
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

AMT 2.0: Qualitative and Quantitative Trace Analysis
with Extended Signal Temporal Logic

Dejan Ničković1, Olivier Lebeltel2, Oded Maler2, Thomas Ferrère3, Dogan Ulus2

1 Austrian Institute of Technology GmbH
2 Verimag, CNRS / University of Grenoble-Alpes, France

3 IST Austria

Abstract. We introduce in this paper AMT 2.0, a tool for qualitative and quanti-
tative analysis of hybrid continuous and Boolean signals that combine numerical
values and discrete events. The evaluation of the signals is based on rich temporal
specifications expressed in extended Signal Temporal Logic (xSTL), which inte-
grates Timed Regular Expressions (TRE) within Signal Temporal Logic (STL).
The tool features qualitative monitoring (property satisfaction checking), trace
diagnostics for explaining and justifying property violations and specification-
driven measurement of quantitative features of the signal.

1 Introduction

Cyber-physical systems, such as automotive embedded controllers, medical devices or
autonomous vehicles, are often modeled and analyzed by simulation. Simulators gener-
ate traces admitting real values often interpreted as continuous-time signals. To evaluate
the system under design, these traces are inspected for satisfying some correctness re-
quirements and are often subject to quantitative analysis based on recording some values
in certain segments of the signal and performing some computation (summation, mini-
mum) on them.

Over the past decade an extensive framework has been developed whose goal was
to bring automated support for this tedious and error-prone task, centered around Sig-
nal Temporal Logic (STL) [18,19]. STL extends the classical LTL in two directions: it
uses predicates over real-valued variables in addition to atomic propositions, and it is
defined over dense continuous time accessed symbolically with timed modalities as in
Metric Temoral Logic (MTL) [17]. This framework, which was initially accompanied
by a rudimentary prototype tool [20], had a lot of reported applications in domains such
as automotive, robotics, analog circuits, systems biology. It can be viewed as an exten-
sion of runtime verification toward cyber-physical hybrid systems. Interested readers
may consult the survey in [7].

In this article we present AMT 2.0, a new version of the tool. The new version is
much more mature in terms of software engineering aspects such as rigorous typing of
signals and properties, introducing programming language features that include declara-
tions and aliases, improvement of the graphical editors, systematic software testing, etc.
Furthermore, its functionality has been extended significantly by incorporating several
new research results obtained over the last years:

1. We combine STL with a fragment of Timed Regular Expressions (TRE) [4,5], as a
complementary formalism to express temporal patterns. The monitoring algorithm
for our specification language xSTL thus obtained integrates the recent TRE pattern
matching algorithm reported in [22].

2. We use the TRE formalism to define segments of the signal to which quantitative
measurements should be applied. Thus we obtain a declarative measurement lan-
guage that does for the quantitative domain what formal specification languages do
for correctness checking. The results, first reported in [14], are fully incorporated
into the tool.

3. We implement the error diagnostics algorithm of [13] which accompanies the report
on a property violation with a justification: a small sub-signal (temporal implicant)
which is sufficient to imply the property violation and to convince the user of this
fact.

With all these features we progress in easing the task of designers who seek to analyze
a complex system based on simulations, providing them with an alternative to manual
inspection or explicit programming of observers.

The rest of the paper is organized as follows. In Section 2 we present the xSTL
specification language. Section 3 gives an overview of the tool and its main features.
We illustrate the usage of AMT 2.0 in Section 4 with two examples. We present the
related work in Section 5 and give concluding remarks in Section 6.

2 Extended Signal Temporal Logic

Extended Signal Temporal Logix (xSTL) essentially combines STL with a variant of
TRE. In this section, we provide the mathematical definitions of the specification lan-
guage.

We denote by P and X finite sets of propositional and data variables, such that
|P | = m and |X| = n. Data variables are defined over an arbitrary domain D, typically
the reals or the integers. We use the notation w ∶ T → Dn × Bm to represent a multi-
dimensional signal with T = [0, d) ⊆ ℝ and B = {true, false}. We denote by wp the
projection of w on its component p. We denote by � ∶ Dn → B a predicate that maps
valuations of variables in X into {true, false}.

The syntax of an STL formula ' with both future and past temporal operators and
interpreted over X ∪ P is defined by the grammar

' ∶= p | �(x1,… , xn) | ¬' | '1 ∨ '2 | '1 I'2 | '1 I'2

where p ∈ P , x1,… , xn ∈ X and I ⊆ ℝ+ is an interval. We denote by the until
operator that is decorated with an unbounded interval (0,∞). We use the strict se-
mantics [2] for until and since temporal operators that allows us to define (continuous-
time) next 2' ≡ ' ' and (continuous-time) previous�' ≡ ''. The instan-
taneous rise and fall events can be derived using the rules ↑' ≡ �¬' ∧2' and
↓' ≡ �' ∧2¬'. We derive other standard operators as follows: true ≡ p ∨ ¬p,
false ≡ ¬true, '1 ∧ '2 ≡ ¬(¬'1 ∨ ¬'2), '1 → '2 ≡ ¬'1 ∨ '2,1I ' ≡ true I ',
QI ' ≡ true I ', 0I ' ≡ ¬◊I¬', and`I ' ≡ ¬QI ¬'.

The semantics of an STL formula with respect to a signal w is described via the
satisfiability relation (w, t) ⊧ ', indicating that the signal w satisfies ' at time point t,
according to the following definition.

(w, t) ⊧ p ↔ wp[t] = true

(w, t) ⊧ �(x1,… , xn) ↔ �(wx1 [t],… , wxn [t]) = true

(w, t) ⊧ ¬' ↔ (w, t) ⊧̸ '
(w, t) ⊧ '1 ∨ '2 ↔ (w, t) ⊧ '1 or (w, t) ⊧ '2
(w, t) ⊧ '1 I'2 ↔ ∃t′ ∈ (t + I) ∩ T : (w, t′) ⊧ '2 and

∀t < t′′ < t′ (w, t′′) ⊧ '1
(w, t) ⊧ '1 I'2 ↔ ∃t′ ∈ (t − I) ∩ T : (w, t′) ⊧ '2 and

∀t′ < t′′ < t (w, t′′) ⊧ '1

We now define a variant of TRE according to the following grammar:

r ∶= � | p | �(x1,… , xn) | r1 ⋅ r2 | r1 ∪ r2 | r1 ∩ r2 | r∗ | ⟨r⟩I | r1 ? r2 | r2 ! r2

where I is an interval ofℝ+. The semantics of a timed regular expression r with respect
to a signalw and times t ≤ t′ in [0, d] is given in terms of a match relation (w, t, t′) ⫢ r,
which indicates that the segment of w between t and t′ matches the expression. This
relation is defined inductively as follows:

(w, t, t′) ⫢ � ↔ t = t′
(w, t, t′) ⫢ p ↔ t < t′ and ∀t′′ ∈ (t, t′), wp[t] = true

(w, t, t′) ⫢ �(x1,… , xn) ↔ t < t′ and ∀t′′ ∈ (t, t′), �(wx1 [t
′′],… , wxn [t

′′]) = true

(w, t, t′) ⫢ r1 ⋅ r2 ↔ ∃t′′ t ≤ t′′ ≤ t′, (w, t, t′′) ⫢ r1 and (w, t′′, t′) ⫢ r2
(w, t, t′) ⫢ r1 ∪ r2 ↔ (w, t, t′) ⫢ r1 or (w, t, t′) ⫢ r2
(w, t, t′) ⫢ r1 ∩ r2 ↔ (w, t, t′) ⫢ r1 and (w, t, t′) ⫢ r2
(w, t, t′) ⫢ r∗ ↔ ∃k ≥ 0, (w, t, t′) ⫢ rk
(w, t, t′) ⫢ ⟨r⟩I ↔ (w, t, t′) ⫢ r and t′ − t ∈ I
(w, t, t′) ⫢ r1 ? r2 ↔ (w, t, t′) ⫢ r2 and ∃t′′ ≤ t, (w, t′′, t) ⫢ r1
(w, t, t′) ⫢ r1 ! r2 ↔ (w, t, t′) ⫢ r1 and ∃t′′ ≥ t′, (w, t′, t′′) ⫢ r2

The last two operations associate a pre-condition (resp. post-condition) to the ex-
pression. We note that with the pre- and post-condition, we can also syntactically define
rise and fall operators by using the rules ↑ p ≡ ¬p ? � ! p and ↓ p ≡ p ? � ! ¬p. Extended
STL specifications require regular expressions to be embedded into STL formulas. We
define two operators, begin match (@(r)) and end match ((r)@) that intuitively project
any signal segment (t, t′) that matches the expression r to its beginning t and its end t′,
respectively. Thus, xSTL simply extends STL with these two operators:

' ∶= p | �(x1,… , xn) | ¬' | '1 ∨ '2 | '1 I'2 | '1 I'2 | @(r) | (r)@

and with the following semantics

(w, t) ⊧ @(r) ↔ ∃t′ ≥ t (w, t, t′) ⫢ r
(w, t) ⊧ (r)@ ↔ ∃t′ ≤ t (w, t′, t) ⫢ r

3 Tool Presentation

The AMT 2.0 tool provides for qualitative and quantitative analysis of simulation/mea-
surement traces. Its input consists of two major ingredients. The first is typically a for-
mula or a collection of formulas in xSTL specifying the desired properties (and later
measurements) of a continuous signal. The second is a finite representation of the con-
tinuous signal. Input signals obtained from simulators or measurement devices are given
as finite sequences of time-stamped values of the form (ti, w[ti]). The tool supports two
commonly-used formats: Value Change Dump (vcd) and Comma Separated Values (csv)
files. To obtain continuous-time signals, values between sampling points are interpolated
inside the tool to yield either piecewise-constant or piecewise-linear signals.

Fig. 1. AMT 2.0 - an overview of the graphical user interface.

The tool can work either interactively via its graphical user interface (GUI) or, alter-
natively, in batch mode when we want to monitor against many signals or incorporate

monitoring in a more sophisticated analysis procedure that may iterate over behavior-
generatingmodels and/or properties in an outer loop. Figure 1 shows themain evaluation
window of the GUI which provides two main functionalities: (1) editing xSTL specifi-
cations; and (2) launching the monitoring procedure by selecting properties and signals
and presenting the outcome graphically. The AMT 2.0 tool is entirely implemented in
Java to facilitate its usage across different platforms and operating systems.

The tool supports three main functionalities: (1) qualitative offline monitoring of
extended STL specifications; (2) localization and explanation of property violations;
and (3) measurements of quantitative features of signals driven by temporal pattern ex-
pressed using TRE. In the remainder of the section we present these functionalities in
more detail.

3.1 Specifications in AMT 2.0

The tool facilitates specification of xSTL properties in several ways. The GUI provides
an xSTL editor, depicted in Figure 2, with syntax highlighting and line numbering. In
addition, the xSTL parser implements a number of features borrowed from program-
ming languages. This includes (1) declaration of variables and constants, (2) parameter-
ized property templates, (3) support for Boolean, real and integer variables and (4) type
checking with extensive error reporting.

Fig. 2. AMT 2.0 - xSTL editor.

3.2 Qualitative Monitoring of xSTL

In this section, we sketch the algorithm for the major functionality of the tool, qualitative
monitoring of xSTL specifications. The procedure is based on two main methods that

we describe in the sequel: the offline marking procedure for STL[19] and the pattern
matching procedure for TRE [22].

The qualitative monitoring procedure for STL is an offline method that works di-
rectly on the input signals. The procedure is recursive on the structure of the specifica-
tion – it propagates the truth values from input signals via sub-formulas up to the main
formula. The algorithm uses the notion of a satisfaction signal – we assign to each sub-
formula of ' a Boolean signalw such thatw [t] = true iff (w, t) ⊧ . For each STL
operator, we define a method that computes its satisfaction signal from the satisfaction
signals of its arguments. For some operators, this computation is trivial. For example,
satisfaction signal w¬' is obtained by flipping the truth values of the satisfaction signal
w'. The computation of satisfaction signals for temporal operators is more involved.We
give an intuition on the computation ofw where =1I ' and refer the reader to [19]
for the technical description of the complete procedure. The computation is based on the
following observation: whenever ' holds throughout an interval J , holds throughout
(J ⊖ I) ∩ T , where J ⊖ I = {t − t′ | t ∈ J and t′ ∈ I} is the Minkowski difference.
Hence, the essence of the procedure is to back-shift (Minkowski difference restricted to
T) all the positive intervals in w' and thus obtain the set of time points where1I '
holds. This method is illustrated in Figure 3.

1[1,2] p

6 8 10 12

p

0 2 4

Fig. 3. Example of satisfaction signal computation for1[1,2] p using back-shifting.

The integration of TRE into the monitoring procedure of xSTL is done in two steps.
First, we define thematch-set(r, w) of a TRE over a signalw as the set of all segments
of w that match r, i.e. (r, w) = {(t, t′) | (w, t, t′) ⫢ r}, and use the algorithm of [22]
to compute the match-set. We then use the match begin (@(r)) and match end ((r)@)
operators to project the match-sets to satisfaction signals that are then directly integrated
into the STL monitoring procedure described above.

The algorithm proposed in [22] computes the set of segments of a signalw that match
a TRE '. Since we are dealing with continuous-time signals, the number of segments
is non-countable and so is potentially the number of matches. The algorithm is based
on the observation that all those segments can be can be embedded in two-dimensional
space, inside the triangle 0 ≤ t ≤ t′ ≤ |w|, where a point (t, t′) represents the segment
starting at t and ending in t′. The matching algorithm uses a symbolic representation of
the matches as a finite union of two-dimensional zones. Zones are special class of convex
polytopes which are defined as the conjunction of inequalities of the form xi ≺ bi and
xi − xj ≺ ci,j , where ≺ ∈ {<,≤}. For instance, the match set (�,w) for the empty
word � is the diagonal zone {(t, t′) ∈ T × T | t = t′}, while the match for a literal p
or ¬p is a disjoint union of triangles touching the diagonal whose number depends on

the number of switching points in wp. The match set of the time restriction operator
is obtained by intersecting the match set with the corresponding diagonal band, hence
(⟨'⟩I , w) = (')∩{(t, t′) | t′−t ∈ I}. The match sets for p and ⟨p⟩[1,2] are depicted
in Figure 4. We point the reader to [22] for a complete description of the procedure.
The satisfaction signals w@(r) and w(r)@ for the match-begin and match-end operators
are computed from the match set of r by projecting every (t, t′) ∈ (r) on t and t′,
respectively.

6 8 10 12

0 2 4 6 8 10 12

p

2 4 6 8 10 12 0 2 4

6 6

(a) (b)

p

0
0

2

4

8

10

12

0

2

4

8

10

12

0 2 4 6 8 10 12

Fig. 4. Example of a match set - (a) p; and (b) ⟨p⟩[1,2].

3.3 Trace Diagnostics for STL

The trace diagnostics procedure implements the algorithm presented in [13]. Given an
STL formula ' and a trace w that violates ', the procedure gives an explanation of the
fault in the form of a temporal implicant, which is a small sub-signal w′ of w which
is sufficient to imply violation. In other words, any possible completion of w′ into a
full signal will violate the property. The diagnostics procedure uses the satisfaction sig-
nals computed by the monitoring algorithm from Section 3.2 to explain the faults. The
method uses the satisfaction explanation operator E (and its dual violation explanation
operator F) that for a given formula ' returns an implicant of ' (respectively of ¬')
which is satisfied by w. The explanation operators are defined inductively on the struc-
ture of the formula ' and on the times t at which explanation of its sub-formulas are
required.

We illustrate the idea behind the procedure with the following example. Consider the
STL specification ' =1[0,1] p, a signal w in which p does not hold during [0, 3) and
then holds during [3, 5). It is clear, for instance, that (w, 0) ⊧̸ ' and (w, 3) ⊧ '. The viola-
tion of' byw at time 0 can be explained by the fact thatw is continuously false through-
out the interval [0, 1]. In other words, we have that F (',w, 0) =

⋀

t∈[0,1](wp[t] = false).
In contrast, the value ofw at any time t ∈ [3, 4] is sufficient to explain the satisfaction of
' by w at time 3. Thus E(',w, 3) could be any (wp[t] = true) such that t ∈ [3, 4]. We
use the notion of a selection function to choose one explanation when there are many
possible ones. The full algorithm is described in [13].

3.4 Specification-driven Measurements

In this section, we present a simple declarative measurement specification language [14]
built on top of TRE. The idea is to require the signal segments over which measurements
should be taken to be those that match some pattern specified by an expression. An ex-
ample of a measurement is the time elapsed between the beginning and end of some
activity, or the total fuel consumption in a segment where the acceleration pedal is con-
tinuously on until the velocity crosses some threshold.

We first recall that the match set of a TRE defines all the trace segments that match
the expression, and the number of those can be uncountably infinite. However if we re-
strict ourselves to patterns that are delimited by instantaneous discrete events, we will
have only finitely many matches. Formally, we use the following sub-class of expres-
sions. An event-bounded TRE (E-TRE) is an expression of the form

r̂ ∶= ↑ p | ↓ p | r̂1 ⋅ r ⋅ r̂2 | r̂1 ∪ r̂2 | r̂1 ∩ r

with p a proposition, and r̂1, r̂2 event-bounded TREs.
Themeasure patterns defining the segments to be measured are of the form � ? ! �,

where is the main pattern, and � and � are, respectively pre- and post-conditions. The
main pattern specifies the portion of the signal over which the measure is taken. To
guarantee a finite number of matching segments, is restricted to be an E-TRE while �
and �, which can be used to define additional constraints, are TREs.

Given a measure pattern ' and a signal w, we first compute all the segments of
w that match '. We then apply a measuring operator that collects specific signal val-
ues over the matched segments. A measure is written with the syntax op(') with op ∈
{time, valuex, duration, infx, supx, integralx, averagex}. We finally aggregate the spe-
cific measures and provide to the user the minimum, maximum and average measured
value, as well as a histogram that summarizes the measurements.

We illustrate specification-driven measurement with an example from the DSI3 au-
tomotive communication protocol [16]. The micro-controller and the sensors that use
the protocol, communicate by sending analog pulses during the protocol initialization
phase. The standard describes the acceptable shapes and duration of such pulses. Fig-
ure 5 depicts the specification of a discovery response pulse from the DSI3 standard. In
particular, the standard defines the relevant thresholds (2IResp and IResp) which are
used to describe the shape, as well as the acceptable duration of the pulse’s ramp (t1)
and its total duration (t2).

To define the pulse pattern we first define the following predicates:

iℎ ≡ i ≥ 2IResp ib ≡ IResp ≤ i < 2IResp il ≡ i < IResp

and then let
' = il ? ↑(ib) ⋅ ib ⋅ iℎ ⋅ ib ⋅ ↓(ib) ! il.

We finally apply the measure operation duration(') to extract the duration of the seg-
ments that match the pulse pattern.

t2

i

2IResp

IResp

t1

Fig. 5. Discovery response pulse from DSI3.

4 Examples

In this section, we introduce two running examples that we use to illustrate the features
and the functionalities of AMT 2.0. The first example is concerned with a mixed-signal
bounded stabilization property and is used to illustrate the qualitative monitoring and
trace diagnostics functionalities. The second example demonstrates the measurement
functionality as applied to jitter in a digital clock.

4.1 Mixed-Signal Bounded Stabilization

Informal Requirements This requirement states that after every rising edge of the
Boolean trigger, the usually-stable analog signal var is allowed to oscillate under the
following conditions:

1. var must always remain below 5V ; and
2. varmust within 600s go below 0.2V , and continuously remain under that threshold

for at least 600s.

Simulation Traces We evaluate this requirement on 5 different simulation traces. Fig-
ure 6 depicts the Boolean trigger signal, as well as the 5 traces named var0 to var4.
We can already reason informally about the satisfaction of the bounded stabilization
property by these traces:

Fig. 6. Bounded stabilization - input signals.

1. Trace var0 violates the specification because the signal never stabilizes, i.e. it con-
tinues oscillating until the end of simulation;

2. Trace var1 satisfies the specification - the signal always remains smaller then 5V ,
and it goes below 0.2V within 600s, continuously remaining below that threshold
until the end of the simulation;

3. Trace var2 violates the specification because the signal exceeds 5V ;
4. Trace var3 violates the specification because the signal does not stabilize below

0.2V within the specified period; and
5. Trace var4 violates the specification because of the 3 glitches that occur towards

the end of the simulation.

Formal Specification in xSTL To define the property we first declare the Boolean vari-
able trigger, as well as the real variables var0 to var4. We also declare two constants
vh and vl, representing the 5V and 0.2V thresholds, respectively. We note that we are
evaluating the same formula over different signals. Hence, we define a generic property
template stab for the bounded stabilization formula, which is the conjunction of condi-
tions 1) and 2) of the informal requirements. The first conjunct says that the real-valued
signal must be smaller than 5V . The second conjunct is a conditional formula that uses
logical implication. It says that whenever the trigger signal is on its rising edge, the x
signal must go below 0.2V within 600s and continuously remain below that threshold
for at least 300s. Then each assertion is an instantiation of the template with one of the
signals var0 to var4.

1 bool trigger;

2 real vara;

3 ...

4 real vare;

5 const real vh = 5;

6 const real vl = 0.2;

7

8 template bool stabilization (bool tg, real x, real vhigh ,

real vlow) {

9 bool result = ((x <= vhigh) and (rise(tg) -> (eventually

[0:600] always [0:300] x <= vlow)));

10 return result;

11 }

12

13 assertion one:

14 always(stabilization(trigger , vara , vh , vl));

15 ...

16 assertion five:

17 always(stabilization(trigger , vare , vh , vl));

Qualitative Monitoring of the Specification We illustrate the qualitative monitoring
of the property applied to the traces as done using the GUI of the tool. In the evaluation
configuration window, we first specify the xSTL specification, the simulation traces and
an optional alias file. In addition to setting up the inputs, we also select the Float repre-
sentation of the real numbers, the Linear interpolation and the Single Explanation

feature of the diagnostics module.
After evaluating the specification on the traces, we can visually depict the results, as

shown in Figure 1. The nodes in the xSTL parse tree view are expandable via a double
click. By expanding the assertions node of the specification, we can see that assertion
two is satisfied, while assertions one, three, four and five are violated. We note that we
can visualize the satisfaction signals for any sub-property of the specification.

Fault Explanation The fault explanation is given in the form of temporal implicants
which are (small) sub-segments of the input signals which are sufficient to imply the
property violation. Figure 7 illustrates the visual output of the diagnostics procedure
in AMT 2.0 for the bounded stabilization specification. The first two figures show the
trace diagnostics report for the third assertion. We can see that the trigger signal does
not contribute to the fault, but var3 does at a single point in time within the interval
[100, 150]. At that time, var3 is greater than the invariant threshold 5V which explains
the property violation. The last two figures show that same report, but for the fifth as-
sertion. In this case, the fault is explained by the fact that signal trigger gets high at time
100 and by the values of signal var4 at times 350, 600 and 750. We can see that the last
two times coincide with the glitches, thus witnessing that var4 never continuously holds
below 0.2V for at least 300 time units.

We note that the tool computes the fault explanations in a hierarchical manner, fol-
lowing the parse tree of the formula. This additional and complementary information

Fig. 7. Bounded stabilization - fault explanation.

can be quite useful in understanding the fault. We finally note that the trace diagnostics
can be made hierarchic.

4.2 Digital Clock Jitter

Informal Requirements Given a continuous-time Boolean-valued signal clock, a clock
period is defined as a segment that starts with the rising edge of the clock and ends with
its consecutive rising edge. The measurement specification is to measure the duration of
all the clock periods matched within the clock signal in order to assess the clock jitter..

Simulation Trace We apply the specifications to a Boolean clock signal, see Figure 8.

Formal Specification in xSTL We now formalize the measurement specification for
the digital clock jitter analysis in xSTL. We first declare the Boolean variable clock,
as well as its negation nclock. We then specify the pattern clock_period that consists

Fig. 8. Digital clock jitter - a segment of the input signal.

of concatenations that starts with the rising edge of clock (startclock), followed by an
interval of positive duration where clock holds, followed by another interval of positive
duration where nclock holds, and ending with the next rising edge of clock. Finally, we
declare the actual measurement to be taken as duration(clock_period)which extracts the
durations of all signal segments that match the clock_pattern pattern.

1 bool clock;

2 bool nclock = not clock;

3

4

5 measurement jitter_clock_period {

6 pattern clock_period = start(clock):clock:nclock:start(

clock);

7 measure duration(clock_period);

8 }

9

10 measurement jitter_clock_period_c {

11 pattern clock_period_c = start(clock):{ clock:nclock

}[19000:21000]: start(clock);

12 measure duration(clock_period_c);

13 }

Pattern-driven Measurements The visualization of the measurement specification
consists of a histogram depicting the distribution of the measures taken over signal seg-
ments that match the pattern, the total number of matched segments, as well as the min-
imum, maximum and average value of the measures. The visual summary of the clock
jitter measurement is shown in Figure 9.

5 Related Work

Breach [11] is a MATLAB/Simulink toolbox that enables various types of STL spec-
ification analysis. In particular, Breach supports falsification-based testing, parameter
synthesis and requirement mining of STL properties. S-TaLiRo [3] is another Simulink/-
MATLAB toolbox for different robustness analysis of MTL specifications. It provides
support for falsification-based testing, parameter mining, runtime verification, confor-
mance testing, computing the worst expected robustness for stochastic systems and de-

Fig. 9. Digital clock jitter - measurements.

bugging of formal requirements. The ViSpec [15] tool, associated with S-TaLiRo, al-
lows visual specification of MTL requirements. BIOCHAM [10] is a tool for inferring
unknown (biological) model parameters from temporal logic constraints. The authors
in [9] extend STL with freeze quantifiers that allow them to express oscillatory proper-
ties. Similar oscillatory properties of the heart behavior are studied using quantitative
regular expressions (QRE) in [1].

Montre [21] is a prototype tool for TRE pattern matching. It provides support for
both offline and online matching. AMT 2.0 implements the offline matching algorithms
used by Montre and adds a specification measurement language on top of it. Montre
does not provide support for STL, monitoring and trace diagnostics.

The combination of STL and TRE was inspired by the Property Specification Lan-
guage (PSL) [12] and SystemVerilog Assertions (SVA) [23] standards used in the digital
hardware verification. Both PSL and SVA use the suffix implication operator to combine
temporal logic with regular expressions. In contrast, we definematch begin and end oper-
ators that give us more freedom to decide whether the begin or the end of an expression
match is relevant for the property. The only other work that combines temporal logic
and the regular expressions in the context of continuous-time applications is presented
in [8], where the authors propose the metric dynamic logic as the specification language
for reasoning about time-event sequences.

6 Conclusion

We introduced in this paper the AMT 2.0 tool for qualitative and quantitative analysis
of traces coming from cyber-physical systems applications. The tool uses an expressive
specification language based on a combination of STL and TRE and admits qualitative
monitoring, trace diagnostics and property-driven measurements as its main functional-
ities. The development of the tool is a continuous work in progress and there is a number
of features which are planned to be developed in the near future, in particular solving
the inverse problem of finding parameters in a formula template the lead to satisfaction
by a given signal or a set of signals [6].

Acknowledgments This work was partially supported by project ANR-13-CESA-0008 CAD-
MIDIA and the Productive 4.0 project (ECSEL 737459). The ECSEL Joint Undertaking receives
support from the European Union’s Horizon 2020 research and innovation programme and Aus-
tria, Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Bel-
gium, France, Netherlands, United Kingdom, Slovakia, Norway.

References

1. Houssam Abbas, Alena Rodionova, Ezio Bartocci, Scott A. Smolka, and Radu Grosu. Quan-
titative regular expressions for arrhythmia detection algorithms. In Computational Meth-
ods in Systems Biology - 15th International Conference, CMSB 2017, Darmstadt, Germany,
September 27-29, 2017, Proceedings, pages 23–39, 2017.

2. Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.
J. ACM, 43(1):116–146, 1996.

3. Yashwanth Annpureddy, Che Liu, Georgios E. Fainekos, and Sriram Sankaranarayanan. S-
taliro: A tool for temporal logic falsification for hybrid systems. In Tools and Algorithms
for the Construction and Analysis of Systems - 17th International Conference, TACAS 2011,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, pages 254–257, 2011.

4. Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for timed automata. In Logic
in Computer Science (LICS), pages 160–171, 1997.

5. Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. Journal of ACM,
49(2):172–206, 2002.

6. EugeneAsarin, Alexandre Donzé, OdedMaler, andDejanNickovic. Parametric identification
of temporal properties. In Runtime Verification - Second International Conference, RV 2011,
San Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers, pages 147–160,
2011.

7. Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded Maler,
Dejan Nickovic, and Sriram Sankaranarayanan. Specification-based monitoring of cyber-
physical systems: A survey on theory, tools and applications. In The Handbook of Runtime
Verification. 2018.

8. DavidA. Basin, SrdanKrstic, andDmitriy Traytel. Almost event-rate independentmonitoring
of metric dynamic logic. In Runtime Verification - 17th International Conference, RV 2017,
Seattle, WA, USA, September 13-16, 2017, Proceedings, pages 85–102, 2017.

9. Lubos Brim, Petr Dluhos, David Safránek, and Tomas Vejpustek. STL∗: Extending Signal
Temporal Logic with signal-value freezing operator. Inf. Comput., 236:52–67, 2014.

10. Laurence Calzone, François Fages, and Sylvain Soliman. BIOCHAM: an environment
for modeling biological systems and formalizing experimental knowledge. Bioinformatics,
22(14):1805–1807, 2006.

11. Alexandre Donzé. Breach, A toolbox for verification and parameter synthesis of hybrid sys-
tems. InComputer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh,
UK, July 15-19, 2010. Proceedings, pages 167–170, 2010.

12. Cindy Eisner and Dana Fisman. A practical introduction to PSL. Springer, 2006.
13. Thomas Ferrère, Oded Maler, and Dejan Nickovic. Trace diagnostics using temporal im-

plicants. In Automated Technology for Verification and Analysis - 13th International Sym-
posium, ATVA 2015, Shanghai, China, October 12-15, 2015, Proceedings, pages 241–258,
2015.

14. Thomas Ferrère, Oded Maler, Dejan Nickovic, and Dogan Ulus. Measuring with timed pat-
terns. In Computer Aided Verification - 27th International Conference, CAV 2015, San Fran-
cisco, CA, USA, July 18-24, 2015, Proceedings, Part II, pages 322–337, 2015.

15. Bardh Hoxha, Hoang Bach, Houssam Abbas, Adel Dokhanci, Yoshihiro Kobayashi, and
Georgios Fainekos. Towards formal specification visualization for testing and monitoring
of cyber-physical systems. In International Workshop on Design and Implementation of For-
mal Tools and Systems, DIFTS’14, 2014.

16. Distributed System Interface. DSI3 Bus Standard. DSI Consortium.

17. Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems, 2(4):255–299, 1990.

18. Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, Joint Inter-
national Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS 2004
and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble,
France, September 22-24, 2004, Proceedings, pages 152–166, 2004.

19. Oded Maler and Dejan Nickovic. Monitoring properties of analog and mixed-signal circuits.
STTT, 15(3):247–268, 2013.

20. DejanNickovic andOdedMaler. AMT:A property-basedmonitoring tool for analog systems.
InFormalModeling and Analysis of Timed Systems, 5th International Conference, FORMATS
2007, Salzburg, Austria, October 3-5, 2007, Proceedings, pages 304–319, 2007.

21. Dogan Ulus. Montre: A tool for monitoring timed regular expressions. In Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I, pages 329–335, 2017.

22. Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Timed pattern matching. In
Formal Modeling and Analysis of Timed Systems (FORMATS), pages 222–236, 2014.

23. Srikanth Vijayaraghavan and Meyyappan Ramanathan. A practical guide for SystemVerilog
assertions. Springer, 2006.

	AMT 2.0: Qualitative and Quantitative Trace Analysis with Extended Signal Temporal Logic

