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Abstract. In this paper we describe AMT, a tool for monitoring temporal prop-
erties of continuous signals. We first introduce STL /PSL, a specification for-
malism based on the industrial standard language PSL and the real-time tem-
poral logic MITL , extended with constructs that allow describing behaviors of
real-valued variables. The tool automatically builds property observersfrom an
STL /PSL specification and checks, in anofflineor incrementalfashion, whether
simulation traces satisfy the property. The AMT tool is validated through a Flash
memory case-study.

1 Introduction

The algorithmic verification field has been centered around the decision procedures for
model-checking temporal logic formulae. Temporal logic [MP95] is a rigorous speci-
fication formalism used to describe desired behaviors of thesystem. A number of ef-
ficient algorithms for translating temporal logic formulaeinto corresponding automata
have been developed [VW86,SB00,GPVW95,GO01], resulting in the success of log-
ics such as LTL and CTL and their common integration into main verification tools.
The temporal logic-based formalisms were adopted by the hardware industry with the
standard PSL [HFE04] specification language.

In order to reason abouttimed systems, a number of real-time formalisms have
been proposed, either as extensions of temporal logics (MTL [Koy90],M ITL [AFH96],
TCTL [Y97]) or regular expressions (timed regular expressions [ACM02]). However,
unlike in the untimed case, there is no simple correspondence between these logics and
timed automata [AD94] used in the timed verification tools.

The verification in thecontinuousdomain was made possible with the advent of
hybrid automata[MMP92] as a model for describing systems that have continuous dy-
namics with switches, and the algorithms for exploring their state-space. Although a
lot of progress has been done recently [ADF+06], the scalability still remains a ma-
jor issue for the exhaustive verification of hybrid systems,due to the explosion of the
state space. Moreover, property-based verification of hybrid systems is only at its be-
ginning [FGP06].

Hence, the preferred validation method for continuous systems remains simula-
tion/testing. However, it has been noted that the specification element of verification
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can be exported to the simulation through property monitors. The essence of this ap-
proach is the automatic construction of an observer from theformula in the form of a
program that can be interfaced with the simulator and alert the user if the property is
violated by a simulation trace. This process is much more reliable and efficient than
visual (graphical or textual) inspection of simulation traces, or manual construction of
property monitors.

This procedure is calledlightweight verification, where the property monitor checks
whether a finite set of traces satisfy the property specification. In the framework of soft-
wareruntime verification, temporal logic has been used as the specification language in
a number of monitoring tools, including Temporal Rover (TR)[Dru00], FoCs [ABG+00],
Java PathExplorer (JPaX) [HR01] and MaCS [KLS+02]. The extensions of temporal
logics that deal with richer properties were also considered in monitoring tools such as
LOLA [DSS+05].

In [MN04], we have introduced STL, a language for relating temporal behaviour of
continuous signals via theirstatic abstractionsand a procedure for offline monitoring
of specifications written in STL against continuous input traces. This paper extends the
STL logic with ananalog layerin which one can apply operations on continuous signals
directly, as well as thefinitary interpretationof the temporal operators in the spirit of
PSL. The resulting logic is called STL /PSL. The original offline monitoring algorithm is
extended to anincremental(semi-online) version. The main contribution of this paper
is the implementation of a stand-alone Analog Monitoring Tool (AMT) which integrates
results presented in [MN04] and this paper. Finally, a case-study on the behaviour of a
FLASH memory cell is conducted in order to validate the performance of the tool.

The rest of the document is organized as follows: in Section 2, we introduce the
STL /PSL logic along with its semantic domain. Section 3 discusses the offline property
checking algorithm from [MN04] and presents its incremental extension. The AMT tool
is presented in Section 4 and Section 5 describes the Flash memory case-study. Finally,
in Section 6 we conclude with a discussion on the achievements and future work.

2 Signals and Their Temporal Logic

The specification of properties of continuous signals requires an adaptation of the se-
mantic domain and the underlying logic.

2.1 Signals

Let the time domainT be the setR≥0 of non-negative real numbers. A finite length
signalξ over an abstract domainD is a partial functionξ : T → D whose domain of
definition isI = [0, r), r ∈ Q>0. We say that the length of the signalξ is r, and denote
this fact by|ξ| = r. We use the notationξ[t] = ⊥ when t ≥ |ξ|. In this paper, we
restrict our attention to two particular types of signals, Boolean signalsξb with D = B,
and continuous signalsξa with D = R.

We first present some signal properties that are independentof the signal domain.
Therestrictionof a signalξ to lengthd is defined as

ξ′ = 〈ξ〉d iff ξ′[t] =

{

ξ[t] if t < d

⊥ otherwise



The concatenationξ = ξ1 · ξ2 of two signalsξ1 andξ2 defined over the intervals
[0, r1) and[0, r2) is a signal over[0, r1 + r2) defined as

ξ[t] =

{

ξ1[t] if t < r1
ξ2[t− r1] otherwise

Thed-suffixof a signalξ is the signalξ′ = d\ξ obtained fromξ by removing the
prefix 〈ξ〉d from ξ, that is,

ξ′[t] = ξ[t+ d] for everyt ∈ [0, |ξ| − d)

TheMinkowski sumanddifferenceof two setsP1 andP2 are defined as

P1 ⊕ P2 = {x1 + x2 : x1 ∈ P1, x2 ∈ P2}
P1 ⊖ P2 = {x1 − x2 : x1 ∈ P1, x2 ∈ P2}.

Signals can also be combined and separated using the standard operations ofpairing
andprojectiondefined as

ξ1 || ξ2 = ξ12 if ∀t ξ12[t] = (ξ1[t], ξ2[t])
ξ1 = π1(ξ12) ξ2 = π2(ξ12)

In particular,πp(ξ) will denote the projection of the signalξ on the dimension with do-
mainB that corresponds to the propositionp (and likewiseπs(ξ) denotes projection of
the signalξ on the dimension with domainR corresponding to the continuous variable
s).

Non-Zeno Boolean signals of finite length admit a finite representation calledinter-
val coveringdefined as a sequence of intervalsI0 · I1 · . . . · Ik such that the value of
ξb is constant in every interval,ξb(Ii) = ¬ξb(Ii+1) for all i ∈ [0, k − 1],

⋃k
i=0 Ii = I

andIi ∩ Ij = ∅ for everyi 6= j. An intervalI is said to bepositiveif ξb(I) = T and
negativeotherwise. An interval coveringI is said to beconsistentwith a signalξb if
ξb[t] = ξb[t

′] for every t, t′ belonging to the same intervalIi. We denote byIξb the
minimal interval covering consistent with a finite variability signal ξb.

Unlike Boolean signals, continuous signals do not admit anexact finite represen-
tation. However, numerical simulators usually produce afinite collection of sampling
pairs(t, ξa[t]) with t ranging over some interval[0, r) ⊆ T. This finite representation is
in contrast to continuous signals defined asideal mathematical objectsconsisting of an
uncountable number of pairs(t, ξa[t]) for all t ∈ [0, r). We adopt the approach of repre-
senting continuous signals of finite length by using a finite set of sampling points. The
signal value at the missing time instantst ∈ (ti, ti+1) corresponds to the interpolation
between sample points(ti, ξa[ti]) and(ti+1, ξa[ti+1]).

2.2 STL /PSL Specification Language

In this section we describe the STL /PSL logic, as an extension of MITL [AFH96] and
STL [MN04] logics. We use a layered approach in the fashion of PSL [HFE04], with
the analog layerallowing to reason about continuous signals and thetemporal layer
relating the temporal behavior of different input traces. The “communication” between



the two layers is done viastatic abstractionsthat partition the continuous state space
according to the satisfaction of some inequality constraints on the continuous variables.

Since STL /PSL is targeted for specifying properties to be used forlightweight veri-
ficationoverfinite traces, we adopt the finitary interpretation used in PSL, by defining
strongandweakforms of the temporal operators. The strong form of an operator re-
quires the terminating condition to occur before the end of the signal, while the weak
form makes no such requirements. In PSL for example,until! anduntil represent
the strong and the weak forms of the until operator, respectively.

Theanalog layerof STL /PSL is defined by the following grammar:

φ :== s | shift(φ,k) | φ1 ⋆ φ2 | φ ⋆ c | abs(φ)

wheres belongs to a setS = {s1, s2, . . . , sn} of continuous variables,⋆ ∈ {+,-,*},
c ∈ Q andk ∈ Q+. Note that the analog operators defined above are the ones currently
supported by the AMT tool, but can be easily extended to new ones.

The semantics of the analog layer of STL /PSL is defined as an application of the
analog operators to the input signalξ:

s[t] = πs(ξ)[t]
shift(φ,k)[t] = φ[t+ k]
(φ1 ⋆ φ2)[t] = φ1[t] ⋆ φ2[t]
(φ ⋆ c)[t] = φ[t] ⋆ c

abs(ϕ)[t] =

{

φ[t] if φ[t] ≥ 0
−φ[t] otherwise

Thetemporal layerof STL /PSL is defined as follows:

ϕ :== p | φ ◦ c | not ϕ | ϕ1 or ϕ2 | eventually! ϕ |
eventually![a:b] ϕ | eventually[a:b] ϕ |

ϕ1 until! ϕ2 | ϕ1 until![a:b] ϕ2

wherep belongs to a setP = {p1, p2, . . . , pn} of propositional variables,a,b,c ∈ Q
and◦ ∈ {>,>=,<,<=}. Note that we include explicitly in the syntaxweakandstrong
versions ofeventuallyoperators1.

The satisfaction relation(ξ, t) |= ϕ, indicating that signalξ satisfiesϕ at timet is
defined inductively as follows:

1 Untimed eventually exists only in its strong form. Weak eventually is trivially satisfied by any
finite traceξ



(ξ, t) |= p iff πp(ξ)[t] = T
(ξ, t) |= φ ◦ c iff φ[t] ◦ c
(ξ, t) |= not ϕ iff (ξ, t) 6|= ϕ

(ξ, t) |= ϕ1 or ϕ2 iff (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= eventually! ϕ iff ∃t′ ≥ t st t′ < |ξ| and (ξ, t′) |= ϕ

(ξ, t) |= eventually![a:b] ϕ iff ∃t′ ∈ t⊕ [a, b] st t′ < |ξ| and (ξ, t′) |= ϕ

(ξ, t) |= eventually[a:b] ϕ iff ∃t′ ∈ t⊕ [a, b] st t′ ≥ |ξ| or (ξ, t′) |= ϕ

(ξ, t) |= ϕ1 until! ϕ2 iff ∃t′ ≥ t st t′ < |ξ| and(ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′] (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 until![a:b] ϕ2 iff ∃t′ ∈ t⊕ [a, b] st t′ < |ξ| and(ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′] (ξ, t′′) |= ϕ1

An STL /PSL specificationϕprop is an STL /PSL temporal formula. The signalξ sat-
isfies the specificationϕprop, denoted byξ |= ϕprop, iff (ξ, 0) |= ϕprop. Note that our
definition of the semantics of theuntil and timeduntil operators differs slightly from
their conventional definition since it requires a time instant t where both(ξ, t) |= ϕ2 and
(ξ, t) |= ϕ1. From the basic STL /PSL operators, one can define standard Boolean and
temporal operators, namelyalwaysandweak until, as well asweakandstrongforms of
timedalwaysoperators.

A large part of analog design is based on comparing waveforms(signals) with some
reference signal that specify a desired behavior. These notions are formalized using a
distance function (metric) which quantifies numerically the resemblance of two signals.
Mathematically speaking, a metric space is a pair(X, d) such thatX is the domain
and d : X × X → R+ is a function satisfying:d(x, x) = 0; d(x, y) = d(y, x)
andd(x, y) + d(y, z) ≥ d(x, z). There are many ways to define distance functions
on waveforms, by taking the maximum of the pointwise distance at every timet, sum-
ming/integrating over the pointwise distance, etc. Once such a distanced is defined,
it can be used to define distance-based logical operators of the formd(ξ, ξ′) < c for
some positive constantc. Below we define three such operators, the first is based on
the maximal pointwise distance while the two others are based on the metric defined in
[KC06a] which “tolerates” large pointwise deviations between the two signals if they
last for a time shorter thant and occur at most once everyT-t units. As one can see
these operators constitute a syntactic sugar as they can be expressed in STL /PSL.

distance(φ1, φ2,c) = abs(φ1-φ2) <= c
distance(φ1, φ2,c,t,T) = abs(φ1-φ2) > c -> eventually![<=t]

always[<=T-t](abs (φ1-φ2) <= c)
distance(ϕ1, ϕ2,t,T) = (ϕ1 xor ϕ2)-> eventually![<=t]

always[<=T-t] (ϕ1 iff ϕ2)

3 CheckingSTL /PSL Properties

In this section we describe two algorithms for checking STL /PSL properties. Both al-
gorithms are based on a process that we callmarking, namely determining truth value



of each subformula at every time instantt. The marking is a doubly-recursive process
going from the atomic propositions upward to the top formula, and, due to the nature
of future temporal logic, from truth values at timet to truth values at timet′ ≤ t. The
marking process terminates when the value of the top formulaat time0 is determined.

Offline marking: This procedure assumes that the multi-dimensional input signalξ is
already available, and the marking procedure is applied to the entire signal, propa-
gating backward at once the values of subformulae, up to obtaining the truth value
of the main formula.

Incremental marking: The incremental procedure updates the marking each time a
new segment of the input signal is observed. It is useful in detecting early violation
of an STL /PSL property and can be applied in parallel with the simulation process.
It can also be used for monitoring real, rather than simulated systems.

The offline marking procedure takes as arguments a temporal STL /PSL specification
ϕprop and the input signalξ that we treat as a global data structure and do not pass it
explicitly as an argument to the procedure. The algorithm computes, from the bottom-
up, a signalχψ(ξ) for each subformulaψ of ϕprop.2 If ψ is a temporal STL /PSL formula
ϕ, χϕ(ξ) is called thesatisfaction signal. This signal satisfiesχϕ(ξ)[t] = 1 iff (ξ, t) |=
ϕ. If ψ is a formulaφ from the analog layer of STL /PSL, χφ(ξ) is the result of applying
the operatorφ to the (continuous) signalξ. Whenever the identity ofξ is clear from the
context, we will use the shorthand notationχψ.

The algorithm is decomposed into two methods OFFLINE-T and OFFLINE-A as
shown in Algorithm 1, computing theχψ corresponding to the formulaψ from the
temporal and the analog layer of STL /PSL, respectively. The top level formulaϕprop is
monitored by invoking OFFLINE-T(ϕprop).

Algorithm 1 : OFFLINE-T and OFFLINE-A
input : STL /PSL Temporal Formulaϕ and signalξ

switchϕ do
casep

χϕ := πp(ξ);
end
caseφ ◦ c

OFFLINE-A (φ);
χϕ := COMBINE(◦c, χφ);

end
caseOP1(ϕ1)

OFFLINE-T (ϕ1);
χϕ := COMBINE(OP1, χϕ1

));
end
caseOP2(ϕ1, ϕ2)

OFFLINE-T (ϕ1, ϕ2);
χϕ := COMBINE(OP2, χϕ1

, χϕ2
));

end
end

input : STL /PSL Analog Formulaφ and signalξ

switchφ do
cases

χφ := πs(ξ);
end
caseOP1(φ1)

OFFLINE-A(φ1);
χφ := COMBINE(OP1, χφ1

);
end
caseOP2(φ1, φ2)

OFFLINE-A(φ1, φ2);
χφ := COMBINE(OP2, χφ1

, χφ2
);

end
end

2 The notationψ is used whenever it is not important whetherψ is a temporal or an analog layer
formula



Most of the work is done in the COMBINE procedure which takes one or two signals
(possibly of different length) and computes from them a new signal based on the specific
operation. The approach is based on [MN04] with some extensions to deal with both
strong and weak operators. We illustrate the procedure on few representative operations:

χϕ := COMBINE (or, χϕ1
, χϕ2

) For the disjunction we first construct a refined inter-
val coveringI = {I1, . . . , Ik} for χϕ1

||χϕ2
so that the mutual values of both sig-

nals become uniform in every interval. Then we compute the disjunction interval-
wise, that is,ϕ(Ii) = ϕ1(Ii) ∨ ϕ2(Ii). Finally we merge adjacent intervals having
the same Boolean value to obtain the minimal interval coveringIχϕ .

χϕ := COMBINE (eventually![a,b], χϕ1
) For every positive intervalI ∈ χϕ1

we compute itsback shiftingI ⊖ [a, b]∩T and insert it toχϕ. Overlapping positive
intervals inχϕ are merged to obtain a minimal consistent interval covering. In the
process, all the negative intervals shorter thanb− a disappear.3

χφ := COMBINE (⋆, χφ1
, χφ2

) For the pointwise arithmetic operations on continuous
signalsχφ1

andχφ2
, we first take the union of their sampling points and extend

each signal to the new points by interpolation. The signalχφ1⋆φ2
is computed by

applying the pointwise arithmetic operation to each pair ofcorresponding sampling
points. An example of the arithmetic operation is shown in Figure 1.

(a) (b)

χφ1

χφ2

χφ1−φ2

Fig. 1. Combiningφ = φ1 − φ2: (a) Input signalsχφ1
andχφ2

sampled at different rates; (b)
Refinement ofχφ1

andχφ2
and computation ofχφ1−φ2

Incremental marking is performed using a kind of piecewise-online procedure in-
voked each time a new segment ofξ, denoted by∆ξ, is observed. For each subformula
ψ the algorithm stores its already-computed associated signal partitioned into a con-
catenation of two signalsχψ · ∆ψ with χψ consisting of values already propagated to

3 Another way to see it is as shifting thenegativeintervals by[b, a].



the super-formula ofψ, and∆ψ, consisting of values that have already been computed
but which have not yet propagated to the super-formula and can still influence it.

Initially all signals are empty. Each time a new segment∆ξ is read, a recursive
procedure similar to the offline one is invoked, which updates everyχψ and∆ψ from
the bottom up. The difference with respect to the offline algorithm is that only segments
of the signal that has not been propagated upwards participate in the update of their
super-formulae. This may result in a considerable saving when the signal is very long.

χψ ∆ψ

χψ1

χψ2

∆ψ

χψ1
∆ψ1

χψ2
∆ψ2

∆ψ1

χψ

∆ψ2

αψ

(a) (b)

Fig. 2. A step in an incremental update: (a) A new segmentαψ for ψ is computed from∆ψ1

and∆ψ2
; (b) αψ is appended to∆ψ and the endpoints ofχψ1

andχψ1
are shifted forward

accordingly.

As an illustration considerψ = OP(ψ1, ψ2) and the corresponding truth signals of
Figure 2-(a). Before the update we always have|χψ ·∆ψ| = |χψ1

| = |χψ2
|: the parts

∆ψ1
and∆ψ2

that may still affectψ are those that start at the point from which the
value ofχψ is still unknown. We apply COMBINE procedure on∆ψ1

and∆ψ2
to obtain

a new (possibly empty) segmentαψ of ∆ψ. This segment is appended to∆ψ in order
to be propagated upwards, but before that we need to shift theborderline betweenχψ1

and∆ψ1
(as well as betweenχψ2

and∆ψ2
) in order to reflect the update of∆ψ. The

procedure is detailed in Algorithm 2.
Note that ifχϕprop becomes determined for time0, the incremental procedure can be

stopped. The finitary interpretation of temporal operatorsis used only ifχϕprop has not
been determined after the end of simulation.

4 Overview of theAMT tool

AMT is a stand-alone tool with a graphical user interface which implements the above
algorithms with respect to sampled continuous signal inputs. AMT was written in C++
for GNU/Debian Linux x86 machines. The user interface is based on the library QT4,
while QWT5 was used for visualizing plots.

4 http://www.trolltech.com
5 http://qwt.sourceforge.net



Algorithm 2 : INCREMENTAL-T and INCREMENTAL-A
input : STL /PSL Temporal Formulaϕ and increment

∆ξ

switchϕ do
casep

∆ϕ := ∆ϕ · πp(∆ξ);
end
caseφ ◦ c

INCREMENTAL-A (φ);
αϕ := COMBINE(◦c, χφ);
d := |αϕ| ;
∆ϕ := ∆ϕ · αϕ ;
χφ := χφ · 〈∆φ〉d ;
∆φ := d\∆φ ;

end
caseOP1(ϕ1)

INCREMENTAL-T (ϕ1);
αϕ := COMBINE(OP1, χϕ1

));
d := |αϕ| ;
∆ϕ := ∆ϕ · αϕ ;
χϕ1

:= χϕ1
· 〈∆ϕ1

〉d ;
∆ϕ1

:= d\∆ϕ1
;

end
caseOP2(ϕ1, ϕ2)

INCREMENTAL-T (ϕ1, ϕ2);
αϕ := COMBINE(OP2, χϕ1

, χϕ2
));

d := |αϕ| ;
∆ϕ := ∆ϕ · αϕ ;
χϕ1

:= χϕ1
· 〈∆ϕ1

〉d ;
∆ϕ1

:= d\∆ϕ1
;

χϕ2
:= χϕ2

· 〈∆ϕ2
〉d ;

∆ϕ2
:= d\∆ϕ2

end
end

input : STL /PSL Analog Formulaφ and increment∆ξ

switchφ do
cases

∆φ := ∆φ · πs(∆ξ);
end
caseOP1(φ1)

INCREMENTAL-A(φ1);
αφ := COMBINE(OP1, χφ1

);
d := |αφ| ;
∆φ := ∆φ · αφ ;
χφ1

:= χφ1
· 〈∆φ1

〉d ;
∆φ1

:= d\∆φ1
;

end
caseOP2(φ1, φ2)

INCREMENTAL-A(φ1);
INCREMENTAL-A(φ2);
αφ := COMBINE(OP2, χφ1

, χφ2
);

d := |αφ| ;
∆φ := ∆φ · αφ ;
χφ1

:= χφ1
· 〈∆φ1

〉d ;
∆φ1

:= d\∆φ1
;

χφ2
:= χφ2

· 〈∆φ2
〉d ;

∆φ2
:= d\∆φ2

;
end

end

The main window of the application is partitioned into five frames that allow the
user to manage STL /PSL properties and input signals, evaluate the correctness of the
simulation traces with respect to a specification and finallyvisualize the results. The
property edit frame contains a text editor for writing, importing and exporting STL /PSL

specifications, which are then translated into an internal data structure based on the
parse-tree of the formula stored in theproperty list frame. An STL /PSL specification
is imported into theproperty evaluation frame for its monitoring with respect to a set
of input simulation traces, in eitherofflineor incrementalmodes. The static import of
the input traces is done via thesignal list frame. The imported input signals, as well as
signals associated to the subformulae of a specification canbe visualized by the user
from thesignal plotsframe. A screenshot of the main window is shown in Figure 3.

4.1 Property Management

The specifications in AMT are written in a simple editor with syntax highlighting for
the extended STL /PSL language described below. An STL /PSL specification is then
transformed into a structure adapted for the monitoring purpose, following the parse-
tree of the formula. The user can hold more than one specification that is ready for
evaluation in the property list frame.



Fig. 3.AMT Main Window

Property Format AMT tool extends the STL /PSL language described in Section 2.2
with additional constructs that simplify the process of property specification. Each top-
level STL /PSL property is declared as anassertion, and a number of assertions can be
grouped into a single logical unit in order to monitor them together at once. We also
add a definition directive which allows the user to declare a formula and give it a name,
and then refer to it as a variable within the assertions. The extended STL /PSL is defined
with the following production rules

stl_psl_prop :==
vprop NAME {

{ define_directive } { assert_directive }
}

define_directive :==
define b:NAME := stl_psl_property
| define a:NAME := analog_expression

assert_directive :==
NAME assert : stl_psl_property

wherestl psl property andanalog expression correspond toϕ andφ from
Section 2.2, respectively.



Property Evaluation The correctness of an STL /PSL specification with respect to
input traces is monitored through the property evaluation frame. The frame shows the
set of assertions in a tree view, following the parse structure of the formula. The user
can choose betweenofflineandincrementalevaluation of the specification.

In the offline case, the input signals are fetched from the signal list frame and the
assertions are checked with respect to them. If one or more signals are missing, the
monitoring procedure still tries to evaluate the property,but without guaranteeing a
conclusive result.

For the incremental procedure, AMT acts as a server that waits for a connection from
a simulator. Once the connection is established, the simulator sends input segments
incrementally. The monitor alternates between reception of new input segments and
incremental evaluation of the assertions. The user can configure thetimeoutvalue that
defines the period between two consecutive evaluations. In between two such periods,
the monitor accumulates input received from the simulator.There are three manners to
end the incremental monitoring procedure: 1) All assertions become determined and
AMT stops the evaluation and closes the connection with the simulator; 2) The special
termination packet is received from the simulator and 3) Theuser explicitly stops the
procedure via the GUI.

AMT shows visually the evaluation result of an assertion, choosing a different color
scheme forundetermined, correct and incorrect assertions. Each subformula of the
specification has an associated signal with it, which can be visualized within the signal
plots frame. The visualization of the associated signals can be used for understanding
why an assertion holds/fails. During the incremental evaluation, all the signals within
the signal plots frame are updated in real-time as new results are computed. The user
can switch off the accumulation of intermediate results forbetter memory performance,
thus discarding signals as soon as they are not needed anymore for the evaluation of
super-formulae. In that case, the only output of the tool is the final answer.

4.2 Signal Management

The signals in AMT can be either continuous or Boolean. Signals are input traces that
can be imported into the tool in an offline or incremental fashion. But signals are also
associated to each subformula of an STL /PSL specification. The user can visualize them
from the signal plots frame.

Offline Signal Input Signals can be statically loaded from the signal list frame.Two
file formats are currently supported by AMT:

out The output format of the Nanosim simulations. Thecurrentandvoltagesignals are
loaded, whilelogical signals are ignored.

vcd The subset of Value Change Dump file format including real and2-valued Boolean
signals, commonly used for dumping simulations.

Incremental Signal Input Signals can be imported incrementally to AMT, via a simple
TCP/IP protocol. A simulator that produces input signals needs to connect to AMT dur-
ing the incremental evaluationand send packets containing signal updates to the tool.



The packets can be either Boolean or continuous signal updates, or a specialtermination
packet, informing the tool that the simulation is over.

5 A FLASH Memory Case Study

The subject of the case study is the “Tricky” technology FLASH memory test chip in
0.13usprocess developed in ST Microelectronics Italy. The FLASH memory presents
an advantage for the analog case study, in that it is a digitalsystem whose logical be-
havior is implemented at the analog level. Hence, it is a goodlink between the analog
and the digital world.

For the lightweight verification, the system under test is seen as a black box, and
we do not need to know further details about the underneath chip architecture. The
memory cell can be in one of theprogramming, readingor erasingmodes. The correct
functioning of the chip at the analog level in a given mode is determined by the behavior
of a number of signals extracted during the simulation:

bl: matrix bit line terminal (cell drain) pw: matrix p-well terminal (cell bulk)
wl: matrix word line (cell gate) s: matrix source terminal (cell source)
vt: threshold voltage of cell id: drain current of cell

The memory cell was simulated in theprogrammingand theerasingmodes for the
case study, with the simulation time being5000 us and30000 us respectively. Four
STL /PSL properties were written to describe the correct behavior ofthe cell in the
programmingmode and one property in theerasing mode. The AMT monitoring was
done on a Pentium 4 HT 2.4GHz machine with 2Gb of memory. All the properties were
found to becorrectwith respect to the input traces.

A detailed description of the properties and the monitoringresults can be found
in [NMF+06]. As an example, we consider theerasing property. The informal descrip-
tion of the property first defines the erasing condition, which is characterized by the
wordline signalwl being lower than−6 and p-wellpw above5. Whenever the erasing
condition holds, the pointwise distance between the sources and p-wellpw voltages
has to be smaller than0.1 and the value ofpw should not be greater than0.83 from the
value of bitlinebl. The corresponding STL /PSL specification is:

vprop erasing {
define b:erasing_cond :=

a:wl <= -6 and a:pw > 5;

erasing assert:
always (b:erasing_cond ->
(distance (a:s,a:pw,0.1)
and (a:bl-a:pw)>-0.83));

}
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Fig. 4. Erasing Property: (a) pw; (b) s; (c) wl; (d) bl; (e) erasingcond; (f) bl-pw; (g) bl-pw>=-
0.83; (h) distance(s,pw,0.1)

Figure 4 shows some of the representative signals of the erasing property. We can
mainly see that, whenever theerasing conditionin Figure 4 (e) holds (denoted between
two dashed lines), the pointwise distance betweens andpw remains smaller than0.1
(Figure 4 (h)) and the difference betweenbl andpw stays above the−0.83 threshold.

5.1 Tool Evaluation

The time and space requirements of AMT were studied with bothofflineandincremen-
tal algorithms. The complexity of the algorithm used in AMT is shown to beO(k ·m)
in [MN04] wherek is the number of sub-formulae andm is the number of intervals.

Table 1 shows the size of the input signals (number of intervals). We can see that the
erasingmode simulation generated10 times larger inputs from theprogrammingmode
simulation. Table 2 shows the evaluation results for theoffline procedure of the tool.
Monitoring the properties for the programming mode required less than half a second.
Only theerasing property took more than 2 seconds, as it was tested against a larger
simulation trace. We can also see that the evaluation time islinear in the number of
intervals generated by the procedure and can deduce that theprocedure evaluates about
1.000.000 intervals per second.

The execution times of the incremental algorithm are less meaningful because the
procedure works in parallel with the simulator which, in most cases, is much more com-



pgm sim erase sim
name# intervals# intervals

wl 34829 283624
pw 25478 283037
s 33433 282507
bl 32471 139511
id 375 n/a

Table 1. Input Size

property time (s)# intervals

programming1 0.14 99715
programming2 0.42 405907
p-well 0.12 89071
decay 0.50 594709
erasing 2.35 2968578

Table 2.Offline Algorithm Evaluation

Offline Incremental
Property t = total # intervalsm = max # active intervalsm/t * 100

programming1 99715 65700 65.9
programming2 594709 242528 40.8
p-well 89071 8 0.01
decay 594709 279782 47.1

Table 3.Offline/Incremental Space Requirement Comparison

putationally demanding. In fact, one major attraction of the incremental procedure is the
ability to detect property violation in the middle of the simulation and save simulation
time. Another advantage of the incremental algorithm is itsreduced space requirement
as we can discard parts of the simulation after they have beenfully used. Table 3
compares the memory consumptions of the offline and incremental procedures. For the
former we take the total number of intervals generated by thetool while for the latter we
take the maximal number of intervals kept simultaneously inmemory. We can see that
this ratio varies a lot from one property to another, going from 0.01% up to70%. The
general observation is that pointwise operators require less memory in the incremental
mode, while properties involving the nesting of untimed temporal properties often fail
to discard their inputs until the end of the simulation.

6 Conclusions

The main contribution of this paper is the implementation ofthe AMT tool that mon-
itors temporal properties of continuous and mixed signals.The specification language
for describing desired behaviors of continuous signals supported by the tool is STL /PSL,
a subset of PSL, properly extended to express sequential properties of such signals. The
monitoring algorithms used by AMT are the offline marking procedure from [MN04]
and its incremental extension described in this paper. The tool is integrated with numer-
ical simulators by supporting some standard input formats for continuous simulations
and by direct communication between the two using a simple protocol built on top of
TCP/IP.

AMT was validated through a FLASH memory case-study. The results show that the
tool can be effectively used in both its offline and incremental modes. A number of in-



teresting properties concerning transient behavior of continuous signals were described
in STL /PSL. Combinations of operators from the analog and temporal layers allow ex-
pressing properties such as ramp detection in an input trace, conditional distance-based
comparisons between a reference and an input signal, or a stabilization of an input sig-
nal around an arbitrary value. The main class of properties that cannot be expressed in
STL/PSL are those dealing with the frequency spectrum of signals. A typical English
specification of such a property would be ”At least 60% of the energy power spectrum
of a signal is within its frequency band between 300 and 1500Hz”. We hope to introduce
such properties into future versions of the tool.
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