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Abstract: This paper constitutes a sketch of a unified framework for posing and solving
problems of optimal control in the presence of uncontrolled disturbances. After laying
down the general framework we look closely at a concrete instance where the controller
is a scheduler and the disturbances are related to uncertainties in task durations.

1. INTRODUCTION

The design of mechanisms for achieving certain
goals in complex and not fully-predictable en-
vironments is a universal human activity, often
aided by mathematical models. The choice of the
class of models is influenced, of course, by their
adequacy for the application domain and the ex-
istence of useful analysis techniques, but it may
also depend on historical, cultural, sociological
and accidental factors that result in a particular
distribution of models, techniques and terminolo-
gies over the space of applications and scientific
communities.

The present paper attempts to distill the essence
of many of the models and techniques employed
for this purpose by different disciplines and com-
munities under diverse titles such as System Ver-
ification, Controller Synthesis, Sequential Deci-
sion Making, Game Theory, Markov Decision Pro-
cesses, Planning in AI and Robotics, Optimal
and Model Predictive Control, Shortest Path Al-
gorithms, Dynamic Programming, Optimization,
Reinforcement Learning, Differential Games and
more. I hope to convince the reader that in all
these contexts, the basic problem amounts to find-
ing an optimal/winning strategy in some generic
two-player dynamic games, where the optimality
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is defined according to some domain-specific cost
function, and a particular way to quantify over the
behaviors of the “adversary”. Moreover, I intend
to show that there are basically three generic
methods used to solve this problem: bounded-
horizon optimization, dynamic programming and
forward search.

Each of the disciplines in which these issues are
treated has its own vocabulary. For example,
what is called in one context a strategy, can
be called elsewhere a policy, a feed-back law, a
controller, a reactive plan or a scheduler. Even
worse, the same term can mean different things
to different audiences. I did my best to pick each
time the term (or terms) that I felt are the most
appropriate for the discussion and tried not to
switch between terms too often. In any case I
apologize for the potential inconvenience for those
who are accustomed to their own native language.
I also tried not to bias the description toward my
own automata-theoretic background.

Although this paper is free of any “new original re-
sults” and does not say anything that is not known
in some of the many disciplines and communities
that occupy themselves with these issues, I think
that putting all this together in the present form
has some “synergetic” value that goes beyond
a collection of informal definitions, results and
algorithms. Moreover, such a unified framework
may eventually facilitate a more concentrated ef-



fort toward meeting the computational challenges
posed by controller synthesis.

The paper has two main parts. In the first I lay
down a kind of a “special theory of everything”
where system design is viewed as synthesizing an
optimal strategy in some dynamic game. I start
in Section 2 with a general discussion on how to
define the performance of a system which is sub-
ject to external disturbances. Section 3 introduces
the generic model that we use, a dynamic “multi-
stage” game between a controller and its environ-
ment and discusses various ways to assign costs to
behaviors and define the optimal control problem.
The restriction of the problem to behaviors of
bounded length is the topic of Section 4 where it
is reduced (for discrete-time systems) to standard
finite-dimensional constrained optimization. This
reduction is rather straightforward in the absence
of an adversary but is less so in its presence,
which calls for a more subtle notion of optimality,
achieved by a class of techniques known as dy-
namic programming, described in Section 5. While
dynamic programming provides, in principle, a
complete solution to the problem, it does not scale
up as the number of state variables grows and,
as described in section 6, one often has to resort
to the alternative method of heuristic forward
search. Section 7 summarizes the first part and
discusses the surprising lack of explicit modeling
of adversaries in certain popular control models.

In the second part of the paper I focus on one
concrete instance of this scheme, the problem of
scheduling under bounded uncertainty which is
modeled as a discrete game on continuous time
using the timed automaton model. Section 8 at-
tempts to convince the reader that scheduling falls
into the class of problems described in the first
part. The job shop problem is presented in Sec-
tion 9 along with its traditional solution scheme
based on non-convex “combinatorial” optimiza-
tion. In Section 10 we show how this problem
can be solved using shortest path algorithms on
timed automata. Section 11 extends the prob-
lem by considering bounded uncertainty in task
durations, while Section 12 sketches a dynamic
programming algorithm that can find adaptive
scheduling policies that perform better than static
schedules tailored for the worst scenario. Some
thoughts on modeling, analysis and research in
general conclude the paper.

2. STATIC OPTIMIZATION

Throughout this paper we will be concerned
with situations that resemble two-player games.
One player, henceforth the controller, represents
the system that we want to design while the
other player, the environment, represents external

disturbances beyond our control. The controller
chooses actions u ∈ U , the environment picks
v ∈ V and these choices determine the outcome
of the game. The controller wants the outcome
to be as good as possible, according to some pre-
defined criterion, while the environment, unless
one is paranoid, is indifferent to the results. It
should be noted that unlike the classical setting
of game theory, where both players are supposed
to have a utility function and questions are often
related to the outcome of games where each of
them tries to optimize its own objective function,
we do not make assumptions concerning the goals
of the adversary. The adversary enters the pic-
ture because we take all its potential actions into
consideration while evaluating and comparing the
potential actions of the controller. 2

Taking the adversary into account leads to a
departure from standard optimization of functions
because we optimize something that depends not
only on our own actions. Let us illustrate this
point using a simple one-shot game of the type
introduced in the seminal work of von Neumann
and Morgenstern.

Let U = {u1, u2}, V = {v1, v2} and let the
outcome be defined as a function c : U × V → R

which can be given as a table

c v1 v2

u1 c11 c12

u2 c21 c22

We want to choose among u1 and u2 the one that
minimizes c but since different choices of v may
lead to different values, we need to specify how
to take these values into account while evaluating
a specific choice of u. There are basically three
generic approaches for evaluating our choices:

• Worst case: each action of the controller
is evaluated according to the worst out-
come that may result from taking the action.
Hence we choose the u for which the maximal
v-induced cost is minimal:

u = argmin max{c(u, v1), c(u, v2)}.

• Average case: the environment is modeled as
a stochastic agent acting randomly according
to a probability function p : V → [0, 1] and
the controller actions are evaluated according
to the expected value of c. We choose the u

which minimizes the average of the v-induced
costs:

u = argmin p(v1) · c(u, v1) + p(v2) · c(u, v2).

• Typical case: the evaluation is done with re-
spect to a fixed element of V , say v1, which
represents the most “typical” behavior of the

2 There is a partial overlap between this approach and
what is sometimes called games against nature.



adversary. This amounts to ignoring the ex-
istence of uncontrolled disturbances and the
problem is reduced to ordinary optimization:

u = argmin c(u, v1).

Let us note that when c is a continuous function
over continuous domains U and V , finding the op-
timum cannot be done by exploring a finite table
but rather by analytic or numerical methods. For
such functions, average case analysis stays within
the standard optimization framework, that is, op-
timization of a well-behaving real-valued function,
while the worst-case min-max analysis does not.
This may partially explain why in domains such
as continuous control stochastic modeling of dis-
turbances is much more popular.

3. DYNAMIC GAMES

3.1 Dynamics

A dynamic game is a game where the players
are engaged in an ongoing interaction extended
over time. In the computer science context, the
term reactive systems, coined by Harel and Pnueli,
is used to denote such objects and distinguish
them from traditional “transformational” pro-
grams that read their input at the beginning of
their execution and do not interact with the ex-
ternal world until they produce their output upon
termination.

A game is characterized by a state-space X, action
domains U and V for the two players and a
dynamic rule of the form

x′ = f(x, u, v)

stating that at each time instant the “next” value
of x (denoted by x′) is a function of its current
value and of the actions of both players. In this
part of the paper we focus on discrete-time “syn-
chronous” games where the time index is often
assumed to be uniform and both players take ac-
tions simultaneously at every step. In this case the
dynamics can be written as a recurrence equation
of the form

xt = f(xt−1, ut, vt).

But let us keep in mind the existence of other
models such as differential games on continuous
time defined via

ẋ = f(x, u, v)

or games with a more “asynchronous” flavor
where actions may occur at non-periodic time in-
stants (event-triggered rather then time-triggered)
and where actions of both players need not occur
simultaneously. Such asynchronous games will be
used in the second part of the paper to model
scheduling problems.

x u v x′

x0 u1 v1 x0

v2 x1

u2 v1 x1

v2 x3

x1 u1 v1 x2

· · · · · · · · ·

u1 u1 u1
u2

u2

v1

v2

v2
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v1
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Fig. 1. A dynamic game in a tabular and graphical
description. The u-labels appear before the v-
labels just for convenience.

We assume all games to start from an initial state
x0 and use the notation x̄ = x[0], x[1], . . . , x[k] for
sequences of states that we call behaviors (they
are also known as runs in the discrete context and
trajectories in the continuous). Likewise, we will
use ū and v̄ for sequences of players actions. A
pair of action sequences ū and v̄ issued by the two
players, respectively, induces a unique behavior x̄

of the system. We use the predicate (constraint)
B(x̄, ū, v̄) to denote the fact that x̄ is induced by
ū and v̄. Formally, it is defined as:

B(x̄, ū, v̄) iff x[0] = x0

x[t] = f(x[t − 1], u[t], v[t]) ∀t

It is sometimes useful to view the game as a labeled
directed graph whose nodes are the elements of X

(states) and its edges (transitions) are all the pairs
(x, x′) such that f(x, u, v) = x′ for some u and v.
When X, U , and V are discrete, one can visualize
the game as in Figure 1. In the same spirit we can
write B(x̄, ū, v̄) as:

x[0]
u[1],v[1]
−→ x[1] · · ·

u[k],v[k]
−→ x[k].

It goes without saying that when the state space
and actions range over continuous domains, the
game cannot be drawn as a discrete graph nor
written as a transition table, but rather be defined
using some traditional mathematical description,
for example a linear game of the form

x′ = Ax + Bu + Cv



but, nevertheless, the reader is encouraged to
stretch the imagination and try to “see” the
underlying graph structure.

3.2 Costs

After having specified which behaviors can be
induced by actions of the two players, we need
to assign performance measures (costs) to such
behaviors in order to compare them and prefer
some over the others. The first step is to assign
costs to individual behaviors, and then evaluate
each strategy according to some approach for com-
bining the costs of all adversary-induced behaviors
it will generate, as discussed in Section 2.

A common way to assign costs to behaviors is to
start by associating local costs to every transition
with c(x, u, v) reflecting the cost of the actions u

and v taken at x and the goodness of the state
x′ = f(x, u, v) reached after the transition. In
the sequel we sometimes restrict ourselves to cost
functions that depend only on x and u or to purely
state-based cost functions of the form c : X → R.

The nature of cost functions depends on the
application domain. In discrete verification c is
typically (and implicitly) a {0, 1}-valued function
such that c(x) = 1 refers to “bad” states that we
want to avoid (or eventually leave) and c(x) = 0
characterizes “good” states that we want to stay
in forever (or eventually reach). In continuous
domains, c(x) may indicate some norm or distance
from a reference state. Sometimes the choice of the
cost function is influenced less by its adequacy
for the problem and more by the existence of
a corresponding optimization method, especially
when the optimum is to be computed analytically.

The next step is to “lift” the local cost function
defined over states or transitions to a cost function
on sequences. In discrete systems one can do it by
letting

c̄(x̄) = max{c(x[t]) : t = 1..k}

so that c(x̄) = 1 iff a bad state is encountered, or
by

c̄(x̄) = min{c(x[t]) : t = 1..k}

so that c(x̄) = 0 iff a good state has been reached.
The most natural and popular way to assign costs
to behaviors is summation of local costs

c̄(x̄) =

k
∑

t=1

c(x[t]),

which for continuous-time systems can be replaced
by integration and called fancy names such as
norms in function spaces.

Note that for systems admitting a set F of target
states such that c(x) = 0 when x ∈ F and
c(x) > 0 otherwise, summation expresses the

time or cost to reach the target, hence the tight
relationship between optimal control and shortest
paths problems on graphs. To avoid divergence of
the cost function with the length of the behavior,
summation is often combined with discounting

c(x̄) =

k
∑

t=1

2−tc(x[t]),

with averaging or with restriction to instances
taken from a shifting time window. All these ap-
proaches can be extended naturally to incorporate
the cost of actions and define c̄(x̄, ū) or c̄(x̄, ū, v̄).

3.3 Sub Models

The game model can be reduced, by suppressing
either one of the players, or both, into sub mod-
els (see Figure 2) which are central to various
disciplines. When the controller has no choice,
either by letting U be a singleton or equivalently
using a dynamical model of the form x′ = f(x, v),
the problem is transformed into evaluating the
performance of a given controller amidst distur-
bances. This is the subject matter of discrete
formal verification, where the adversary is some-
times disguised as a non-deterministic dynamics
g : X → 2X which can be retrieved as

g(x) =
⋃

v∈V

f(x, v).

The questions one typically asks concerning such
models can be formulated as: what is the worst
scenario that the external environment can induce
in the system. Let us note that such systems
can be obtained from the general model after the
controller has been synthesized, and the compar-
ison between candidate controllers reduces to a
comparison between systems of the f(x, v) type.

A dual model is obtained when the adversary is
suppressed and the dynamics considered is of the
form x′ = f(x, u). In this case the problem of
finding an optimal strategy is reduced to finding
an optimal sequence. Such approaches are com-
mon in robotics path planning and AI planning
in general. When both players are suppressed we
obtain a deterministic dynamical system of the
form x′ = f(x) in which there is only one tra-
jectory emanating from x0. In the sequel, when
we describe different solution methods, we will
first illustrate each of them on the adversary-free
model x′ = f(x, u) and then extend them for the
full model.

4. BOUNDED HORIZON PROBLEMS

We will now restrict ourselves to situations where
we compare only behaviors of a fixed finite length.
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Fig. 2. Submodels obtained by suppressing one or
two of the players.

There are several reasons to focus on bounded de-
cision horizons. The first is that there are certain
problems of the “control to target” or “shortest
path” type, where all reasonable behaviors con-
verge to a goal state in a bounded number of steps
(but via paths of different costs). Another reason
is the common sense intuition that as we look
further into the future, our models become less
reliable, and hence it is better to plan for a shorter
horizon and revise the plan during execution (this
is the basis of model-predictive control). Finally,
bounded horizon problems in discrete time can be
reduced to finite dimensional optimization prob-
lems.

We first illustrate the formulation of the problem
for adversary-free situations with dynamics of the
form x′ = f(x, u). In this case we look for a
sequence ū = u[1], . . . , u[k] which is the solution
of the constrained optimization problem

min
ū

c(x̄, ū) subject to B(x̄, ū).

The fact that x̄ is the result of following the dy-
namics f under control ū is part of the constraints
of the problem. For linear dynamics, specified by
x′ = Ax + Bu, a local linear cost function, say
c(x, u) = ax + bu, and summation, the problem
reduces to standard linear programming:

min
ū

k
∑

t=1

ax[t] + bu[t]

subject to
k

∧

t=2

x[t] = Ax[t − 1] + Bu[t].

In discrete verification one is often concerned with
the dual question: find the worst behavior that the
adversary may induce. There, since the dynamics
and cost are defined logically, the problem reduces
to Boolean satisfiability, that is, is there a be-
havior x̄ satisfying the dynamic constraints such
that c̄(x̄) = 1. This problem is known as bounded
model checking with the adjective “bounded” used
to distinguish it from the traditional methods of
algorithmic verification which are closer in spirit
to dynamic programming described in the next
section.

x0 x1 x1 x3 x0 x2 x2 x3 x4 x1x0x4x2

x0

x0 x3x1 x1

x2 x4 x4

u2u2 u2 u2

v2

u2u1

v1

u1 u1 u1 u1

v1 v2 v1 v2

Fig. 3. A game tree of depth 2 obtained by
unfolding the game graph of Figure 1.

If we have at our disposal a constrained optimiza-
tion procedure for the domain in question, we can
compute the desired ū and solve the problem.
It is important to note that in the absence of
external disturbances, the generated behavior x̄ is
completely determined by ū and no feed-back from
x is needed. The control “strategy” reduces to an
open-loop 3 plan: at each time instant t apply the
element u[t] of ū. Such a plan could be rephrased
as a feed-back function (strategy) s defined over
all x[t] in x̄ as s(x[t]) = u[t + 1] but this would be
an overkill.

Let us now return to the full model with an
adversary and use, without loss of generality, the
worst-case criterion. The optimal control sequence
ū is the solution of

min
ū

max
v̄

c̄(x̄, ū) subject to B(x̄, ū, v̄). (1)

As an illustration, consider the game of Figure 1
and a time horizon k = 2. The structure of
the B relation corresponds to the game tree of
Figure 3. We can enumerate all the 4 possible
control sequences and write the cost they induce
(letting c(xi) = ci) as:

u1u1 : max{c0 + c0, c0 + c1, c1 + c2, c1 + c4}
u1u2 : max{c0 + c1, c0 + c3, c1 + c2, c1 + c0}
u2u1 : max{c1 + c2, c1 + c4, c3 + c3, c3 + c4}
u2u2 : max{c1 + c0, c1 + c2, c3 + c4, c3 + c1}

The sequence which minimizes these values is the
optimal open-loop control that can be achieved.
For discrete systems, where min and max coin-
cide with ∃ and ∀, finding the optimal sequences
reduces to a simple version of satisfiability of
quantified Boolean formulae (QBF).

Using feed-back, however, one can do better.
While the choice of u[1] is done without any
knowledge of the adversary’s action, the choice
of u[2] is done after the effect of v[1], that is,
the value of x[1], is known. Consider the case
where u[1] = u2 and we need to choose u[2].
If, for example, max{c2, c4} < max{c0, c2} but

3 This is the essential difference between instructions in

the style “cook for 5 minutes” and “cook until the water

boils”.
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Fig. 4. It might be better to apply u1 after
the adversary has chosen v1 and apply u2

otherwise.

v1

v2

v1
v2

v1, v2

x1

x2

x0

Fig. 5. The system x′ = f(x, v) obtained from the
game of Figure 1 by a strategy s satisfying
s(x0) = u1, s(x1) = u2 and s(x2) = u1. Note
that since x3 and x4 are not reachable from
x0 under this strategy, the value of s need not
be specified for them.

max{c3, c4} > max{c1, c4} then the optimal thing
to do would be to apply u1 when x[1] = x1 and
u2 when x[1] = x3.

A control strategy is thus a function s : X → U

telling the controller what to do at any reachable
state of the game. In order to formulate the prob-
lem of finding an optimal strategy as a constrained
optimization problem we need first to replace
B(x̄, ū, v̄) by a predicate indicating the fact that
x̄ is the behavior of the system in the presence of
disturbance v̄ when the controller employs strategy
s:

B(x̄, s, v̄) iff x[0] = x0

u[t] = s(x[t − 1]) ∀t

x[t] = f(x[t − 1], u[t], v[t]) ∀t

Finding the best (worst-case) strategy s then be-
comes the following “second-order” optimization
problem:

min
s

max
v̄

c̄(x̄, ū, v̄) subject to B(x̄, s, v̄). (2)

Finding an optimal strategy, at least when done
naively, is usually much more difficult than find-
ing an optimal sequence. For discrete finite-state
systems there are |U ||X| potential strategies and
each of them induces |V |k behaviors of length k.

As mentioned in Section 3.3, strategy synthesis
can be viewed as removing all but one possible
choices for u, thus reducing the game model into

x5 x6 x10 x11 x12

x1 x2
u2

v2

u1

v1

u1

v1 v2

Fig. 6. The set of (adversary-induced) behaviors
of length 2 for the system of Figure 5.

a model where only the adversary has a choice.
The result of applying this procedure to the game
of Figure 1 is shown in Figure 5. The resulting
set of all possible behaviors is a V -labeled tree of
Figure 6.

Before moving to dynamic programming let us
note some obvious shortcomings of worst-case
analysis. Suppose we are in a state where the
adversary can either drive us to an extremely
bad state x1 (say, the end of the world) or to
a state x2 when we have to choose between a
good action u1 and a bad action u2. The definition
of optimality in (2) cannot distinguish between a
strategy s with s(x2) = u1 and a strategy s′ with
s′(x2) = u2 because anyway, the maximal cost will
be obtained at x1. This is counter-intuitive and
we would like to have a criterion that will prefer
s over s′. This criterion, which is cumbersome to
define using constraints, requires a strategy to be
optimal not only for the original game starting
from x0, but also for all the “residual” games
starting from every other state. For this example,
although s and s′ obtain the same worst-case
performance from x0, s is better than s′ from
x2 and will be preferred. Of course, if an end-of-
the-world transition is considered possible from all
states, the worst-case criterion fails to be useful.

5. DYNAMIC PROGRAMMING

Dynamic programming, or backward value iter-
ation, is a technique, advocated by Bellman, for
computing optimal strategies in an incremental
way. We illustrate dynamic programming first
using the following adversary-free shortest path
problem. Let x∗ ∈ X be a designated target
state, from which all actions induce self-loops with
zero cost. All other transitions have local costs
c(xi, uj) = cij . The cost of a path

x[0]
u[1]
−→ x[1] · · ·

u[k]
−→ x[k]

is infinite if x[k] 6= x∗ and

c̄(x̄, ū) =

k
∑

t=2

c(x[t − 1], u[t]),



otherwise. Our goal is to find the minimal-cost
sequence.

Dynamic programming uses an auxiliary function,
known as value function or cost-to-go,

→

V : X → R

such that
→

V (x) is the performance of the optimal
strategy for the sub-game starting from x. In our
adversary-free example, this is the length of the
shortest path from x to x∗. Consider the graph
of Figure 7 which has an additional simplified
structure: it is acyclic and all paths that reach
a state x from x0 have the same number of tran-
sitions, hence its state space can be partitioned
into levels according to the number of transitions
from x0. The computation of the value function
for such graphs is very simple and corresponds to
propagation from x∗ backwards, starting with:

→

V (x∗) = 0,
→

V (x1) = min{c11, c12},
→

V (x2) = min{c21, c22},

and
→

V (x0) is computed as

min{c01+
→

V (x1), c02+
→

V (x2)} =

min{c01 + min{c11, c12}, c02 + min{c21, c22} =

min{c01 + c11, c01 + c12, c02 + c21, c02 + c22}

The last equality is an instance of the Bellman-
Dijkstra principle which can be formulated as
follows. If x̄ is the optimal path from x0 to x∗,
then for any factorization of x̄ into a prefix x̄1 and

a suffix x̄2 such that x0
x̄1−→ x

x̄2−→ x∗, x̄1 is the
optimal path from x0 to x and x̄2 is the optimal
path from x to x∗. This fact can be expressed, for
acyclic graphs, as:

→

V (x) = min
u

(c(x, u)+
→

V (f(x, u))

and in the more general case of graphs admitting
cycles as:

→

V (x) = min

{

→

V (x),

min
u

(c(x, u)+
→

V (f(x, u))

}

(3)

Equation (3) is a fixed-point equation on
→

V of the
form

→

V= F (
→

V) = min(
→

V , `(
→

V))

with `(
→

V) being a “local improvement” operator

on value functions which, as long as
→

V is not
optimal, may suggest a shorter path from x to
x∗ for at least one x. As is the case with many
equations of this type, the solution is the limit of
the sequence of functions

→

V0,
→

V1, . . . generated by
the following recurrence relation:

→

V0 (x) =

{

0 when x = x∗

∞ otherwise

→

V i+1 (x) = min

{

→

V i (x),

min
u

(c(x, u)+
→

V (f(x, u)))

}

x0

x∗

x2x1
c12

c01 c02

c22c11

c21

Fig. 7. A shortest path problem without adver-
sary.

The termination of this iteration, that is, reaching
the fixed point where no further improvement is
possible, in a finite number of steps, is guaranteed
in many settings, for example when all costs are
positive.

A nice feature of this value iteration scheme is
that it can be adapted very easily to adversarial
situations, as well as to other cost functions and
other ways to integrate over adversary actions.
Consider an adversarial version of the shortest
path problem, where the goal is to find a strategy
for which the worst-case shortest path (among the
adversary-induced paths) is optimal. The value
function can be computed by replacing the local
improvement operator of (3) by

min
u

max
v

(c(x, u, v)+
→

V (f(x, u, v))). (4)

If we are interested by the average-case cheap-
est path, we fall into the realm of the so-called
Markov decision processes whose local improve-
ment operator is defined as

min
u

∑

v

p(x, v) · (c(x, u, v)+
→

V (f(x, u, v))).

Verification for safety properties by backward
reachability where

→

V (x) = 1 for all bad states
and states that may lead to them is done using
the operator

max
v

(max{c(x),
→

V (f(x, v))).

Controller synthesis for safety (also known as
supervisory control for discrete-event systems)
uses the operator

min
u

max
v

(max{c(x),
→

V (f(x, u, v)))

In the case of verification,
→

V i (x) = 0 if all paths
of length not greater than i do not reach the bad
set from x, and in the case synthesis,

→

V i (x) = 0
if there is a controller that can avoid reaching bad
states from x for at least i steps. Hence when
the fixed point is reached,

→

V i (x) = 0 for states
which are safe forever (or can be made so by the
controller).



To summarize, this elegant procedure is guaran-
teed (if it converges) to find the optimal value of
the game from any state, including x0. It is then
straightforward to extract the optimal strategy
from the value function: just take for each x the
u that achieves the local optimum. For finite-
state systems with positive transition costs, finite
convergence is guaranteed in time polynomial in
the size of the transition graph, which is better
than the exponential enumeration of strategies.
However, this is not of much comfort in many
situations where the transition graph itself is ex-
ponential in the number of system variables.

In continuous domains (on continuous time),
where the enumeration of all strategies is not an
option, the value function is the solution of a par-
tial differential equation known as the Hamilton-
Jacobi-Bellman-Isaacs equation, typically solved
by discretization of space and time. A notable
exception is the case of linear systems with a
quadratic cost function where the value function
and the controller can be computed analytically.

The major drawback of dynamic programming
is the need to compute

→

V for too many states,
some not reachable from x0 at all, and some
not reachable by any reasonable strategy. This
state-explosion problem, also known as the curse
of dimensionality, prevents the straightforward
application of the algorithm to systems having a
large state-space.

6. FORWARD SEARCH

Dynamic programming and optimal control as
described in the previous section, provides a very
pleasant framework for the mathematically in-
clined. Here you have a canonical object, the op-
timal value function, to which you are guaranteed
to converge, either within a finite number of steps
(in the discrete case) or in some traditional sense
of applied mathematics (in the continuous case).
Many nice theorems can be proved on variants
of the problem. However, for practical purposes,
all this scheme breaks down for computational
complexity reasons as soon as the number of state
variables goes beyond a dozen or so, and often
much earlier than that. Consequently if we want
to come out with a reasonable strategy, optimal or
not, we must give up the exhaustive exploration
of all parts of the state space.

Similar problems have been encountered by re-
searchers, mostly in what is known as AI, who
attempted to develop good strategies for playing
Chess and other games of combinatorial nature
admitting prohibitively-large state spaces. Other
variants of this problem can be found in Robotics
when one has to find paths amidst obstacles. The

idea is rather simple and common sense: instead of
exploring all possible sequences (in the adversary-
free case) or strategies, explore only a reasonably-
small subset of them and pick the optimal among
those. The major question is, of course, how to
direct the search toward the more interesting parts
of the state space using domain-specific heuristics.

In the rest of this section we focus on search
methods that are aligned with the progress of time,
that is, they construct partial paths or partial
strategies from x0 onward, determining u[t] before
u[t + 1]. It is worth mentioning, however, that
methods based on partial exploration of arbitrary
solution spaces are common in all areas of opti-
mization and can be invoked to solve bounded-
horizon formulations of the controller synthesis
problem like those described in Section 4. Such
methods need not necessarily work in a “chrono-
logical” order.

Let us look again at the shortest-path problem
without adversary, and assume we deal with finite
acyclic graphs. The fixed-point characterization of
the value function (3) can be interpreted as the

following recursive algorithm for computing
→

V for
a given state:

Algorithm 1. (Recursive Computation of
→

V).

real proc
→

V (x)

if x = x∗

return(0)
else

V al := ∞
forall u ∈ U

V al′ := c(x, u)+
→

V (f(x, u))
V al := min{V al, V al′}

return(V al)

When this procedure is called with x0 as an
argument and runs to completion, it explores all
the paths of the system in a depth-first manner
and collects the costs as it returns from the
recursion. This procedure is redundant in the
sense that it recomputes the value of x each time
it is reached via another path. This potentially-
exponential blow up can be avoided using the
Bellman-Dijkstra principle by memorizing

→

V (x)
upon returning from the recursion and using this
value when x is subsequently encountered. The
procedure maintains an array

→

V initialized to
infinity in which the value function of a state is
stored once computed.



Algorithm 2. (Recursion and Memorization).

real proc V alue(x)

if x = x∗

return(0)
else

if
→

V (x) = ∞
forall u ∈ U

V al′ := c(x, u) + V alue(f(x, u))
→

V (x) := min{
→

V (x), V al′}

return(
→

V (x))

These algorithms can be naturally adapted to
adversarial situations, where a min-max local im-
provement operator like (4) used to define the
value function. Algorithm 2 it extended as follows.

Algorithm 3. (Recursion for Games).

real proc V alue(x)

if x = x∗

return(0)
else

if
→

V (x) = ∞
forall u ∈ U

V alu := 0
forall v ∈ V

V al′u := c(x, u, v)+
→

V (f(x, u, v))
V alu := max{V alu, V al′u}

→

V (x) := min{
→

V (x), V alu}

return(
→

V (x))

This algorithm is polynomial in the size of the
game graph but, as noted before, this is not
of much help for exponential transition graphs.
This procedure can be adapted in various ways
to explore a subset of the paths. Unfortunately,
heuristic search algorithms are not as clean math-
ematical objects as are value functions, and a
fully-systematic survey of all possible variants is
beyond the scope of this article, and only a sketch
is given.

The first step in guiding the exploration is to
collect costs as we develop a path from x0, as-
sociating with every partial path leading to x a
cost-to-come function

←

V (x) indicating the cost to
reach x from x0.

The second step is to define an estimation func-
tion E on the state space such that E(x) is an

approximation of the cost-to-go
→

V (x). The choice
of the estimation function is domain specific. It
should be much easier to compute than

→

V but
should, nevertheless, give some good indication
for the “goodness” of the state. For the scheduling
problems discussed in the the second part of this

x0

c′

x∗x∗

←

V (x′)

E(y′)E(y)

y
y′

x′

x

←

V (x)

c

Fig. 8. A snapshot of a forward search procedure.
The frontier is indicated by a dotted line.
Nodes y and y′ are compared according to
←

V (x) + c + E(y) and
←

V (x′) + c′ + E(y′).

article,
→

V (x) would be the length of the optimal
schedule from x, while E(x) can be, for example,
the amount of remaining work in state x divided
by the number of machines.

The last step is to modify the exploration mech-
anism from depth-first to a more sophisticated
search regime which keeps a search tree of explored
partial paths (or partial strategies) and incremen-
tally expands this tree by exploring each step one
successor y of a node x in its frontier. The criterion
selecting the successor is based on the cost-to-
come

←

V (x), the cost c of the transitions from x to
y and the estimation function E(y) (see Figure 8).

Since the exploration is not complete, the com-
puted value function is not exact, and the strategy
is not optimal. In a game setting, it is important
to distinguish between the effect of partial explo-
ration of environment and controller actions. If
we do not explore all u-successors, we might miss
an optimal strategy. On the other hand, if we do
not explore some v-successors we risk being too
optimistic about our chosen strategy (if we use
the min max criterion). Moreover, ignoring some
v values, the value function and the strategy might
not be computed for some reachable states. In this
case some rules are needed to tell the controller
what to do during execution once such a state x

is encountered. A typical solution could be to act
according to s(x′) where x′ is the nearest state for
which the strategy has been computed.

It should be noted that forward exploration of
reachable states is very common in verification of
discrete systems but since there the performance
criterion is discrete (correct/incorrect), exhaus-
tive coverage of the adversary actions is indispens-



able if we want to prove correctness and hence
breath-first exploration is more common. Heuris-
tic search is sometimes used for finding bugs (bad
trajectories) quickly.

7. ON ADVERSARIES IN CONTROL
MODELS

Before proceeding let me announce the resolution
of a puzzle which intrigued me for some time
concerning the lack of explicit modeling of the
adversary in some of the most popular models of
automatic control, which is supposed to be the
science of combatting external disturbances. And
indeed, several models of linear control mention
only one player, and the controller is synthesized
to be stable or optimal relative to an adversary-
free model. For an outsider like myself this seems
absurd: in the discrete world if you don’t have
disturbances a plan without feed-back is sufficient
and if you have such disturbances, plans that
ignore them are rather useless.

In stability analysis one assumes that the con-
trolled system lives around an equilibrium and
the disturbance is implicitly assumed to be active
only at time zero (“step response”), leading to a
deviation from the equilibrium. From there, the
controller is guaranteed to bring the system to
the vicinity of the equilibrium. This guarantee is
based on the analysis of a nominal disturbance-
free model, hence avoiding the complications in-
herent in universal quantification on the adver-
sary. Likewise, in LQR optimal control the best
action is computed based on an adversary-free
model, but since it is computed over the whole
state space, it is defined over all states that an
unmodeled (but small) disturbance may take you.
The same reasoning underlies model-predictive
control where a controller with similar properties
is computed online. When at state x a control is
computed which is optimal for a bounded horizon
relative to a nominal disturbance-free model, but
then, in the next step where due to unmodeled
disturbances the system may be at a state differ-
ent from the predicted one, control is recomputed
based, again, on the nominal model.

These schemes work (when they work 4 ) due to
a combination of factors. The first of those is
probably related to continuity and linearity com-
bined with the small magnitude of the distur-
bance, which guarantee that stability is preserved
under disturbances and optimality is not seriously
affected. This is not the case for discrete and
hybrid systems (and probably even for continuous
nonlinear ones) where disturbances can have a
much larger impact. The second factor is that

4 Airplanes fly, after all.

by defining the strategy all over the state space,
provisions are taken for a possible deviation of the
plant from its nominal model. All in all, this pe-
culiar way of doing things simplifies computations
that could be much more difficult using a full game
model.

This concludes the first part of the paper in which
three approaches to solve optimal control prob-
lems in the presence of an adversary were pre-
sented. The first approach was based on bounded
horizon and finite dimensional optimization. The
two other approaches were based on propagation
of costs along paths, either backward (dynamic
programming) or forward. These approaches were
described using discrete U and V and their adap-
tation to continuous domains is not straightfor-
ward, unless they are discretized. In the follow-
ing sections we demonstrate this approach on an
interesting type of a game played with discrete
values over continuous time, namely, scheduling
under uncertainty in task durations.

8. SCHEDULING AS A GAME

Scheduling problems appear in diverse situations
where the use of bounded resources over time
has to be regulated. A scheduler is a mecha-
nism that decides at each time instant whether
or not to allocate a resource to one of the tasks
that needs it. Unfortunately, scheduling research
is spread over many application domains, and in
many of them problems are often solved using
domain specific methods, without leading to a
more general theory (except for, perhaps, oper-
ations research where scheduling is treated as a
static optimization problem, similar to the the
approach described in Section 4). In this section
we will reformulate scheduling in our terminology
of dynamic two player games.

On one side of the problem we have the resources,
a set M = {m1, . . . ,mk} of “machines” that we
assume to be fixed. On the other side we have
tasks, units of work that require the allocation of
certain machines for certain durations in order
to be accomplished. In a world of unbounded
resources scheduling is not a problem: each task
picks resources as soon as it needs them and
terminates at its earliest convenience. When this
is not the case, two tasks may need the same
resource at the same time and the scheduler has to
resolve the conflict and decide to whom to give the
resource first. The tasks may be related to each
other by various inter-dependence conditions, the
most typical among them is precedence: a task can
start only after some other tasks (its predecessors)
have terminated. In this paper we assume the set
of tasks to be fixed and known in advance.



To model such situations as dynamic games we
need first to fix the state-space. For our purposes
we take the state of the system at any given
instant to include the states of the tasks (waiting,
active, finished), the time already elapsed (for
active tasks) and the corresponding states of the
machines (idle, or busy when it is used by an
active task). The actions of the scheduler are of
two types, the first being actions of the form
start(p) which means allocating a machine m to
task p so that it can execute. The effect of such
an action on a state where p is enabled (all its
predecessors have terminated) and m is idle, is
to make p active and m occupied. Let us denote
this set of actions by S. The other “action” of
the scheduler is to do nothing, denoted by ⊥. In
this case the active tasks continue to execute, the
waiting tasks keep on waiting and time elapses.
The actions of the environment consist of similar
waiting and a set of actions of the form end(p)
whose effect, when the task spent enough time in
an active state, is to move the task to a terminal
state and release the machine. We assume that the
environment is deterministic, that is, every end(p)
transition occurs exactly d time after the start(p)
where d is the pre-specified duration of the task
(later, we will relax this assumption). In this case
the strategy can be viewed as a single schedule, a
function s : R+ → S ∪ {⊥}. For all but a finite
number of time instances we have s(t) = ⊥ and
the schedule is determined by a finite number of
start times for each task.

9. DETERMINISTIC JOB SHOP
SCHEDULING

A job shop problem consists of a finite set J =
{J1, . . . , Jn} of jobs to be processed on a finite
set M of machines. Each job J i consists of a
finite sequence of tasks to be executed one after
the other, where each task is characterized by a
pair of the form (m, d) with m ∈ M and d ∈ N,
indicating the required utilization of machine m

for a fixed time duration d. Each machine can
process at most one task at a time and, due to
precedence constraints, at most one task of each
job can be active at any time. Tasks cannot be
preempted once started. We want to determine
the starting times for each task so that the total
execution time of all jobs (the time the last task
terminates) is minimal.

As an example consider the problem

J1 : (m1, 4), (m2, 5) J2 : (m1, 3)

which exhibits a conflict on m1. This conflict can
be resolved in two ways, either by giving priority
to J1 or to J2 (schedules s1 and s2 of Figure 9).
The length induced by s1 is 9 and it is the optimal
schedule for this example. Part of the hardness of

9

m1

m2

J1

J2
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m1
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m1

m1

m2

J1

J2

s2

Fig. 9. Two schedule s1 and s2 for the example.

the problem stems from the fact that sometimes
an optimal schedule is achieved by not executing
a task as soon as it is ready in order to keep the
machine free for another, still not enabled, task
that will need it in the future.

The traditional way to solve this problem is to
assign variables, z1, z2 and z3 for the start times of
the three tasks, a variable z4 for the total length of
the schedule and solve a constrained optimization
problem. The precedence constraints for J1 are
expressed by z2 ≥ z1 + 4 (it cannot use m2 before
finishing using m1). The fact that only one task
can use m1 at a given time is expressed by the
condition

[z1, z1 + 4] ∩ [z2, z2 + 3] = ∅

stating that the utilization periods of m1 by both
jobs should not coincide. The whole problem is
thus formulated as:

min(z4) subject to
z2 − z1 ≥ 4
z4 − z2 ≥ 5
z4 − z3 ≥ 3
(z2 − z1 ≥ 4 ∨ z1 − z2 ≥ 3)

The format of this problem is both simpler and
more complex than general linear programming.
On one hand the constraints are always of the
form zi − zj ≥ d rather than arbitrary linear
inequalities. On the other, the last disjunctive con-
straint, which expresses a discrete choice, makes
the set of feasible solutions non-convex. As the
problem gets larger, the set of feasible solutions
gets more and more fragmented into a disjoint
union of convex polyhedra whose number is ex-
ponential in the number of conflicts. Like many
other combinatorial optimization problems, job
shop scheduling is NP-hard and this suggests that
any algorithm might, in some cases, end up enu-
merating all possible solutions.

It is worth mentioning that people accustomed
to continuous optimization tend to transform the
problem into mixed integer-linear program by in-
troducing auxiliary integer variables with which it
is possible to encode disjunctions as arithmetical
constraints. The problem is then transformed via
relaxation (assuming temporarily that these vari-
ables are real-valued) into a convex linear program
which can be solved efficiently. Then it remains
to transform the obtained “solution” to a feasi-
ble solution with integer values for the relaxed
variables. While this approach has been reported



to work well for some classes of problems, I have
doubts concerning its usefulness for scheduling, a
problem dominated by discrete choices that have
no numerical interpretation.

10. SCHEDULING WITH TIMED
AUTOMATA

In this section I sketch in more detail the modeling
of scheduling situations as a dynamical system
on which optimal paths and optimal strategies
can be computed using the forward search algo-
rithm discussed in Section 6. We use the timed
automaton model which has established itself as
the formalism of choice for describing discrete
time-dependent behaviors. Timed automata are
automata operating in the dense time domain.
Their state-space is a product of a finite set
of discrete states (locations) and the clock-space
R

m
+ , the set of possible valuations of clock vari-

ables. The behavior of the automaton consists of
an alternation of time-passage periods where the
automaton stays in the same location and the
clock values grow uniformly, and of instantaneous
transitions that can be taken when clock values
satisfy certain conditions and which may reset
some clocks to zero. The interaction between clock
values and discrete transitions is specified by con-
ditions on the clock-space which determine what
future evolution, either passage of time or one or
more transitions, is possible at a state.

When timed automata model scheduling prob-
lems, the discrete states record the qualitative
state of the scheduling problem (who is execut-
ing, who has terminated) and the clocks provide
the quantitative component of the state, namely
the times that each active task has already spent
executing. We assume here that there is a single
machine of each type and hence the states of the
machines are implied by the states of the tasks.
We will spare from the reader the exact formal
definition of timed automata and illustrate our
modeling approach via an example. A more formal
treatment can be found in [AAM06].

We start by modeling each job as a simple au-
tomaton with one clock. The automata for our
example, depicted in Figure 10, have a straightfor-
ward structure. Automaton A1 starts with state
m1 where it waits for machine m1. It stays at this
state until a transition to active state m1 is taken.
This “start” transition is issued by the scheduler
and it resets clock c1 to zero. The automaton
stays at that state until the clock reaches 4 and
then moves to state m2, waiting for the next
task and so on until it reaches a final state. The
“end” transitions outgoing from active states are
made by the environment and are considered as
actions uncontrolled by the scheduler. Clocks are

m1

m1

m2

m2

c1 := 0

c1 = 4

c1 := 0

m1

m1

c2 := 0

c1 = 3

c1 = 5

A1 A2

?

?

Fig. 10. Automata for the two jobs.

considered “inactive” at waiting states as they are
reset to zero before they are tested.

Each automaton describes the possible behaviors
of one job in isolation. Their joint behavior under
resource constraints is captured by their product
shown in Figure 11. Products of automata underly
almost everything one wants to say about the be-
havior of several interacting components. A state
space of the product (or the global state space)
is essentially a subset of the Cartesian product of
the local state spaces, and the transitions outgoing
from a global state are defined based on transi-
tions outgoing from each component. 5 Resource
constraints are expressed by excluding states such
as (m1,m1) where more than one job uses a
machine. This results in a “hole” in the global
automaton and the scheduler has to decide how
to bypass this hole, either by giving the machine
first to J1 or to J2. The two schedules of Figure 9
correspond to the following two behaviors (runs)
of the automaton (we use notation ⊥ to indicate

inactive clocks, and
0

−→ for discrete actions such
as starting or ending a task):

s1 :

(m1, m1, ⊥, ⊥)
0

−→ (m1, m1, 0, ⊥)
4

−→ (m1, m1, 4, ⊥)
0

−→

(m2, m1, ⊥, ⊥)
0

−→ (m2, m1, 0, ⊥)
0

−→ (m2, m1, 0, 0)
3

−→

(m2, m1, 3, 3)
0

−→ (m2, ?, 3, ⊥)
2

−→ (m2, ?, 5, ⊥)
0

−→

(?, ?, ⊥, ⊥)

s2 :

(m1, m1, ⊥, ⊥)
0

−→ (m1, m1, ⊥, 0)
3

−→ (m1, m1, ⊥, 3)
0

−→

(m1, ?, ⊥, ⊥)
0

−→ (m1, ?, 0, ⊥)
4

−→ (m1, ?, 4, ⊥)
0

−→

(m2, ?, ⊥, ⊥)
0

−→ (m2, ?, 0, ⊥)
5

−→ (m2, ?, 5, ⊥)
0

−→

(?, ?, ⊥, ⊥)

5 In the context of linear system and Markov chains, the

product of automata is sometimes disguised as a Kronecker
or Tensor product of two matrices, but the concepts devel-

oped in computer science are much richer and can express a

variety of interaction modes between components, ranging
from independence to strong synchronization.
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Fig. 11. The global timed automaton for the two
jobs. The paths that correspond to the two
schedules are indicated by thicker arrows.

It is not hard to see the correspondence between
the set of possible behaviors of the automaton
that reach the final state and the set of all feasible
schedules. Hence the problem of optimal schedul-
ing reduces to finding the shortest run in a timed
automaton, where the length of the run is the total
elapsed time. The number of such runs is uncount-
able (each automaton may stay any amount of
time in a waiting state) however we have shown
that the optimum is found among a finite number
of runs and each node in the search tree has a
finite number of successors worth exploring. The
number of such paths is still exponential and an
exhaustive search is infeasible. Our implementa-
tion of a best-first search algorithm on this model
could find optimal schedules for problems with 6
jobs, 6 machines and 36 tasks. Beyond that we
had to apply a heuristic that could find solutions
with 5% from the known optimum for problems
with up to 15 jobs, 15 machines and 225 tasks. 6

The reader probably noticed that the dynamic
model used here does not fit exactly into the
discrete time synchronous framework previously
described. By using a “sampled” approach and

6 The coincidence between the number of jobs and ma-
chines is specific to the used benchmarks and has no deeper
meaning.

restricting events to occur and to be observed only
at multiples of some constant δ, we can approx-
imate any timed automaton by a discrete time
system. However, when events occur sparsely over
time, the continuous time asynchronous approach
is computationally more efficient as it allows to
“accelerate” the evolution of the system by letting
time advance until the next event.

11. SCHEDULING UNDER UNCERTAINTY

Although the approach just described is elegant,
one may argue that the world of scheduling could
live without yet another technique for solving the
job shop problem. The advantage of using state-
based dynamic models is manifested when we
move to the more complex problems of scheduling
under uncertainty. Academic scheduling research
has often been criticized from a practical point
of view for making unrealistic assumptions and it
was noted that real schedules are rarely executed
as planned. During execution it may happen that
tasks terminate sooner or later then expected, new
tasks may appear, machines may break down, etc.
In such situations what we need is a scheduling
policy, a strategy which adapts to the evolution
of the plant and modifies its decisions accordingly.
In this section we augment the job shop problem
with one type of uncertainty, namely bounded
uncertainty in task durations. This means that a
task description gets the form (m, [l, h]) indicating
that the actual duration of the task is some d ∈
[l, h]. Each actual instance of the job shop problem
consists of picking such a d for each interval and
we need to evaluate a strategy according to its
performance on all such instances. Consider the
problem

J1 : (m1, 10), (m3, [2, 4]), (m4, 5)
J2 : (m2, [2, 8]), (m3, 7)

where the only resource under conflict is m3 and
the order of its utilization is the only decision
of the scheduler. The uncertainties concern the
durations of the first task of J2 and the second
task in J1. Hence an instance is a pair d =
(d2, d3) ∈ [2, 8] × [2, 4]. Figure 12-(a) depicts
the optimal schedules for the instances (8, 4),
(8, 2) and (4, 4) that could have been found by
a non-causal clairvoyant scheduler who knows the
whole instance in advance. But instances reveal
themselves progressively during execution — the
value of d1, for example, is known only after the
termination of the second task of J1.

It turns out that for this particular type of uncer-
tainty, optimization with respect to the worst-case
criterion is somewhat trivial. There is always a
maximal (critical) instance, (8, 4) in this example,



having two important properties: 1) The optimal
schedule for this instance is valid also for all other
smaller instances (just ignore earlier termination
of certain tasks and keep the machine busy until h

time elapses); 2) No strategy can perform better
on this instance. Figure 12-(b) shows the behavior
of a static worst-case strategy based on instance
(8, 4) and one can see that is is rather wasteful
for other instances. We want a smarter adaptive
scheduler which takes the actual duration of m2

into consideration.

One of the simplest ways to be adaptive is the
following. First we choose a nominal instance d

and find a schedule s which is optimal for that
instance. Rather than taking s “literally” as an
assignment of absolute start times to tasks, we
extract from it only the qualitative information,
the order in which conflicting tasks utilize each
resource. In our example the optimal schedule for
instance (8, 4) is associated with giving priority to
J1 on m3. Then, during execution, we start every
task as soon as its predecessors have terminated,
provided that the ordering is not violated. As
Figure 12-(c) shows, such a strategy is better than
the static schedule for instances such as (8, 2)
where it takes advantage of the earlier termination
of the second task of J1 and “shifts forward” the
start times of the two tasks that follow.

Note that this “hole filling” strategy is not re-
stricted to the worst-case. One can use any nomi-
nal instance and then shift tasks forward or back-
ward in time as needed while maintaining the
order. On the other hand, a static schedule can
only be based on the worst-case — a schedule
based on another nominal instance may assume
a resource available at some time point, while in
reality it will be occupied.

The hole filling strategy is optimal for all instances
whose optimal schedule has the same ordering
as that for the nominal instance. It is not good,
however for instances such as (4, 4) which cannot
benefit from the early termination of m2 because
shifting m3 of J2 forward will violate the priority
on m3. For such cases a more refined form of
adaptiveness is required. Looking at the optimal
schedules for (8, 4) and (4, 4) in Figure 12-(a),
we observe that in both of them the decision
whether or not to give m3 to J2 is taken at
the same qualitative state where m1 is executing
and m2 has terminated. The only difference is in
the elapsed execution time of m1 at the decision
point. Hence an adaptive scheduler should base its
decisions also on quantitative information encoded
by clock values.

Consider the following approach: initially we find
an optimal schedule for some nominal instance.
During execution, whenever a task terminates
we reschedule the “residual” problem, assuming

nominal duration for tasks that have not yet
terminated. In our example, we first build an
optimal schedule for (8, 4) and start executing it.
If task m2 in J2 terminated after 4 time units we
obtain the residual problem

J ′
1 : (m1,6), (m3, 4), (m4, 5) J ′

2 : (m3, 7)

where the boldface letters indicate that m1 must
be scheduled immediately (it is already executing
and we assume no preemption). For this problem
the optimal solution will be to give m3 to J2.
Likewise, if m2 terminates at 8 we have

J ′
1 : (m1,2), (m3, 4), (m4, 5) J ′

2 : (m3, 7)

and the optimal schedule consists of waiting for
the termination of m1 in order to give m3 to J1.
The property of schedules thus obtained is that
at any state reachable during execution they are
optimal with respect to the nominal assumption
concerning the future. We call such strategies d-
future optimal.

This is the principle underlying model-predictive
control where at each step, actions at the current
“real” state are re-optimized while assuming some
nominal prediction for a bounded horizon future.
A major drawback of this approach is that it
involves a lot of online computation, solving a new
scheduling problem each time a task terminates.
This fact restricts its applicability to “slow” pro-
cesses. In the next section we present an alter-
native approach where an equivalent strategy is
synthesized offline using a symbolic variant of dy-
namic programming adapted for timed automata.

12. DYNAMIC PROGRAMMING ON TIMED
AUTOMATA

The state-space of a timed automaton consists of
pairs of the form (q, c) where q = (q1, . . . , qn)
is a discrete state, indicating the local states
of all jobs, and c = (c1, . . . , cn) is a vector of
clock valuations ranging over a bounded subset
of the non-negative reals. On these we define a
value function

→

V such that
→

V (q, c) denotes the
minimal time to reach the final state from (q, c),
assuming nominal values for tasks that have not
terminated. Before giving the formal definition let
us give an intuitive explanation. Being at (q, c), all
the local choices of the scheduler can be brought
into the following form: let some t time pass and
then execute one transition that is enabled at that
time according to the clock values. This definition
covers also the possibility of an immediate action
(t = 0), as well as the possibility of waiting
until an uncontrolled transition is taken by the
environment. The value induced by this choice is
the sum of the waiting time t and the value of the
state reached after the transition. This is captured
by the following recursive definition:
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Fig. 12. (a) Optimal schedules for three instances; (b) A static schedule based on the worst instance
(8, 4); (c) The behavior of a hole filling strategy based on instance (8, 4); (d) The equal performance
of the two strategies on instance (5, 4).

→

V (?, c) = 0
→

V (q, c) =

min{t+
→

V (q′, c′) : (q, c)
t

−→ (q, c + t1)
0

−→ (q′, c′)}

To illustrate the computation of
→

V we consider a
simplified version of the example from the previ-
ous section with only one uncertain duration:

J1 : (m1, 10), (m3, 4), (m4, 5) J2 : (m2, [2, 8]), (m3, 7).

Figure 13 shows the final part of the global au-
tomaton corresponding to the problem, which
includes state (m1,m3) where a decision of the
scheduler has to be taken. The computation starts
with

→

V (?, ?,⊥,⊥) = 0. The value of (m4, ?, c1,⊥)
is the time it takes to satisfy the condition c1 = 5,
which is 5−. c1. Likewise

→

V (?,m3,⊥, c2) = 7−. c2.
In state (m4,m3) the two jobs are active and the
transition to be taken depends on which of them
will “win the race” and terminate before:

→

V (m4,m3, c1, c2)

= min

{

7 −. c2+
→

V (m4, ?, c1 + (7 −. c2),⊥),

5 −. c1+
→

V (?,m3,⊥, c2 + (5 −. c1))

}

= min{5 −. c1, 7 −. c2}

=

{

5 −. c1 if c2 −
. c1 ≥ 2

7 −. c2 if c2 −
. c1 ≤ 2

Note that both transitions are uncontrolled end

transitions and no decision of the scheduler is
required in this state. The computation proceeds
backwards, computing

→

V for all states. In partic-
ular, for state (m1,m3) where we need to choose
between giving m3 immediately to J2 or waiting
for the termination of m1 to give m3 to J1, we
obtain:

→

V (m1,m3, c1,⊥) = min{16, 21 −. c1}

=

{

16 if c1 ≤ 5
21 −. c1 if c1 ≥ 5
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Fig. 13. Part of the global automaton.

Hence, if m1 terminates after less than 5 time
units it is better to give m3 to J2, otherwise it is
worth waiting and giving it to J1. Figure 12-(d)
shows that, indeed, the two strategies coincide in
performance when c1 = 5.

The reader should not be misled by the success of
our strategy to match the performance of a clair-
voyant scheduler for this small example. In slightly
more complex problems with several uncertainties
it is impossible to compete with knowing the fu-
ture and being d-future optimal is good enough.

The actual computation of the value function
is implemented using standard reachability tech-
niques for timed automata which are outside the
scope of the present paper. We have tested our
implementation on a problem with 4 jobs, 6 ma-
chines and 24 tasks, 8 of which having uncer-
tain durations. we fixed two instances, one “op-
timistic” where each task duration is set to l,
and one “pessimistic” with h durations. We ap-
plied our algorithm to find two d-future optimal
strategies and two hole filling strategies based on
these instances. We have generated 100 random
instances with durations drawn uniformly from
each [l, h] interval, and compared the results of the
abovementioned strategies with an optimal clair-

voyant scheduler that knows each d in advance,
and with the static worst-case scheduler. It turns
out that the static schedule is, on the average,
longer than the optimum by more than 12%. The
hole filling strategy deviates from the optimum by
around 5%. Our strategy produces schedules that
are longer than the optimum by less than 2%.

The good news is that our strategy is much better
than static scheduling, and can be considered as
a useful tool for systems with “soft” real-time
performance criteria. The bad news is that it is
much more costly than the hole filling strategy.
The latter solves an adversary-free problem and
can use intelligent forward search while the com-
putation of our strategy has to explore the whole
state-space. The adaptation of forward game tree
search to this problem is not straightforward, due
to the density of the set of adversary actions,
and it is subject to ongoing research along with
the adaptation of this approach to other types
of uncertainty such as imprecise arrival times or
discrete uncertainty associated with conditional
dependencies between tasks.

13. DISCUSSION

People who are experts in their domain are often
skeptical toward proposals for unified theories.
Indeed, compared to successes of domain specific
research, various holistic trends such as “general
systems theory” proved in the past to be rather
sterile. Saying that “everything is systems” and
that many things that look so different are, at a
certain level of abstraction, similar, does not nec-
essarily solve problems. I hope that the framework
presented in this paper will have a better fate. It is
less ambitious than some of its predecessors in the
sense of not trying to predict the unpredictable
and pretend to give optimal recipes for complex
socio-economic or biological phenomena for which
we do not even know the appropriate modeling
vocabulary. Rather it is restricted to situations
where useful dynamic models and performance
criteria do exist, models which are already used,
implicitly or explicitly, for simulation, verification
or optimization. This framework is geared toward
a concrete goal: developing a tool for defining and
solving optimal control problems for systems with
diverse types of dynamics.

Some principles underlying such a framework
(some of which already exist in respective do-
mains) are mentioned below. First, I believe that
systems should be defined with a clear semantics
from which it is easy to see who are the players,
what are the variables they can observe and influ-
ence, what constitutes a behavior of the system,
what is assumed about the environment and what
are the natural performance criteria. At this level,



the description should be separated from the spe-
cific computational techniques that are used to
reason about the model. This is in contrast with
some domain-specific approaches where problems
are often phrased in terms biased toward particu-
lar and, sometimes, accidental solution techniques
which are common in the domain.

After an ideal optimal controller has been math-
ematically defined, computational issues should
be addressed. Here the difference between classes
of system dynamics is manifested by the type of
constrained optimization problem to be solved,
discrete (logical), continuous (numerical) or hy-
brid. In most cases the global optimality of the
solution is a ceremonial matter. No one really
intends to be optimal and models are imprecise
anyway. In some cases, proving some relation be-
tween approximate solutions and the optimum is
a good measure for the quality of a technique,
but this is neither a necessary nor a sufficient
condition for its usefulness.

Since some space is left, let me add some con-
troversial remarks. It seems to me that in many
domains relevant to this paper, there is a tension
between the mathematical (theoretical) and engi-
neering (hacking) approaches. The (real) practi-
tioner cannot choose the problems he has to solve
and also does not have time to develop nice the-
ories. In many cases he will adapt solutions pro-
vided by mathematicians of previous generations
to get the job done. The theoretician is supposed
to be more open-minded and explore new classes
of models for new phenomena but the structure
of academe does not always encourage him to
do so. Members of scientific communities often
impose upon themselves some intrinsic evaluation
criteria that deviate over time from the raison
d’être of the domain. There is nothing wrong with
(good) mathematics for its own sake, but one
should not confuse it with solving real engineering
problems or even with laying the foundations for
future solutions. What is really needed is a middle
road between mathematics and engineering, which
allows us to see the generic mathematical objects
behind the engineering instances, together with
a strong sense of criticism toward the traditions
of the respective academic fields, which are often
by-products of the sociology of scientific commu-
nities, rather than the result of a genuine attempt
to be relevant.
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