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Abstract. In this paper we describe AMT, a tool for monitoring temporal prop-
erties of continuous signals. We first introduceL&sL, a specification for-
malism based on the industrial standard language &hd the real-time tem-
poral logic MITL, extended with constructs that allow describing behaviors of
real-valued variables. The tool automatically builds property obsefx@ms an
STL/PsL specification and checks, in affline or incrementalfashion, whether
simulation traces satisfy the property. The AMT tool is validated throughshFla
memory case-study.

1 Introduction

The algorithmic verification field has been centered arohedecision procedures for
model-checking temporal logic formulae. Temporal logicH8%] is a rigorous speci-
fication formalism used to describe desired behaviors ofjls¢em. A number of ef-
ficient algorithms for translating temporal logic formuiago corresponding automata
have been developed [VW86,SB00,GPVW95,G0O01], resultindpénsuccess of log-
ics such as tL and CrL and their common integration into main verification tools.
The temporal logic-based formalisms were adopted by théwee industry with the
standard BL [HFEOQ4] specification language.

In order to reason abouimed systems, a number of real-time formalisms have
been proposed, either as extensions of temporal logias (Moy90],MiTL [AFH96],
TcTL [Y97]) or regular expressiongifhed regular expressions [ACM02]). However,
unlike in the untimed case, there is no simple corresporalbatween these logics and
timed automata [AD94] used in the timed verification tools.

The verification in thecontinuousdomain was made possible with the advent of
hybrid automatgMMP92] as a model for describing systems that have contisuty-
namics with switches, and the algorithms for exploring ttstate-space. Although a
lot of progress has been done recently [AD6], the scalability still remains a ma-
jor issue for the exhaustive verification of hybrid systethse to the explosion of the
state space. Moreover, property-based verification ofilydystems is only at its be-
ginning [FGPO06].

Hence, the preferred validation method for continuousesgstremains simula-
tion/testing. However, it has been noted that the spedificatlement of verification
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can be exported to the simulation through property monitohe essence of this ap-
proach is the automatic construction of an observer fronfdhaula in the form of a
program that can be interfaced with the simulator and atertuser if the property is
violated by a simulation trace. This process is much moriabid and efficient than
visual (graphical or textual) inspection of simulationctea, or manual construction of
property monitors.

This procedure is calldihtweight verificationwhere the property monitor checks
whether a finite set of traces satisfy the property spedidinain the framework of soft-
wareruntime verificationtemporal logic has been used as the specification langnage i
a number of monitoring tools, including Temporal Rover (TR)u00], FoCs [ABG"00],
Java PathExplorer (JPaX) [HR0O1] and MaCS [KL®]. The extensions of temporal
logics that deal with richer properties were also consid@manonitoring tools such as
LOLA [DSS*05].

In [MNO4], we have introduced 8., a language for relating temporal behaviour of
continuous signals via thegtatic abstractionsnd a procedure for offline monitoring
of specifications written in 8 against continuous input traces. This paper extends the
StL logic with ananalog layetin which one can apply operations on continuous signals
directly, as well as thénitary interpretationof the temporal operators in the spirit of
PsL. The resulting logic is called1&/PsL. The original offline monitoring algorithm is
extended to amcremental(semi-online) version. The main contribution of this paper
is the implementation of a stand-alone Analog Monitoringl{@& MT) which integrates
results presented in [MNO4] and this paper. Finally, a ctady on the behaviour of a
FLASH memory cell is conducted in order to validate the penfance of the tool.

The rest of the document is organized as follows: in Sectioweintroduce the
STL/PsL logic along with its semantic domain. Section 3 discusse®ffiine property
checking algorithm from [MNO4] and presents its increméaxéension. The AT tool
is presented in Section 4 and Section 5 describes the Flasiorpease-study. Finally,
in Section 6 we conclude with a discussion on the achievesraend future work.

2 Signals and Their Temporal Logic

The specification of properties of continuous signals neguan adaptation of the se-
mantic domain and the underlying logic.

2.1 Signals

Let the time domairT be the seR>, of non-negative real numbers. A finite length
signal¢ over an abstract domain is a partial functior¢ : T — ID whose domain of
definition isI = [0, r),r € Qx(. We say that the length of the sigrgais , and denote
this fact by|¢| = r. We use the notatiog[t] = L whent > [£]. In this paper, we
restrict our attention to two particular types of signalspian signalg, with D = B,
and continuous signafs, with D = R.

We first present some signal properties that are indeperdéné signal domain.
Therestrictionof a signal¢ to lengthd is defined as

¢ = (€)qiff &[] = {f[t] ift <d

1 otherwise



The concatenatiort = ¢&; - & of two signalsé; and¢, defined over the intervals
[0,71) and[0, o) is a signal ovef0,r; + r7) defined as

f[t] o fl[t] ift<nr
"\ &[t — 1] otherwise
The d-suffixof a signal¢ is the signal’ = d\¢ obtained from¢ by removing the
prefix (€), from &, that is,

&'t] = €[t + d] for everyt € [0, |£] — d)
TheMinkowski sunanddifferenceof two setsP; and P, are defined as

Pl@PQZ{l'l-f—(L'gil'lGPl,ZL'QGPQ}
Pl@PQZ{xl—.TQZ$1€P17LL'2€P2}.

Signals can also be combined and separated using the slanmaations opairing
andprojectiondefined as

&1 || o = 1o i VE E1ot] = (&u[t], E2]t])
& = m(&2) & = ma(&i2)

In particular,m, (&) will denote the projection of the signélon the dimension with do-
mainB that corresponds to the propositipifand likewiser(£) denotes projection of
the signal on the dimension with domaiR corresponding to the continuous variable
s).

Non-Zeno Boolean signals of finite length admit a finite repraation calleéhter-
val coveringdefined as a sequence of intervals I - ... - I such that the value of
& is constant in every intervat; (I;) = —&,(I;41) foralli € [0,k — 1], UF_ L = T
andl; N I; = ( for everyi # j. An interval [ is said to bepositiveif (1) = T and
negativeotherwise. An interval covering is said to beconsistentwith a signalg, if
&lt] = &[] for everyt,t’ belonging to the same interva). We denote byZ,, the
minimalinterval covering consistent with a finite variability seji.

Unlike Boolean signals, continuous signals do not admiexerct finite represen-
tation. However, numerical simulators usually producnite collection of sampling
pairs(t, £,[t]) with ¢ ranging over some interv@), r) C T. This finite representation is
in contrast to continuous signals defineddesal mathematical objectsonsisting of an
uncountable number of paifs &, [t]) for all ¢ € [0, r). We adopt the approach of repre-
senting continuous signals of finite length by using a finéiea sampling points. The
signal value at the missing time instants (¢,,¢;+1) corresponds to the interpolation
between sample points;, {,[t;]) and(t;11, {altiv1])-

2.2 STL/PsL Specification Language

In this section we describe ther§PsL logic, as an extension of ML [AFH96] and
StL [MNO4] logics. We use a layered approach in the fashion ®f PHFE04], with
the analog layerallowing to reason about continuous signals andtémaporal layer
relating the temporal behavior of different input tracelse Tcommunication” between



the two layers is done viatatic abstractionghat partition the continuous state space
according to the satisfaction of some inequality constsain the continuous variables.

Since SL/PsL is targeted for specifying properties to be usedifgintweight veri-
fication overfinite traces, we adopt the finitary interpretation used #,Ry defining
strongandweakforms of the temporal operators. The strong form of an opena-
quires the terminating condition to occur before the enchefdignal, while the weak
form makes no such requirements. lalHor exampleunti | ! andunti | represent
the strong and the weak forms of the until operator, resyelgti

Theanalog layerof STL/PsL is defined by the following grammar:

¢ == s[shift(o,k) |1 xd2[dxc|abs(e)

wheres belongs to a set = {s1, s2, ..., s, } Of continuous variables; € {+, -, * },
¢ € Qandk € Q™. Note that the analog operators defined above are the ormesityr
supported by the AT tool, but can be easily extended to new ones.

The semantics of the analog layer of .3PsL is defined as an application of the
analog operators to the input sigigal

s[t] = ms(&)[t]
shi ft (¢,k)[t] = o[t + K]
(p1 % P2)[t] :¢1H*¢2H
(pxc)lt] :¢[¢] ol >

i
abs (¢)[t] - {— otherW|se

Thetemporal layerof STL/PsL is defined as follows:

p:==p|do c|not ¢|p or po|eventual ly! ¢]|
eventual ly![a:b] ¢|eventual ly[a:b] ¢|

pruntil! o |@puntil![a:b] ¢

wherep belongs to a seP = {p1, po, ..., p,} Of propositional variables, b, ¢ € Q
ando € {>, >=, <, <=}. Note that we include explicitly in the syntaxeakandstrong
versions ofeventuallyoperators.

The satisfaction relatioft, t) = ¢, indicating that signaf satisfiesp at timet is
defined inductively as follows:

! Untimed eventually exists only in its strong form. Weak eventually is trivially 8atdy any
finite trace



(&1 Ep iff 7, ([t =T

(& t)Eg¢oc iff ¢[t]oc

(€.t) Enot ¢ iff (¢,) F o

(§&1) Epr0r oo iff (§,8) = w101 (€,1) = w2

(&,t) Eeventual ly! ¢ iff 3" >tst ¢ <|fland (&) E ¢

(&,t) =eventual lyl[a:b] ¢iff 3t et ® [a,b] st ¢/ < |l and (§,t) = ¢
(&,t) Eeventual ly[a:b] ¢ iff 3’ et @ [a,b] st t' > || or () =@
(& t)Eeruntil! oy iff 3¢’ > ¢ stt’ < [¢] and(,t) = 2 and

vt" e [t,t'] (§:t") E ¢
&) Eeruntil![a:ib] oo iff 3’ €t @ [a,b] stt’ < [E|and(E, ) | ¢2 and
vt" e [t,t'] (§,1") E w1

An STL/PsL specificationppop is an SL/PsL temporal formula. The signdlsat-
isfies the specificatiopyop, denoted by, = pprop, iff (£,0) = ¢prop- Note that our
definition of the semantics of thentil and timeduntil operators differs slightly from
their conventional definition since it requires a time instavhere botH¢, ¢) = s and
(&,t) | ¢1. From the basic 8./PsL operators, one can define standard Boolean and
temporal operators, namedywaysandweak unti] as well asveakandstrongforms of
timedalwaysoperators.

A large part of analog design is based on comparing wavef¢sigsals) with some
reference signal that specify a desired behavior. Thesensoare formalized using a
distance function (metric) which quantifies numericallg tesemblance of two signals.
Mathematically speaking, a metric space is a §ait d) such thatX is the domain
andd : X x X — Ry is a function satisfyingd(z,z) = 0; d(z,y) = d(y,x)
andd(x,y) + d(y,z) > d(x,z). There are many ways to define distance functions
on waveforms, by taking the maximum of the pointwise distaaicevery time, sum-
ming/integrating over the pointwise distance, etc. Onaghsa distancel is defined,
it can be used to define distance-based logical operatorsedbtmd (¢, &) < ¢ for
some positive constamt Below we define three such operators, the first is based on
the maximal pointwise distance while the two others aredasethe metric defined in
[KCO6a] which “tolerates” large pointwise deviations betm the two signals if they
last for a time shorter thain and occur at most once evefy t units. As one can see
these operators constitute a syntactic sugar as they capbessed in $L/PSL.

di stance(¢q, ¢2,C) =abs(¢1- ¢2) <= ¢

di stance(¢1,¢2,C,t,T) =abs(¢1-¢p2) > ¢ -> eventual | y! [ <=t]
al ways[ <=T-t] (abs (¢1- ¢2) <= c)

di stance(y1,p2,t,T) = (p1 XOr ¢3)-> eventual | y![<=t]
al ways[ <=T-t] (p1iff @)

3 Checking STL/PsL Properties

In this section we describe two algorithms for checking &sL properties. Both al-
gorithms are based on a process that weroaltking namely determining truth value



of each subformula at every time instaniThe marking is a doubly-recursive process
going from the atomic propositions upward to the top formalad, due to the nature
of future temporal logic, from truth values at timéo truth values at time¢’ < ¢. The
marking process terminates when the value of the top foreduiane0 is determined.

Offline marking: This procedure assumes that the multi-dimensional injuiedt is
already available, and the marking procedure is appliebee@ntire signal, propa-
gating backward at once the values of subformulae, up tarobtathe truth value
of the main formula.

Incremental marking: The incremental procedure updates the marking each time a
new segment of the input signal is observed. It is useful teat&g early violation
of an SrL/PsL property and can be applied in parallel with the simulatiorcpss.

It can also be used for monitoring real, rather than simdlatestems.

The offline marking procedure takes as arguments a temporaPSL specification
wprop @and the input signaf that we treat as a global data structure and do not pass it
explicitly as an argument to the procedure. The algorithmpmates, from the bottom-
up, a signaly, (§) for each subformula of @prop.z If ¢ is atemporal $L/PsL formula
@, X, (&) is called thesatisfaction signalThis signal satisfieg,, (§)[t] = 1iff (¢,¢) =
. If ¢ is a formulag from the analog layer of 8./PsL, x4 (€) is the result of applying
the operatop to the (continuous) signdl Whenever the identity of is clear from the
context, we will use the shorthand notatigp.

The algorithm is decomposed into two methodsFONE-T and CFFLINE-A as
shown in Algorithm 1, computing thg, corresponding to the formula from the
temporal and the analog layer of SPsL, respectively. The top level formulayqp is
monitored by invoking ®@FLINE-T (¢prop)-

Algorithm 1: OFFLINE-T and QFFLINE-A

input : STL/PsL Temporal Formulg and signak input : STL/PsL Analog Formulap and signak
switch ¢ do switch ¢ do
casep cases
‘ X = 77;0(5); ‘ Xo¢p = 7"5(5);
end end
casegp o C caseopP; (¢1)
OFFLINE-A (¢); OFFLINE-A (¢1);
X := COMBINE(0C, X¢); ‘ X¢ := COMBINE(OP1, X ¢, );
end end
caseor; (¢1) caseoPs (¢1, p2)
OFFLINE-T (1); OFFLINE-A(¢1, ¢2);
X := COMBINE(OP1, X1 )); ‘ X¢ := COMBINE(OP2, X1 » X5 )
end end
caseoP; (p1, ¢2) end

OFFLINE-T (1, ¢2);
X 1= COMBINE(OP2, X1 s Xip3))i

end
end

2 The notationy is used whenever it is not important whetheis a temporal or an analog layer
formula



Most of the work is done in the @vBINE procedure which takes one or two signals

(possibly of different length) and computes from them a nigiwal based on the specific
operation. The approach is based on [MN04] with some extessio deal with both
strong and weak operators. We illustrate the procedurevendgresentative operations:

X

X

Fig.

:= COMBINE (Or , x4, , X, ) For the disjunction we first construct a refined inter-
val coveringZ = {I1, ..., I} for x,,||xe, SO that the mutual values of both sig-
nals become uniform in every interval. Then we compute tegidction interval-
wise, thatisp(1;) = ¢1(1;) V p2(1;). Finally we merge adjacent intervals having
the same Boolean value to obtain the minimal interval coegTi, .

:= COoMBINE (eventual | y![a, b] ,x,,) For every positive interval € .,

we compute itdack shifting/ © [a, ) N T and insert it toy,,. Overlapping positive
intervals iny,, are merged to obtain a minimal consistent interval covetimghe
process, all the negative intervals shorter thana disappeat.

:= COMBINE (%, x¢,, X,) FOr the pointwise arithmetic operations on continuous
signalsx4, andy,,, we first take the union of their sampling points and extend
each signal to the new points by interpolation. The signal.s, is computed by
applying the pointwise arithmetic operation to each pagafesponding sampling
points. An example of the arithmetic operation is shown guiFé 1.

1. Combininggp = ¢1 — ¢2: (a) Input signalsys, andyxe, sampled at different rates; (b)

Refinement ofy4, andye, and computation of 4, —s2

Incremental marking is performed using a kind of piecevaséine procedure in-

voked each time a new segment{pidenoted by, is observed. For each subformula
1) the algorithm stores its already-computed associatedakartitioned into a con-
catenation of two signalg,;, - A, with x,, consisting of values already propagated to

3 Another way to see it is as shifting timegativeintervals byb, a].



the super-formula ofy, andA,,, consisting of values that have already been computed
but which have not yet propagated to the super-formula angithinfluence it.

Initially all signals are empty. Each time a new segmeétis read, a recursive
procedure similar to the offline one is invoked, which updaeeryy,, and A, from
the bottom up. The difference with respect to the offline atgm is that only segments
of the signal that has not been propagated upwards pattcipahe update of their
super-formulae. This may result in a considerable savingnithe signal is very long.

Xq Xq

Xpo Xpo

(@) (b)

Fig. 2. A step in an incremental update: (a) A new segmeptfor ¢ is computed fromA,,,
and Ay, ; (b) ay is appended tad,, and the endpoints of,, andy., are shifted forward
accordingly.

As an illustration considesy = OP(¢1, 1) and the corresponding truth signals of
Figure 2-(a). Before the update we always have - Ay| = |xy, | = |xu.|: the parts
Ay, and Ay, that may still affecty are those that start at the point from which the
value ofy; is still unknown. We apply OMBINE procedure omd,, andA,, to obtain
a new (possibly empty) segmemy, of A,,. This segment is appended 45, in order
to be propagated upwards, but before that we need to shifidtoerline betweery,;,
and Ay, (as well as betweeg,,, andAy,) in order to reflect the update ai,,. The
procedure is detailed in Algorithm 2.

Note that ifx ., becomes determined for tintethe incremental procedure can be
stopped. The finitary interpretation of temporal operatenssed only ify,, ., has not
been determined after the end of simulation.

4 Overview of the AMT tool

AMT is a stand-alone tool with a graphical user interface whicpléments the above
algorithms with respect to sampled continuous signal spAMT was written in C++
for GNU/Debian Linux x86 machines. The user interface iseldasn the library @,
while QwT® was used for visualizing plots.

4 http://www.trolltech.com
5 http:/qwt.sourceforge.net



Algorithm 2: INCREMENTAL-T and INCREMENTAL-A

input : STL/PsL Temporal Formulap and increment input : STL/PsL Analog Formulap and incrementA ¢
Ag switch ¢ do
switch ¢ do cases
casep | Ay = Ay ms(Ag);
| Ay i=A,  mp(Ae); end
end caseopP; (¢1)
casep o C INCREMENTAL-A (¢1);
INCREMENTAL-A (¢); ag 1= COMBINE(OPL, X ¢, );
a, 1= COMBINE(oC, X4); d:=|agl;
d:=|a,l; Ay = Ay - ag;
o i=Ap - ay; Xo1 = Xop - (Qgq)ds
X¢ = Xo ' (Aep)ds Agy i=d\Ag, ;
A¢ = d\A¢ ) end
end caseoPs (¢1, ¢2)
caseor; (¢1) INCREMENTAL-A (¢1);
INCREMENTAL-T (¢1); INCREMENTAL-A (¢2);
a, := COMBINE(OP1, X¢, )); ag := COMBINE(OP2, X¢, » Xg5);
d:= o] d:=|agl;
Ay = Ay -y Ay = Ay - ay
Xo1 1= Xoy - (Dep)a Xé1 = Xoy - (Dgy)d
Apy i=d\Ay, Agy = d\Ag,
end Xy 1= Xeo * (Dog)as
caseoP: (¢1, ¢2) by 1= d\Agy ;
INCREMENTAL-T (1, ¢2); end
g = COMBINE(OP2, X 15 Xip5)): end
d:=|a,l;
Ay, =4y ag;
Xe1 = X1 " {Dei)a
Ay = d\Agy
Xeo 1= Xeg - (Do)
Aum = d\A¢2
end
end

The main window of the application is partitioned into fivarfres that allow the
user to manage 1% /PsL properties and input signals, evaluate the correctnedseof t
simulation traces with respect to a specification and finaglypalize the results. The
property edit frame contains a text editor for writing, importing and expay StL/PsL
specifications, which are then translated into an intera&h dtructure based on the
parse-tree of the formula stored in theperty list frame. An SL/PsL specification
is imported into thgroperty evaluation frame for its monitoring with respect to a set
of input simulation traces, in eith@ffline or incrementalmodes. The static import of
the input traces is done via tisggnal list frame. The imported input signals, as well as
signals associated to the subformulae of a specificatiorbearisualized by the user
from thesignal plotsframe. A screenshot of the main window is shown in Figure 3.

4.1 Property Management

The specifications in MT are written in a simple editor with syntax highlighting for
the extended 8./PsL language described below. AmTS/PsL specification is then
transformed into a structure adapted for the monitoringppse, following the parse-

tree of the formula. The user can hold more than one spedific#at is ready for
evaluation in the property list frame.
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Fig. 3. AMT Main Window

Property Format AMT tool extends the 8./PsL language described in Section 2.2
with additional constructs that simplify the process ofgady specification. Each top-
level STL/PsL property is declared as assertion and a number of assertions can be
grouped into a single logical unit in order to monitor thergdther at once. We also
add a definition directive which allows the user to declarerenfila and give it a name,
and then refer to it as a variable within the assertions. kKteneled SL/PsL is defined
with the following production rules

stl_psl _prop : ==
vprop NAME {
{ define_directive } { assert_directive }

}

define_directive : ==
define b: NAME : = stl_psl_property
| define a:NAME : = anal og_expression

assert _directive : ==
NAME assert : stl_psl_property

wherest | _psl _property andanal og_expr essi on correspond tgp and¢ from
Section 2.2, respectively.



Property Evaluation The correctness of anT&/PsL specification with respect to
input traces is monitored through the property evaluatiamg. The frame shows the
set of assertions in a tree view, following the parse stnectd the formula. The user
can choose betweafflineandincrementalevaluation of the specification.

In the offline case, the input signals are fetched from theadiist frame and the
assertions are checked with respect to them. If one or mgrelsi are missing, the
monitoring procedure still tries to evaluate the propebtyt without guaranteeing a
conclusive result.

For the incremental procedureMA acts as a server that waits for a connection from
a simulator. Once the connection is established, the storugends input segments
incrementally. The monitor alternates between receptionew input segments and
incremental evaluation of the assertions. The user cangroefthetimeoutvalue that
defines the period between two consecutive evaluationsetinden two such periods,
the monitor accumulates input received from the simul&tbere are three manners to
end the incremental monitoring procedure: 1) All assegibacome determined and
AMT stops the evaluation and closes the connection with thelaior2) The special
termination packet is received from the simulator and 3) Uiser explicitly stops the
procedure via the GUI.

AMT shows visually the evaluation result of an assertion, cingos different color
scheme forundeterminegdcorrect and incorrect assertions. Each subformula of the
specification has an associated signal with it, which canisealized within the signal
plots frame. The visualization of the associated signatsheaused for understanding
why an assertion holds/fails. During the incremental estidun, all the signals within
the signal plots frame are updated in real-time as new seavdt computed. The user
can switch off the accumulation of intermediate resultdfetter memory performance,
thus discarding signals as soon as they are not needed amyandhe evaluation of
super-formulae. In that case, the only output of the todiésfinal answer.

4.2 Signal Management

The signals in AMT can be either continuous or Boolean. Signals are input sréw
can be imported into the tool in an offline or incremental fashBut signals are also
associated to each subformula of an #°sL specification. The user can visualize them
from the signal plots frame.

Offline Signal Input Signals can be statically loaded from the signal list frafiveo
file formats are currently supported bywA:

out The output format of the Nanosim simulations. Tduerentandvoltagesignals are
loaded, whildogical signals are ignored.

vcd The subset of Value Change Dump file format including realznedlued Boolean
signals, commonly used for dumping simulations.

Incremental Signal Input Signals can be imported incrementally to1A, via a simple
Tcr/Ip protocol. A simulator that produces input signals needetmect to AT dur-
ing theincremental evaluatioand send packets containing signal updates to the tool.



The packets can be either Boolean or continuous signal epdatta specidgérmination
packet, informing the tool that the simulation is over.

5 AFLASH Memory Case Study

The subject of the case study is the “Tricky” technology FIEA®emory test chip in
0.1usprocess developed in ST Microelectronics Italy. The FLASehmry presents
an advantage for the analog case study, in that it is a digjstem whose logical be-
havior is implemented at the analog level. Hence, it is a dotdbetween the analog
and the digital world.

For the lightweight verification, the system under test isnsas a black box, and
we do not need to know further details about the undernedth architecture. The
memory cell can be in one of tirogramming readingor erasingmodes. The correct
functioning of the chip at the analog level in a given modesiedmined by the behavior
of a number of signals extracted during the simulation:

bl: matrix bit line terminal (cell drain) pw: matrix p-well terminal (cell bulk)
wl: matrix word line (cell gate) s.  matrix source terminal (cell source)
vt: threshold voltage of cell id: drain current of cell

The memory cell was simulated in thpeogrammingand theerasingmodes for the
case study, with the simulation time beifig00 us and 30000 us respectively. Four
STL/PsL properties were written to describe the correct behaviothefcell in the
programmingmode and one property in tlegasing modeThe AMT monitoring was
done on a Pentium 4 HT 2.4GHz machine with 2Gb of memory. Algloperties were
found to becorrectwith respect to the input traces.

A detailed description of the properties and the monitoriegults can be found
in [NMFT06]. As an example, we consider teemsing propertyThe informal descrip-
tion of the property first defines the erasing condition, \wh& characterized by the
wordline signawl being lower than-6 and p-wellpw above5. Whenever the erasing
condition holds, the pointwise distance between the sosiened p-wellpw voltages
has to be smaller thah1 and the value opw should not be greater th&m3 from the
value of bitlinebl. The corresponding®./PsL specification is:

vprop erasing {
define b:erasing_cond :=
a:w <= -6 and a: pw > 5;

erasi ng assert:
al ways (b:erasing_cond ->
(distance (a:s,a:pw,0.1)
and (a:bl-a:pw)>-0.83));
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Fig. 4. Erasing Property: (a) pw; (b) s; (c) wl; (d) bl; (e) erasioond; (f) bl-pw; (g) bl-pw>=-
0.83; (h) distance(s,pw,0.1)

Figure 4 shows some of the representative signals of thengrpsoperty. We can
mainly see that, whenever tkeeasing conditiorin Figure 4 (e) holds (denoted between
two dashed lines), the pointwise distance betwgandpw remains smaller tha.1
(Figure 4 (h)) and the difference betwegrandpw stays above the0.83 threshold.

5.1 Tool Evaluation

The time and space requirements of AMT were studied with bfitime andincremen-
tal algorithms. The complexity of the algorithm used in AMT isim to beO(k - m)
in [MNO4] wherek is the number of sub-formulae andis the number of intervals.

Table 1 shows the size of the input signals (number of inteyM@/e can see that the
erasingmode simulation generatdd times larger inputs from therogrammingmode
simulation. Table 2 shows the evaluation results fordffine procedure of the tool.
Monitoring the properties for the programming mode reqiiless than half a second.
Only theer asi ng property took more than 2 seconds, as it was tested agaiagjex |
simulation trace. We can also see that the evaluation tinfiegar in the number of
intervals generated by the procedure and can deduce thaitdbedure evaluates about
1.000.000 intervals per second.

The execution times of the incremental algorithm are lesanmimgful because the
procedure works in parallel with the simulator which, in inceses, is much more com-



pgm sim erase sim . -
name# intervals# intervals |property [tlme (Sj# |ntervals*f.
programmingl 0.14 99715
W\:v ggigg ;g:g? programming?2 0.42 405907
2 e p-well 012 89071
bi 32471 139511 decay 0.5 594709
i 378 o erasing 2.35 296857¢

Table 1. Input Size Table 2. Offline Algorithm Evaluation

Offline Incremental
Property t = total # intervalsm = max # active intervals/t * 100
programmingl 99715 65700 65.9
programming?2 594709 242528 40.8
p-well 89071 8 0.01
decay 594709 279782 47.1

Table 3. Offline/Incremental Space Requirement Comparison

putationally demanding. In fact, one major attraction efiticremental procedure is the
ability to detect property violation in the middle of the sitation and save simulation
time. Another advantage of the incremental algorithm isdthiced space requirement
as we can discard parts of the simulation after they have hdbnused. Table 3
compares the memory consumptions of the offline and increahprocedures. For the
former we take the total number of intervals generated byablewvhile for the latter we
take the maximal number of intervals kept simultaneousijp@mory. We can see that
this ratio varies a lot from one property to another, goirgrf0.01% up to 70%. The
general observation is that pointwise operators requi® ieemory in the incremental
mode, while properties involving the nesting of untimed penal properties often fail
to discard their inputs until the end of the simulation.

6 Conclusions

The main contribution of this paper is the implementationthaf AMT tool that mon-
itors temporal properties of continuous and mixed sigriEi& specification language
for describing desired behaviors of continuous signalpstipd by the tool is §L./PsL,
a subset of BL, properly extended to express sequential properties ¢f sigoals. The
monitoring algorithms used by MT are the offline marking procedure from [MNO4]
and its incremental extension described in this paper. ddléd integrated with numer-
ical simulators by supporting some standard input formatsdntinuous simulations
and by direct communication between the two using a simpéopol built on top of
TCP/IP.

AMT was validated through a FLASH memory case-study. The eshtiw that the
tool can be effectively used in both its offline and incremaéntodes. A number of in-



teresting properties concerning transient behavior ofisaous signals were described
in STL/PsL. Combinations of operators from the analog and temporairtagllow ex-
pressing properties such as ramp detection in an input, ttacelitional distance-based
comparisons between a reference and an input signal, obifizttion of an input sig-
nal around an arbitrary value. The main class of propertiasdannot be expressed in
STL/PSL are those dealing with the frequency spectrum ofadgg A typical English
specification of such a property would be "At least 60% of thergy power spectrum
of a signal is within its frequency band between 300 and 1500le hope to introduce
such properties into future versions of the tool.
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