6

– Duration constraint: A〈ϕ〉I is obtained by using a fresh clock x /∈ Xϕ and
replacing output labels ϕ with ϕ ∧ (x ∈ I) in every location.

– Existential quantification: A∃p.ϕ is obtained by replacing input labels σ with
σ[p← true] ∨ σ[p← false] in every location.

The above procedure yields the following:

Theorem 1 (TRE ⇒ TA). For any TRE of containing m atomic expressions
and n duration constraints, one can construct an equivalent timed automaton
with n clocks and 2m locations.

The exponential blow-up in the number of locations is solely due to the intersec-
tion operator, with repeated application of the product construction, and would
otherwise vanish. For a proof of the other direction, TA ⇒ TRE, see [4,5].

3 Membership and Matching using Timed Automata

In this section we present a zone-based algorithm for testing membership of a
signal in the language accepted by a timed automaton; then show how it can be
extended to find and extract the match set of the signal in that language.

3.1 Checking Acceptance by Non-Deterministic Timed Automata

The automata constructed from expressions, as well as other typical timed au-
tomata, are non-deterministic. Part of this non-determinism is dense, coming
from modeling duration uncertainty using intervals, and also from different fac-
torizations of a signal segment into two concatenated expressions. Unlike classical
automata, it can be shown that some timed automata cannot be determinized
[3] and even determinizability of a given automaton is an undecidable problem
[11]. However, these results are concerned with converting the non-deterministic
TA into a deterministic one, equivalent with respect to all possible inputs which
include signals of arbitrary variability and hence the number of clocks cannot
be bounded. In contrast, exploring all the (uncountably many) possible runs of
a non-deterministic timed automaton while reading a given signal of finite du-
ration and variability is feasible, as has already been demonstrated [24,18,16] in
the context of testing, using what has been termed on-the-fly subset construc-
tion. The procedure described in the sequel shows how despite their dense non-
determinism, timed automata can be effectively used as membership testers for
bounded-variability signals and eventually as online pattern matching devices.
To this end we use a variant of the standard zone-based reachability algorithm
for simulating uncountably many runs in parallel. This algorithm underlies all
timed automata verification tools [10,6,7], see [31,17]. The procedure computes
the simulation/reachability graph whose nodes are symbolic states of the form
(`, Z) where ` is a location and Z is a zone in the space of clock valuations.

Definition 2 (Zone). Let X be a set of clock variables. A difference constraint
is an inequality of the form x − y ≺ c for x, y ∈ X, c ∈ T, and ≺ ∈ {<,≤}. A
zone is a polytope definable as a conjunction of clock and difference constraints.

7

Zones are known to be closed under intersection, projection, resets and forward
time projection defined as Z↗ = {v + t | v ∈ Z ∧ t ≥ 0}. These operations
are implemented as simple operations on the difference bound matrix (DBM)
representing the zone.

Let A = (P,X,L, S, i, o,∆) be a timed automaton and let A′ be the au-
tomaton obtained from A by adding an auxiliary clock x0 which is never reset
since the beginning and hence it keeps track of the absolute time. We will con-
sider zones in the extended clock space, and denote extended clock valuations
as (v0, v). It is not hard to see that a configuration (`, (v0, v)) is reachable in A′
iff the input prefix w[0..v0] admits a run to (`, v) in A.

Definition 3 (Discrete Successor). Let Z be a zone and let δ = (`, ϕ,R, `′) ∈
∆ be a transition. The δ-successor of Z is the zone

SuccδZ = {v′ : ∃v ∈ Z v |= ϕ ∧ v′ = v[R← 0]}

While doing zone-based time passage in a zone, we need to restrict ourselves to
segments of the signal that satisfy the input constraints of the location and this
is made possible through the use of absolute time.

Definition 4 (Temporal Scope). The temporal scope of a signal w in location
` is the set of time points where w satisfies the input constraint of `:

J (`, w) = {t : w[t] |= i(`)}.

For a bounded variability signal, J (`, w) is a sequence J1, . . . , Jk of disjoint
intervals of the form Ji = [αi, βi).

When a symbolic state (`, Z) is reached via a discrete transition, we need to split
Z into zones on which time can progress, using the following operation.

E(`, Z) = {Z ∧ α ≤ x0 ≤ β | [α, β) ∈ J (`, w)}.

The procedure Succ (Algorithm 1) computes the successors of a symbolic state by
one discrete transition and one time passage. The whole reachability algorithm
(Algorithm 2) applies this procedure successively to all reachable symbolic states.
It accepts as arguments the automaton A, the signal w, and the set I of states
from which to start the exploration. When calling Reach for the first time, we
set I to be {(`, 0) | ` ∈ S}. When Reach terminates, it outputs the set Qreach

of reachable symbolic states. From Qreach, we can extract the set of accepting
states by intersecting its elements with the output labels of locations: Qacc =
{(`, Za) | Za = Z ∧ o(`) ∧ Za 6= ∅ ∧ (`, Z) ∈ Q}. If a configuration (`, (v, v0))
is reachable and accepting (belongs to some element of Qacc), then the prefix
w[0..v(x0)] is accepted by the automaton.

Theorem 2 (Termination). Given a finite-variability signal, Algorithm 2 ter-
minates.

8

Algorithm 1 Succ(`, Z)

Require: A timed automaton A and symbolic state (`, Z);
Require: An input signal w for which J (`, w) has been computed for every location.
Ensure: The set Q of successors of (`, Z) by one transition and one time step.
Q := ∅
Q1 := {Succδ(`, Z) | δ ∈ ∆} {Discrete successors}
for all non-empty (`′, Z′) ∈ Q1 do
Q2 := {`′}×E(`′, Z′) {Compute the sub-zones of Z′ in which time can progress}
for all non-empty (`′′, Z′′) ∈ Q2 do
Q := Q ∪ {(`′′, Z′′↗ ∧ x0 ≤ βi)} {Apply time passage until the corresponding
upper bound}

end for
end for
return Q

Algorithm 2 Reach(A, w, I)

Require: A timed automaton A, signal w, set of initial states I;
Ensure: The set Qreach of all symbolic states reachable while reading w
Qreach := P := I {Initialization of visited and pending symbolic states}
while P 6= ∅ do

pick and remove (`, Z) ∈ P
Q1 := Succ(`, Z)
for all (`′, Z′) ∈ Q1 do

if (`′, Z′) 6∈ Qreach then
Qreach := Qreach ∪ {(`′, Z′)} {Add to visited}
P := P ∪ {(`′, Z′)} {Add to pending}

end if
end for

end while
return Qreach

Termination follows from the fact that the set of symbolic states is finite in our
case. We can scale the signal so that all the switching points come at integer
times, then, we can use zones with integer coefficients in Algorithm 2. The largest
possible value of a clock and thus the largest constant that can appear in a
reachable symbolic state is the duration of the signal, hence the number of
possible symbolic states is finite.

Theorem 3 (Completeness). There exists a run of the automaton A:

(`0, 0)
w0 (`0, v0)

δ1−→ (`1, v
′
1)

w1 (`1, v1)
δ2−→ . . .

δn−→ (`n, v
′
n)

wn (`n, vn)

if and only if the configuration (`n, vn) belongs to Qreach.

By induction on the number of discrete transitions, every reachable configuration
is eventually visited by the algorithm as part of some symbolic state.

9

Algorithm 3 ReachOnline(A, wi, Qi−1r)

Require: A timed automaton A, signal segment wi defined on [ti, ti+1), previous set
of reachable states Qi−1

r ;
Ensure: The set Qir contains the states reachable while reading wi
I = {(`, Z′) | Z′ = Z ∧ x0 = ti ∧ Z′ 6= ∅ ∧ (`, Z) ∈ Qi−1

r } {States that are reachable
when wi starts}
return Reach(A, wi, I)

3.2 Checking Acceptance Online

Algorithm 2 can be used to perform reachability computation in an online way.
We can arbitrarily split the input signal w into segments w1, w2, · · · , wn and
present them one by one to the procedure ReachOnline (Algorithm 3). After
processing segment wi, the procedure returns the set of states reachable after
reading w1 · · ·wi. From the previous set of reachable states, ReachOnline ex-
tracts the states which are reachable at the start of the new segment (those
where the absolute time clock satisfies x0 = |w1 · · ·wi|) and passes them on as
initial states for Reach. More formally, we build the sequence

Q1
r = ReachOnline(A,w1, {(`, 0) | ` ∈ S}),

Q2
r = ReachOnline(A,w2, Q

1
r),

· · ·
Qnr = ReachOnline(A,wn, Q

n−1
r)

and take the set of reachable states Qreach to be
⋃n
i=1Q

i
r.

One useful property of ReachOnline in terms of memory use is that when
processing a segment of the signal, it does not need to store previously processed
segments and, after the new initial states are extracted, it does not need to store
previously computed reachable states. Another property of ReachOnline is that
it does not care about how we split w into segments. Segments may have different
duration, different number of switching points, etc. The way we split the signal
affects the performance though. As the segment size gets smaller, the number of
times Algorithm 2 is called increases, but the cost to process a segment decreases.
The influence of this parameter on performance is discussed in Section 4.

3.3 From Acceptance to Matching

To compute the segments of w which are accepted by an automaton A, we first
construct a matching automaton A′ similar to the one used in the discrete case.
It can stay indefinitely in an added initial state before it moves to an initial
state of A, resets a clock xs and starts reading the remaining part of w. The
automaton also uses the absolute time clock x0 used for acceptance, see Figure 4.

Definition 5 (Matching Timed Automaton). Let A = (P,X,L, S, i, o,∆)
be a timed automaton. Then the corresponding matching automaton is A′ =

10

· · ·

A

true

xs, X := 0

x0 := 0

Fig. 4. Matching automaton A′ for a property automaton A.

(P,X ′, L′, S′, i′, o′, ∆′), where X ′ = X ∪ {x0, xs}; L′ = L∪ {`s}; S′ = {`s}, i′ =
i∪ {`s 7→ true}, o′ = o∪ {`s 7→ false}; ∆′ = ∆∪ {(`s, true, X ′−{x0}, `) | ` ∈ S}.

The start time of reading the segment is constantly maintained by the difference
x0 − xs. As a generalization of the case of acceptance, w admits a run that
ends in an extended configuration (`, (v, v0, vs)) in A′ iff the signal segment
w[v0 − vs..v0] admits a run in A that leads to (`, v). Thus Algorithms 2 and
3 applied to A′ compute the reachable symbolic states in the extended clock
space. Projecting zones associated with accepting locations on x0 and xs we can
can extract the matches. From Theorems 2 and 3 it follows that the for a given
TRE and expression, the match set can be described by a finite set of zones.
This extends the result obtained in [27] to arbitrary TA.

3.4 Example

Let us illustrate the matching algorithm with a simple example. As the pattern
specification, we use the expression ϕ = p·q, and we translate it to the automaton
shown in Fig. 5. As input, we use the signal w from Fig. 6. The signal is split
into two segments: w1 defined in the interval [0, 4), and w2 defined in the interval
[4, 8). We run the matching algorithm presenting it one segment at a time.

When the segment w1 arrives, we start the exploration with the symbolic
state (`>, x0 = 0) and immediately apply the time transition to it. We can stay
in the location `> until the end of the segment, thus we add to the reachability
tree the state s1 = (`>, x0 ∈ [0, 4]). Next, from s1, we execute the discrete
transition that leads to `p. Changing the location, resetting the clock xs and
constraining the zone to the interval where p holds, produces the state (`p, x0 ∈
[1, 3] ∧ xs = 0 ∧ x0 − xs ∈ [1, 3]). Then, applying time elapse until the end of p
produces the state s2 = (`p, x0 ∈ [1, 3] ∧ xs = [0, 2] ∧ x0 − xs ∈ [1, 3]) that we
add to the reachability tree. Finally, we execute from s2 the discrete transition
to `q. After changing the location and restricting to the interval where q holds,
we get the state (`q, x0 ∈ [2, 3] ∧ xs ∈ [0, 2] ∧ x0 − xs ∈ [1, 3]). After applying
time elapse until the end of q (the end of the fragment in this case), we get the
state s3 = (`q, x0 ∈ [2, 4] ∧ xs ∈ [0, 3] ∧ x0 − xs ∈ [1, 3]) that we add to the tree.
We would like to point out again that time transitions from different states are
not synchronized. When s2 was created, we allowed x0 to advance until time 3.
When executing the transition to `q, we discover that it could happen “in the
past”, between time 2 and 3; but also that after taking the transition, we can

11

true

`>

p

`p
xs := 0 q

out: true

`q

Fig. 5. Matching automaton for the ex-
pression p · q.

p

q

0 1 2 3 4 5 6 7 8

Fig. 6. Example of a signal.

s1, `>
x0 ∈ [0, 4]

s2, `p
x0 ∈ [1, 3]
xs ∈ [0, 2]

x0−xs ∈ [1, 3]

s3, `q
x0 ∈ [2, 4]
xs ∈ [0, 3]

x0−xs ∈ [1, 3]

Fig. 7. Reachable symbolic states after reading the first fragment of the signal.

s4, `>
x0 ∈ [4, 8]

s5, `p
x0 ∈ [5, 7]
xs ∈ [0, 2]

x0−xs ∈ [5, 7]

s6, `q
x0 ∈ [5, 6]
xs ∈ [0, 1]

x0−xs ∈ [5, 6]

s7, `q
x0 ∈ [4, 6]
xs ∈ [1, 5]

x0−xs ∈ [1, 3]

Fig. 8. Reachable symbolic states after reading the second fragment of the signal.
States corresponding to the previous fragment were discarded.

stay in `q until time 4. At this point, there are no more states to explore, and we
report the matches in the observed signal prefix. In this example, the matches are
described by the state s3 intersected with its output label true. Possible values
of x0−xs in s3 are the possible start times of the match, and possible values
of x0 are the end times. For us, the match should start between time 1 and 3,
while p holds, and end between time 2 and 4, while q holds.

We now proceed to read w2. We extract from the reachability tree all states
that correspond to reading the first segment until the end, that is, states with
valuations that lie on the hyperplane x0 = 4. From state s0, we extract (`>, x0 =
4). Applying time transition to it results in the state s4 = (`>, x0 ∈ [4, 8]) that we
add to the tree. From state s3, we extract (`q, x0 = 4∧xs ∈ [1, 3]∧x0−xs ∈ [1, 3]).
Applying time transition to it results in the state s7 = (`q, x0 ∈ [4, 6] ∧ xs ∈
[1, 5] ∧ x0 − xs ∈ [1, 3]) that we add to the tree. At this point, we can discard
the previous segment of the signal and the reachability tree corresponding to
it; they will no longer be used. Then, we restart the exploration from s4 and
s7, which discovers two more states: s5 and s6. Both s6 and s7 correspond to
`q and describe newly discovered matches. State s6 corresponds to the matches
that start and end between time 5 and 6, when q still holds and p holds again.
State s7 corresponds to matches that start between time 11 and 3, that is, in
the previous segment) and end before time 6 in the current segment.

12

4 Implementation and Experiments

We implemented a prototype of the algorithm in C++, using the zone library of
the tool IF [7]. We evaluate the performance of the prototype using a number of
patterns and periodic signals of different length. We summarize the experimental
results in Table 1. The columns “Expression” and “Signal” give the expression
and the shape of the signal. Different expressions and signal shapes are discussed
in more detail below. To present time-related parameters in a uniform way,
we measure them in integer time units. The column “Seg” gives the length of
the signal segment (in time units) that is presented at once to the reachability
algorithm. We run every experiment with 2-3 segment lengths: presenting the
whole signal at once (“offline”) and presenting a fixed number of time units,
based on the period of the signal. The last three columns show the results for
different length of the signal: 10K, 100K, and 1 million time units. A cell of the
table shows the run time of the matching algorithm in seconds and the number
of explored symbolic states. The three parameters: signal length, signal shape,
and segment length influence the performance of the algorithm in a connected
way. The longer are the stable periods of the signal, the fewer switching points
it has within a given length; but at the same time, if the segment length is
small, longer stable periods become split into more segments. Time figures were
obtained on a PC with a Core i7-3630QM and 8GB RAM.

Signals We use three different periodic signal shapes. The signal wave2 has
two components, p0 and p1, which are square waves with the period of 2 time
units, p1 being the negation of p0. The signal wave200 has four components, p0
to p3, which are square waves with the period of 200 time units, shifted in time
by different amount. The signal wave30/32 has two components, p0 and p1. The
component p0 has the period of 30 time units, in every period it has hi value for
5 time units. The component p1 has the period of 32 time units, in every period
it has hi value for 4 time units.

Simple Expressions Expressions ϕ1 to ϕ4 are examples of basic regular op-
erators: concatenation, disjunction, and duration constraint.

Intersection Example Intersection allows to assert that multiple properties
should hold during the same interval. To evaluate it, we use the expression

ϕ5 = (〈p〉[4,5] · ¬p) ∩ (¬q · 〈q〉[4,5]) ∩ (true · 〈p ∧ q〉[1,2] · true)

It denotes a pattern where p holds at the beginning and between 4 to 5 time
units, q holds at the end between 4 to 5 time units, and in between p and q
hold together for at least 1 to 2 time units. This could be an example of one
resource (such as power source) replacing another in a redundant architecture.
We cannot express this property without intersection; it would require duration
constraints with unbalanced parentheses [4].

Quantification Example Existential quantification allows to express synchro-
nization with a signal which is not part of the input, but is itself described by a

13

Table 1. Evaluation results.

Expression Signal Seg
Signal length

10K 100K 1M

ϕ1 = p0 · p1

wave2
offline 0.1s, 10K 0.96s, 100K 16s, 1M

1 0.14s, 30K 1.4s, 300K 21s, 3M

wave200

signal < 0.01s, 100 0.02s, 1K 0.1s, 10K
100 < 0.01s, 350 0.03s, 3.5K 0.18, 35K
25 0.02s, 2.4K 0.1s, 24K 0.84s, 240K

ϕ2 = 〈p0〉[0,20] · 〈p1〉[0,20]
· 〈p2〉[0,20]

wave200
offline < 0.01s, 150 0.03s, 1.5K 0.22s, 15K

100 < 0.01s, 450 0.06s, 4.5K 0.4s, 45K

ϕ3 = (p0 ∪ p1) · (p2 ∪ p3) wave200
offline < 0.01s, 300 0.03s, 3K 0.24s, 30K

100 0.01s, 900 0.05s, 9K 0.4s, 90K

ϕ4 = 〈p1 · (p0 · p2)+〉[0,1000] wave200
offline < 0.01s, 250 0.03s, 2.5K 0.26s, 25K

100 < 0.01s, 500 0.04s, 5K 0.3s, 50K

ϕ5 (see text) wave30/32
offline 0.02s, 800 0.1s, 8K 1s, 80K

30 0.03s, 1.4K 0.14s, 14K 1.4s, 140K

ϕ6 (prefix match, see text) wave200
offline 0.01s, 400 0.04, 4K 0.24s, 40K

100 0.03s, 6.3K 2.7s, 500K TO

regular expression. To evaluate quantification, we use the expression

ϕ6 = ∃r.
(
(〈¬r〉[98,98] · 〈r〉[1,3])+

∩ (¬p · (¬p ∧ ¬r) · (p ∧ r) · p · (p ∧ ¬r) · (¬p ∧ r))+
)

It denotes a signal p that changes its value on the rising edge of a virtual clock,
denoted by r, that occurs every 100± 1 time units (note how we use (¬p∧¬r) ·
(p ∧ r) to synchronize the rising edges of p and r). In the experiments, we use
this property for prefix matching. We fix the start of the match to the start of
the signal and use our algorithm to find matching prefixes.

Discussion The run time of the matching algorithm is determined by the
number of symbolic states that it explores, which depends on the structure of
the expression, the input signal, and the way the signal is split into segments
when presented to the matching algorithm. In our experiments, we focused on
the case when the length of a segment given to the algorithm is greater than or
equal to the length of a stable state of the signal. For example, for the signal
wave200, we normally observe two cases: when the algorithm receives the whole
signal immediately, and when the signal is split into segments 100 time units
in length, which is the half-period of the signal. In this setup, for a variety of
regular expressions we observe two properties of the algorithm: (i) the number
of explored configurations (and thus the runtime) is linear in the length of the
signal; and (2) going from offline to online matching (with the length of a segment
greater or equal to the length of a stable state) increases the number of explored
configurations only by a small constant factor. That said, one can always come
up with adversarial examples, where the match set (and thus the number of
explored configurations) requres at least quadratic number of zones in the length
of the signal. One way to construct adversarial examples is to synchronize the

14

start and end of a match with some event, e.g., a raising or a falling edge. In
our experiments, this happens in the property ϕ6. For the signal wave200, every
sequence of one or more full signal periods is a match, and the set of all matches
is described by a quadratic number of zones. For this reason, we only do prefix
matching in that experiment. Another way to construct adversarial examples is
to perform “oversampling” and split every stable state of the input signal into a
large number of segments. As a result, every zone in the match set may be split
in a quadratic number of smaller zones, since the matches that start and/or end
in different segments cannot be part of the same zone in the current algorithm.
We can observe this effect for the property ϕ1 and the signal wave200. Reducing
the segment length from 100 to 25 time units causes oversampling and increases
the number of explored configurations by a factor of 8 = 42/2. In future work,
we wish to address this issue, as it is reminiscent of the issue of interleaving in
reachability of timed automata, which was addressed in [22].

Removing Inactive Clocks The cost of zone operations is in the worst case
cubic in the number of clocks (normalization is cubic, but is not required for
some operations), thus it is important to remove clocks as soon as they are no
longer needed. For automata produced from TREs, this is not difficult to do,
since every clock is tied to a duration constraint and thus has a clearly defined
set of locations where it is active (x0 and xs are always active). When taking
a transition, we erase (existentially quantify) clocks that are not active in the
target location.

Introducing Clock Invariants The simple encoding of duration constraints
that we describe may lead, during state exploration, to the creation of doomed
symbolic states that may never lead to an accepting state. When time transition
is applied to a state, we may increase a clock past a bound that will be much later
checked by a guard of some transition. In the meantime, we may start exploring
the successors of the doomed state, which are also doomed, then their successors,
etc. To reduce the amount of such redundant work, in our implementation, we
let locations have clock invariants. They are produced from the upper bounds of
duration constraints and we use them to constrain the result of time transitions.

5 Conclusion

We presented a novel algorithm for timed pattern matching of Boolean signals.
We are particularly interested in patterns described by timed regular expressions,
but our result applies to arbitrary timed automata. The algorithm can be applied
online, without restriction on how the input signal is split into incrementally
presented segments. The prototype implementation shows promising results, but
also points out some pessimistic scenarios. In future work, we plan to improve
the performance of matching with the major goal being to improve the handling
of small signal segments by adapting partial order reduction techniques; we also
expect that some constant factor can be gained by improving the quality of the
code. In another direction, we wish to perform a more in-depth case study to be
able to adapt the algorithm to the specifics of real applications.

15

References

1. Aho, A.V., Hopcroft, J.E.: The design and analysis of computer algorithms. Pear-
son Education India (1974)

2. Aho, A.V., Kernighan, B.W., Weinberger, P.J.: The AWK programming language.
Addison-Wesley Longman Publishing Co., Inc. (1987)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical computer science
126(2), 183–235 (1994)

4. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Logic
in Computer Science. pp. 160–171. IEEE (1997)

5. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM
49(2), 172–206 (2002)

6. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: Quantitative Evaluation of Systems, 2006. QEST
2006. Third International Conference on. pp. 125–126. IEEE (2006)

7. Bozga, M., Fernandez, J.C., Ghirvu, L., Graf, S., Krimm, J.P., Mounier, L.: IF:
An intermediate representation and validation environment for timed asynchronous
systems. Formal Methods pp. 706–706 (1999)

8. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM (JACM)
11(4), 481–494 (1964)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking (1999)

10. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool kronos. In: International
Hybrid Systems Workshop. pp. 208–219. Springer (1995)

11. Finkel, O.: Undecidable problems about timed automata. In: Formal Modeling and
Analysis of Timed Systems. pp. 187–199. Springer-Verlag (2006)

12. Gelade, W.: Succinctness of regular expressions with interleaving, intersection and
counting. In: International Symposium on Mathematical Foundations of Computer
Science. pp. 363–374. Springer (2008)

13. Havlicek, J., Little, S.: Realtime regular expressions for analog and mixed-signal
assertions. In: Proceedings of the International Conference on Formal Methods in
Computer-Aided Design. pp. 155–162. FMCAD Inc (2011)

14. Herrmann, P.: Renaming is necessary in timed regular expressions. In: International
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence. pp. 47–59. Springer (1999)

15. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and valida-
tion. SAE International Journal of Transportation Safety 4(2016-01-0128), 15–24
(2016)

16. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods in System Design 34(3), 238–304 (2009)

17. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

18. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
uppaal. In: FATES. pp. 79–94 (2004)

19. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE transactions on Electronic Computers (1), 39–47 (1960)

20. Pike, R.: The text editor sam. Software: Practice and Experience 17(11), 813–845
(1987)

21. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM journal
of research and development 3(2), 114–125 (1959)

16

22. Salah, R.B., Bozga, M., Maler, O.: On interleaving in timed automata. In: CON-
CUR. pp. 465–476. Springer (2006)

23. Thompson, K.: Programming techniques: Regular expression search algorithm.
Communications of the ACM 11(6), 419–422 (1968)

24. Tripakis, S.: Fault diagnosis for timed automata. In: Formal Techniques in Real-
Time and Fault-Tolerant Systems. pp. 205–221. Springer (2002)

25. Ulus, D.: Montre: A tool for monitoring timed regular expressions. In: Computer
Aided Verification. pp. 329–335. Springer (2017)

26. Ulus, D.: Pattern Matching with Time: Theory and Applications. Ph.D. thesis,
University of Grenobles-Alpes (UGA) (2018)

27. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Formal
Modeling and Analysis of Timed Systems. pp. 222–236. Springer (2014)

28. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Tools and Algorithms for the Construction and Analysis of Systems.
pp. 736–751. Springer (2016)

29. Waga, M., Akazaki, T., Hasuo, I.: A boyer-moore type algorithm for timed pat-
tern matching. In: Formal Modeling and Analysis of Timed Systems. pp. 121–139.
Springer (2016)

30. Waga, M., Hasuo, I., Suenaga, K.: Efficient online timed pattern matching by
automata-based skipping. In: Formal Modeling and Analysis of Timed Systems.
pp. 224–243. Springer (2017)

31. Yovine, S.: Model checking timed automata. In: School organized by the European
Educational Forum. pp. 114–152. Springer (1996)

17

	Online Timed Pattern Matching using Automata

