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Abstract

Abstract: We present a set of methods for the verification and control
of continuous and hybrid systems, based on the use of individual trajecto-
ries. In the first part, we specify the class of the systems considered and
their properties. We start from continuous systems governed by ordinary
differential equations to which we add inputs and discrete events, thus con-
stituting a class of hybrid dynamical systems. The second part is devoted to
the verification problem and is based on reachable sets computations. We
study how a finite number of trajectories can cover the infinite set of the
states reachable by the system. We show that by using a sensitivity analysis
w.r.t. initial conditions, an over-approximation of the reachable set can be
obtained. We deduce from it an algorithm which, by an iterative and hier-
archical selection of the trajectories, finds quickly a bad behavior or proves
that none exists. The third part is concerned with optimal control and is
based on approximate dynamic programming techniques. A cost is defined
for each trajectory, and the inputs minimizing this cost are deduced from a
value function defined on the state-space and which we represent by using a
function approximator. We use the experience provided by test trajectories
to improve this approximation. Lastly, we use the results of the second part
to select these trajectories in coherence with the local generalization prop-
erties of the function approximator and in order to restrict the exploration
of the state-space to limit the computational cost.

Keywords: Continuous dynamical systems, hybrid systems, verification,
optimal control, dynamic programming

Résumé : Nous présentons un ensemble de méthodes pour la vérification
et la commande de systèmes continus et hybrides, basées sur l’utilisation de
trajectoires individuelles. Dans une première partie, nous précisons la classe
des systèmes considérés et leurs propriétés. Nous partons de systèmes con-
tinus régis par des équations différentielles ordinaires auxquels nous ajou-
tons des entrées et des événements discrets, constituant ainsi une classe
de systèmes dynamiques hybrides. La seconde partie est consacrée à la
vérification de ces systèmes basée sur le calcul d’atteignabilité. Nous étudions
comment un nombre fini de trajectoires peut couvrir l’ensemble infini des
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états atteignables du système. Nous montrons qu’en utilisant une analyse de
la sensibilité aux conditions initiales, une sur-approximation de l’ensemble
atteignable peut être obtenue. Nous en déduisons un algorithme qui, par
une sélection hiérarchique des trajectoires, trouve rapidement un comporte-
ment mauvais ou prouve qu’il n’en existe aucun. La troisième partie con-
cerne la commande optimale et se base sur des techniques de programma-
tion dynamique approchée. Un coût est défini pour chaque trajectoire, et
la commande minimisant ce coût se déduit d’une fonction valeur définie
sur l’espace d’état et que nous représentons en utilisant un approximateur
de fonction . Nous utilisons l’expérience fournie par des trajectoires tests
pour améliorer cette approximation. Enfin, nous utilisons les résultats de
la deuxième partie pour sélectionner ces trajectoires en cohérence avec les
propriétés de généralisation locales de l’approximateur de fonction et en
restreignant l’exploration de l’espace d’état pour limiter les calculs.

Mots Clé : Systèmes dynamiques continus, systèmes hybrides, vérification,
commande optimale, programmation dynamique
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Introduction

This thesis is concerned with new methods and tools for analyzing dynami-
cal systems. By dynamical systems we mean systems that change the values
of certain variables over time according to some rule. We call the progres-
sion of values over time behaviors (or trajectories of the system). We are
not dealing with actual physical systems but with their models which are
abstract entities that allow to compute or simulate sequences of numbers
that represent such behaviors. These models can be more traditional math-
ematical objects such as differential equations but also plane “simulators”,
programs that generate behaviors, not necessarily using an explicit mathe-
matical models.

A system will typically have many behaviors, depending on its initial
state and on uncontrolled external influences (disturbances, noise, uncer-
tainty) and the basic questions that we interested in, inspired from the
verification of discrete systems are of the following type: given some as-
sumptions on the initial state and on the class of admissible disturbances, do
all the system trajectories satisfy certain property, for example, all of them
avoid a certain part of the state space. Since the set of possible behaviors is
typically infinite or, at least, prohibitively large, exhaustive simulation of all
of them is out of the question and more sophisticated techniques are needed.

This thesis offers a class of such techniques that we call trajectory-based,
as they explore the state space of the system using individual trajectories
and try to extract from those additional information that will allow to reach
conclusions concerning all the system behaviors. In this sense it has a non-
empty intersection with the class of techniques appearing under the name
of test generation.

It is hard to imagine a scientific or technological domain where dynami-
cal system models are not found. Hence, the domain of applicability of our
techniques extends to all areas where there are dynamical models in a form of
differential equations or hybrid automata. Some of the techniques can work
even in the absence of those and in the presence of a black-box simulator
which produces trajectories. The examples on which these techniques are
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demonstrated are taken from control systems and analog electrical circuits
but other domains such as systems biology can benefit from these techniques
as well.

The rest of this thesis is organized as follows: in Chapter 1 we define
the main object of our study, behaviors of continuous and hybrid (discrete-
continuous) dynamical systems that we call trajectories. In Chapter 2, we
define the necessary notions from the theory of dynamical systems. We
describe the mathematical models that we use, their property and how to
perform numerical simulation. In the second part of the thesis, we present
different methods to find finite sets of trajectories which represent all the
possible behaviors of a continuous or hybrid system. We also derive a tech-
nique to prove safety properties using a finite number of trajectories. In
Part 3 we move from analysis to synthesis, that is use trajectory-based ex-
ploration to design approximately-optimal controllers.

12



Part I

Models
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Chapter 1

Models of Trajectories

1.1 State Space and Time Set

A system S will be statically represented by its state x ∈ X , a n-dimensional
real valued vector where X , the state-space of S , is an open subset of R

n

supplied with a norm ‖.‖. S is a dynamical system if x can take different
values depending on the time t. In this work, we consider nonnegative and
continuous time instants (time is not discretized a priori). Thus any time
dependant function will map the set R

+ to some other set and whenever it
is the case, we will write T instead of R

+ to make it clearer that it actually
corresponds to the time set.

1.2 Simple Trajectories

The main object that we then study throughout this work is the trajectory,
which is a mapping, between T and a set of states, that S can “produce”.
We do not precise yet how it achieves this (“producing” a trajectory) since
our goal is to characterize S through the state space properties of its behav-
iors, rather than through its internal mechanisms. Further in this chapter,
several mathematical models are given that can describe these mechanisms
in a variety of situations. They will serve us to compute numerically trajec-
tories. But if most of the development of the thesis relies on the existence
and the analysis of a model of one of these types, some methods also applies
when none is available. Then the minimal requirements for S are those
mostly usual in testing methods: the system must be easily simulable or
observable i.e. we must be able to provoke or compute different trajectories
and observe (or measure) them without major difficulties.
We assume that the system is fully observable, i.e. there is no hidden vari-
able of importance for our analysis and that it is deterministic, i.e. the same
conditions and external influences produce the same observations.
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Chapter 1. Models of Trajectories

The symbol ξ, with various subscripts, surscripts and arguments, will be
used to represent trajectories. Since we consider deterministic systems, a
trajectory is uniquely defined by its initial state. Hence in the most common
situation, an initial state x0 in some initial set X0 ⊂ X and a time interval
of the form [t0, t1] induce a trajectory ξt0,x0 such that:

ξx0 :
[t0, t1] → X
t 7→ ξt0,x0(t)

with ξt0,x0(t0) = x0.

X0

x0

ξt0,x0(t)

We may write also ξt0,y(t) = ξ(t0,y; t) in order to transform notations like
ξt0,ξt1,x(t2)(t) into ξ(t0, ξt,x(t2); t), to improve readability.
The picture on the right represents a state space view of a trajectory. On
Figure 1.1 we give an Input-Output representation of system S in this sim-
ple case.

x0 ξx0(t)S

Figure 1.1: Input-Output box representation of system S

Note that when the initial time t0 of the trajectory is 0 or is obvious
from the context, we may simply write ξx0 .

Semi-Group Property Assume that a trajectory goes from x0 at time
t0(= 0) to x2 at time t2 while being in x1 at time t1. According to the
previous notation, we have

x0 = ξx0(0), x1 = ξx0(t1) and x2 = ξx0(t2).

The deterministic assumption implies that there is only one trajectory being
in x1 at t1 and continuing to x2 at t2. Then focusing on the portion after
t1, starting from x1, we can write

x2 = ξt1,x1(t2) or equivalently x2 = ξ(t1,x1; t2)

thus establishing the semi-group property of trajectories:

if x1 = ξt0,x0(t1) and x2 = ξt0,x0(t2) then x2 = ξt1,x1(t2) (1.1)
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1.3. Trajectories with Inputs

Time Invariant Dynamics The system is said to be time invariant if
the trajectory xt,x0 does not depend on t i.e. for all t > 0,

ξt,x0 = ξ0,x0 = ξx0 .

Note that any time varying system can be viewed as a time invariant system
if time is considered as part of the variables of the systems, i.e., if we extend
the state space X to X ′ = X × T and let t vary as ṫ = 1. However this
transformation may alter the structure of the dynamics of the system.

1.3 Trajectories with Inputs

The vector x represents the internal state of the system S , i.e. all the values
that describe it at a particular time instant. To model the fact that external
factors can also influence it, we use another vector, u which takes its values
in an input set U subset of R

m. This influence can be either uncontrolled,
in which case it is a disturbance, or controlled, in which case it is rather a
control input of the system. From the observational point of view that we
adopt in this first part, the distinction is finally rather thin and we only
refer to it as the input of the system.

As the state x, the input is a time dependant function and for concise-
ness, the symbol ’u’ will be used for

• a single m-dimensional vector u ∈ U ⊂ R
m;

• a mapping from the time set T to the input set U : u : R
+ 7→ U among

to the set of all such mappings noted UT ;

• or as a controller of the system S among the set of all possible con-
trollers, noted U(S ).

In the third case, the term policy can also be employed. This is well
suited to name a decision process deciding which input or action to choose,
i.e. which value u ∈ U to apply to the system at a given time instant t,
considering the past history of actions and states, and in order to fulfill
a given objective. We usually distinguish two situations for the policy: it
is either open loop i.e. the whole mapping u : T 7→ U is fixed given x0,
independently of ξx0, or it can depend on the course taken by ξx0 as time
passes. These two situations are depicted on Figure 1.2.

As for the initial state x0, we assume that inputs affect the course of a
trajectory in a deterministic way so that a state x0 and a policy u ∈ U(S )
induce a unique trajectory:

x0,u 7→
(
ξx0,u : t 7→ ξx0,u(t)

)
.

17



Chapter 1. Models of Trajectories

x0x0

uu

u(t)u(t)

ξx0,u(t)ξx0,u(t) SS

(a) (b)

Figure 1.2: Input-Output box representation of system S in the presence
of input. (a) Open-loop: The system starts from x0 and at each instant t,
it gets independently a new input u(t). (b) Closed-loop: the input depends
on the trajectory state and possibly on x0.

1.4 Hybrid Trajectories

In the context of dynamical systems, the term hybrid refers to the simulta-
neous presence of continuous and discrete variables. We say that a system
is hybrid as soon as its state at a particular time instant t can be described
by a finite number of real values, as was the case until now, plus a discrete
value, a mode index indicating in which particular discrete state it evolves
at this instant.
More formally, we note the set of possible mode indexes Q ⊂ N and for a
given x0 ∈ X , we introduce a function qx0 mapping T to Q. Then, in the
absence of inputs, an initial state x0 induces a trajectory ξx0 and a mode
trajectory qx0:

x0 7→
(
ξx0 : t 7→ ξx0(t), qx0 : t 7→ qx0(t)

)

If the number of modes of S is finite, the discrete part of S can be repre-
sented as a finite automaton (Q,→), where → is the transition map. Fig-
ure 1.3 provides a representation of an hybrid trajectory and the finite au-
tomata depicting the discrete behavior of S .

If an input u is present, then we still assume determinism w.r.t the initial
state x0 and a given policy u for both trajectory and mode trajectory, which
we note qx0,u:

x0,u 7→
(
ξx0,u : t 7→ ξx0,u(t), qx0,u : t 7→ qx0,u(t)

)

1.4.1 Equivalence Relation on Hybrid Trajectories

We assume that the mode trajectory qx0 is piecewise constant, in the sense
that there exists a sequence (tix0

)i∈N of switching instants and a sequence of

18



1.5. An Illustrative Example

q1

q2

q3

qx0(t) = q1

qx0(t) = q2

qx0(t) = q3

ξx0(T )

x0

Figure 1.3: An hybrid trajectory and the automata corresponding to its
discrete modes.

modes (qi
x0

)i∈N, the discrete trace of the trajectory, such that

• t0x0
= 0 (or more generally t0x0

∈ T );

• tix0
< ti+1

x0
∀i ∈ N;

• and ∀t ∈ [tix0
, ti+1

x0
[, qx0(t) = qi

x0
∈ Q.

Then a mode trajectory qx0 can be identified to the pair of sequences
(
(tix0

)i, (qi
x0

)i

)
and it might be interesting to group trajectories that share

the same discrete traces. For this purpose, we define formally an equivalence
relation ∼q:

Definition 1. We say that the hybrid trajectories induced by x0 and x′
0 are

q-equivalent, noted

(ξx0 , qx0) ∼q

(

ξx′

0
, qx′

0

)

,

if and only if

qi
x0

= qi
x′

0
∀i ∈ N

Due to the determinism assumption, the relation extends to the initial
states:

x0 ∼q x′
0 ⇔ (ξx0, qx0) ∼q

(

ξx′

0
, qx′

0

)

.

1.5 An Illustrative Example

To illustrate the previous definitions, we consider a simplified model of a car
moving on an axis [Gir06]. Assume that
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Chapter 1. Models of Trajectories

ξx0,u(t)

qx0,u(t)

u(t)

S

x0, q0

Mode

State

Figure 1.4: Input-Output box representation of system S in the hybrid case
with inputs. Internally, the system has a number of discrete modes which
affect its behavior. We can observe the evolution of it through the mode
trajectory qx0,u.

• The dynamic states that we observe are the position of the car, x1(t)
and its velocity x2(t). Then the state space X is a subset of R

2;

• The driver, which is not considered as being part of the car system,
can interact with it through the accelerator. The input of the system
is then the thrust u(t) on the accelerator at time t where u(t) is as-
sumed to lie in the interval U = [−1, 1] (negative values being used for
braking).

• The car is equipped with an automatic gear with two positions which
are selected depending on the speed x2(t). Then the system is hybrid
and has two modes Q = {q1, q2} corresponding to each gear.

With this simple model, and without knowing more about the system
working, we can already ask and try to answer a number of questions:

• To begin with, we can try to see how fast can go the car, starting from
rest, and after some time T . For most vehicles, this is done by using
the trivial policy umax consisting in always accelerating as much as
possible: for all (t,x), umax(t) = 1. Then starting from any position
of the form x = (x1, 0), we observe the trajectory ξx on the interval
[0, T ], and in particular the value at time T , ξx(T ) = (x1(T ), x2(T ))
where x2(T ) give the velocity reached so far.

• While testing the speed, with the same policy umax, we can observe
the behavior of the automatic gear, i.e. observe the mode trajectory
qx0,umax .
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1.5. An Illustrative Example

• Given some limitations on the initial position, say |x1(0)| < a, is it
possible to reach a position xgoal before T ? Is it still possible to
reach it with a given velocity ? And without running over an innocent
hedgehog crossing the road between t1 and t2 ?

• If the answer is yes to one of the above questions, what is the minimum
time to achieve it ?

• etc.

Note that with the formulation of these simple problems, we anticipate by
illustrating the major problems that we deal with within this work, namely
reachability analysis (which maximum speed ?), safety verification (avoid
“bad” states, like on the hedgehog) and optimal control of systems (get
somewhere as fast as possible). Another observation is that for all these
questions, if the answer is not trivial, it is however clear that as long as we
can “use” the car (or its model, which is often preferable from the hedgehogs
point of view), some trial and error process (by generating and observing
trajectories) is possible, as a first or the last resort.
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Chapter 2

Models of Dynamical
Systems

In the previous chapter, we described the system S through its different
input-output behaviors. We assumed implicitly that it was a black box with
which we could interact - by setting some initial conditions and possibly
through dynamic inputs - to influence its course and observe the evolution
of its continuous variables and maybe discrete modes. Apart from the de-
terminism assumption, no hypothesis were made yet about the properties
of the trajectories1. In this section, things are different since we speak of
the models that realize such Input/Output behavior. To be consistent with
what precedes, in particular concerning the determinism assumption, these
models have to satisfy specific constraints that are described next.

2.1 Continuous Systems

Continuous systems are those evolving smoothly during time, i.e. for which
the trajectories are continuous mappings of time. The most common mathe-
matical model used to represent such systems is that of ordinary differential
equations (ODEs) of the form:

ẋ = f(t,x) (2.1)

where f is some function on T × X 2. Let us review some fundamental re-
sults about ODEs (omitted proofs of the given results can be found in a
good textbook on the subject, e.g. [HS74]).

1In fact, investigating their continuity, boundedness, and other related properties may
naturally be part of the black box analysis of the system.

2Note that if f does not depend on t, the system is time-invariant.
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Chapter 2. Models of Dynamical Systems

Let ξx0 be a trajectory of the system S on a time interval I. It satisfies
(2.1) if

∀t ∈ I,
d

dt
ξx0(t) = f(t, ξx0(t))

and we say that S satisfies (2.1) if for every x0 ∈ X , ξx0 satisfies (2.1).

We are firstly interested in verifying the deterministic assumption, i.e.
whether the above equation admits a unique solution for a given x0. If this
is the case, then ODE (2.1) will be a good model for our system, since if we
solve it for a given x0 then by unicity, we know that the obtained solution
can only be a trajectory of S , namely ξx0.

This question of existence and unicity is known as the Cauchy problem
and its answer is provided by a fundamental theorem in dynamical systems
theory, the Cauchy Lipschitz theorem. First we recall the definition of f
being locally Lipschitz:

Definition 2 (Locally Lipschitz Functions). The function f : T ×X 7→ R
n

is locally Lipschitz w.r.t. x iff ∀(t0,x) ∈ T ×X , there exists a neighborhood
N (t0,x) of (t0,x) and L > 0 such that ∀(t,x1), (t,x2) ∈ N (t0,x)

‖f(t,x1)− f(t,x2)‖ ≤ L ‖x1 − x2‖

This property holds for example, if f is differentiable on X .

Also f is globally Lipschitz (or just Lipschitz ) if L does not depend on
x. A sufficient condition for it is that its derivative is uniformly bounded by
L.

The Cauchy-Lipschitz theorem can be stated as follows:

Theorem 1 (Cauchy-Lipschitz). Assume that f is a continuous mapping
from T ×X to R

n which is locally Lipschitz w.r.t. x. Then for all (t0,x0) ∈
T ×X , there is a unique maximal solution of (2.1) ξx0 defined on an interval
[t0, T [, where t0 < T ≤ +∞, satisfying ξx0(t0) = x0 and

∀t ∈ [t0, T [,
d

dt
ξx0(t) = f(t, ξx0(t)) (2.2)

The solution is maximal means that it cannot be continued further than
time T . Then if T is not infinite, this means that the trajectory tends to
leave X and that it actually reaches the boundary of X at time T i.e.:

lim
t→T

ξx0(t) ∈ ∂X

.

In case f is globally Lipschitz (if L is the same for all x ∈ X ) it is
interesting to mention additional properties.
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2.1. Continuous Systems

2.1.1 Bounding The Drifting of Trajectories

The first one provides a bound on the distance between the state of a tra-
jectory at time t and the initial state.

Proposition 1. Assume f is globally L-Lipschitz and that Theorem 1 holds
for (t0,x0) ∈ X with some T > 0. Then for all t ∈ [t0, T [,

‖ξx0(t)− x0‖ ≤
Mt

L
(eL(t−t0) − 1) (2.3)

where

Mt = max
s∈[0,t]

‖f(s,x0)‖

In particular, if f does not depend on t (the system is autonomous), i.e.
if f(t,x) = f(x), then

‖ξx0(t)− x0‖ ≥
‖f(x0)‖

L
(eLt − 1) (2.4)

An interesting fact about this bound is that it depends only on the value
of f at the initial state x0. The proof is closely related to that of Cauchy-
Lipschitz Theorem so we also omit it here.

2.1.2 Bounding the Distance Between Two Trajectories

The second property bounds the distance between two trajectories at time
t.

Proposition 2. Assume that f is globally L-Lipschitz and that Theorem 1
holds. Let ξx1 and ξx2 be two trajectories defined on [0, T ]. Then for all
t ∈ [0, T ],

‖ξx2(t)− ξx1(t)‖ ≤ ‖x2 − x1‖ e
Lt (2.5)

Proof. To prove this result, we need another useful inequality (also used to
prove the Cauchy-Lipschitz theorem), the Gronwall’s Lemma:

Lemma 1. Let ϕ : [0, α] 7→ R be continuous and nonnegative. Suppose
C ≥ 0, L ≥ 0 are such that

ϕ(t) ≤ C +

∫ t

0
Lϕ(s)ds for all t ∈ [0, α].

Then

ϕ(t) ≤ CeLt for all t ∈ [0, α].
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Since ξx1 and ξx2 are solution of (2.1), they satisfy:

ξx1(t) = x1 +

∫ t

0
f(s, ξx1(s))ds and ξx2(t) = x2 +

∫ t

0
f(s, ξx2(s))ds.

Thus we have

ξx2(t)− ξx1(t) = x2 − x1 +

∫ t

0
f(s, ξx2(s))− f(s, ξx2(s))ds

which implies

‖ξx2(t)− ξx1(t)‖ ≤ ‖x2 − x1‖+

∫ t

0
‖f(s, ξx2(s))− f(s, ξx2(s))‖ds

≤ ‖x2 − x1‖+

∫ t

0
L‖ξx2(s)− ξx2(s)‖ds.

From there, applying Gronwall’s lemma with

ϕ = ‖ξx2 − ξx1‖ and C = ‖x2 − x1‖

yields the result.

Note that this also establishes continuity of the flow ξx w.r.t. to initial
state x (which is also true if f is only locally Lipschitz [HS74]):

Theorem 2. For all t ∈ T , the function (x ∈ X 7→ ξx(t), where ξx is solu-
tion of (2.1) with f satisfying the assumptions of Theorem 1, is continuous.

2.1.3 Continuity of The Flow w.r.t. the Dynamics

Gronwall’s lemma is also useful to prove the next proposition, which basi-
cally states that if two systems have similar dynamics, then they have also
similar trajectories. From the point of view of trajectories, this means that
the flow ξx is continuous with respect to the dynamics f that generated it,
i.e. a slight perturbation in f results in a slight perturbation in ξx.

Proposition 3. Let ξx and ξ′x be solutions of ẋ = f(t,x) and ẋ = g(t,x)
on the interval [0, T ] with f being L-Lipschitz. Assume that ǫ > 0 is such
that for all t ∈ [0, T ] and all x ∈ X ,

‖f(t,x)− g(t,x)‖ ≤ ǫ.

Then ∀t ∈ [0, T ],

‖ξx(t)− ξ′x(t)‖ ≤
ǫ

L
(ǫLt − 1)
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2.2. Continuous Systems with Inputs

Proof. We know that

‖ξx(t)− ξ′x(t)‖ ≤

∫ t

0
‖f(s, ξx(s))− g(s, ξ′x(s)‖ds

≤

∫ t

0
‖f(s, ξx(s))− f(s, ξ′x(s)‖+ ‖f(s, ξ′x(s))− g(s, ξ′x(s)‖ds

≤

∫ t

0
L‖ξx(t)− ξ′x(t)‖+ ǫds

which we can manipulate into

‖ξx(t)− ξ′x(t)‖+
ǫ

L
≤
ǫ

L
+

∫ t

0
L

(

‖ξx(t)− ξ′x(t)‖+
ǫ

 L

)

.

Then Gronwall’s Lemma yields the result.

2.2 Continuous Systems with Inputs

In the presence of inputs, the model determined by Equation (2.1) can be
extended by making f explicitly dependant of u:

ẋ = f(t,x,u) (2.6)

In the following we give some sufficient conditions on u and f for (2.6) to
have a unique solution given an initial state x0 and an input u.

2.2.1 Open Loop Systems

We first consider the open loop case, where u is an independent function
of time u : t 7→ u(t). In this situation, the function f can be viewed as a
function of t and x only, say

F (t,x) = f(t,x,u(t)). (2.7)

Then (2.6) is equivalent to
ẋ = F (t,x) (2.8)

and the Cauchy-Lipschitz theorem conditions need to be examined for F .
At first, it is easy to see that if f is Lipschitz w.r.t. x, then this is also the
case for F . Also if u is continuous and f is continuous w.r.t. u, then F is
continuous w.r.t. x. Then if these two conditions are met, F satisfies the
conditions of the Cauchy-Lipschitz Theorem.

Theorem 3. Let f be a continuous mapping from T ×X ×U which is locally
Lipschitz w.r.t. x. Let (t0,x0) ∈ T × X and let u : T 7→ U be continuous.
Then there exist a maximal real 0 < T ≤ +∞ and a unique maximal solution
ξx0,u on an interval [t0, T [, satisfying ξx0,u(t0) = x0 and

∀t ∈ [t0, T [,
d

dt
ξx0,u(t) = f(t, ξx0(t),u(t)) (2.9)
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2.2.2 State Feedback

We now turn to a frequent case involving closed loop systems, namely when
the policy is a state feedback of the form

u :
X → U
x 7→ u(x)

As before, for the ODE (2.6) with initial condition x(0) = x0 to have a
unique solution, it is sufficient that the function F , defined as

F (t,x) = f(t,x,u(x)),

fulfill appropriate conditions related to Cauchy-Lipschitz Theorem. We can
require e.g. that f be Lipschitz w.r.t. simultaneously x and u and that u
be continuous and Lipschitz w.r.t. x. Formally,

Theorem 4. Let f be continuous mapping from T ×X ×U locally Lipschitz
w.r.t x and u i.e for all t ∈ T , (x1,x2) and (u1,u2) in some neighborhood
of (x,u) , there exists L > 0 such that

‖f(t,x1,u1)− f(t,x2,u2)‖ ≤ L (‖x1 − x2‖+ ‖u1 − u2‖).

Assume that u : X 7→ U is continuous and locally Lipschitz w.r.t. to x.
Then for all (t0,x0) ∈ T × X , there is a real 0 < T ≤ +∞, maximal, and a
unique function ξx0,u satisfying ξx0,u(0) = x0 and

∀t ∈ [0, T [,
d

dt
ξx0,u(t) = f(t, ξx0(t),u(ξx0(t))) (2.10)

Proof. The assumptions on f and u implies that F is locally Lipschitz.
Indeed:

‖F (t,x1)− F (t,x2)‖ =

‖f(t,x1,u(x1))− f(t,x2,u(x2))‖ ≤ L (‖x1 − x2‖+ ‖u(x1)− u(x2)‖)

≤ L (‖x1 − x2‖+ Lu‖x1 − x2‖)

≤ max(L,LLu)‖x1 − x2‖

Then Theorem 1 or holds for F .

2.2.3 Continuity w.r.t. Inputs

To characterize the continuity of the flow w.r.t. the inputs of the system,
we have the following proposition:

Proposition 4. Assume that
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2.2. Continuous Systems with Inputs

• f is continuous and globally L-Lipschitz in x (open loop case) or in x
and u (state-feedback case);

• f is uniformly continuous w.r.t. u;

• u and u′ are continuous mappings in UT (open-loop case) or in UX ,
with u being Lu-Lipschitz (state-feedback case);

• ξx,u and ξx,u′ are solutions of ẋ = f(t,x,u) and ẋ = f(t,x,u′).

Let ǫ > 0. Then there exits η > 0 such that if

∀t ∈ T , ‖u(t)− u′(t)‖ ≤ η (open-loop case) (2.11)

or

∀x ∈ X , ‖u(x) − u′(x)‖ ≤ η and u is Lu-Lipschitz (state-feedback case)
(2.12)

then it holds that

‖ξx,u(t)− ξx,u′(t)‖ ≤
ǫ

L

(
eLt − 1

)
.

Proof. This results directly from Proposition 3. If we denote F (t,x) =
f(t,x,u) and G(t,x) = f(t,x,u′) then because f is uniformly continuous
w.r.t. u, there exists for ǫ > 0, η > 0 is such that if (2.11) or (2.12) hold (in
appropriate cases) then clearly

‖F (t,x)−G(t,x)‖ ≤ ǫ

Then Proposition 3 applies, which proves the result.

Let us denote by Uo(S ) and Us(S ) the sets of admissible open-loop and
state-feedback policies for system S. We equip them with a distance d such
that if u and u′ are in Uo(S ),

d(u,u′) = sup
t∈T
‖u(t) − u′(t)‖ (2.13)

and if u and u′ are in Us(S ),

d(u,u′) = sup
x∈X
‖u(x)− u′(x)‖. (2.14)

Then the next theorem immediately follows from Proposition 4:

Theorem 5. If f satisfies the conditions of Theorem 3 (resp. Theorem 4),
then whenever it is defined, the mapping (u ∈ Uo(S ) 7→ ξx,u(t)) (resp.
(u ∈ Us(S ) 7→ ξx,u(t))) is continuous.
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2.3 Hybrid Systems

Different models of hybrid systems have been proposed in the literature.
They mainly differ in the way either the continuous part or the discrete part
of the dynamics is emphasized, which depends on the type of systems and
problems we consider. A general and commonly used model of hybrid sys-
tems is the hybrid automaton (see e.g. [Dan00, Gir06]). It is basically a finite
state machine where each state is associated to a continuous system. In this
model, the continuous evolutions and the discrete behaviors can be consid-
ered of equal complexity and importance. In our case, we rather consider
systems whose continuous behaviors are rich while the number of discrete
modes is small thus we restrict to the class of piecewise-continuous systems
that we describe in this section.

Recall that we characterized hybrid systems with the fact that they
produce mode trajectories, which take their value in a set Q ⊂ N of modes, in
addition to real valued trajectories. Being in different modes clearly affects
the behavior of the system. This can be modeled by defining a collection
(fq)q∈Q of functions inducing a different ODE for each mode:

ẋ = fq(t,x), q ∈ Q. (2.15)

Then the mode trajectory q(t) indicates at each instant t which dynamics
must satisfy the trajectory ξx0:

d

dt
ξx0(t) = fqx0(t)(t, ξx0(t)). (2.16)

It can be put into the standard form by letting F be

F (t,x) =
∑

q∈Q

δq
qx0 (t) fq(t,x) where δq

q′ =

{
1 if q = q′

0 else
(2.17)

Again, we would like to find some practical sufficient conditions ensuring
that given an initial x0, such a model produces a unique trajectory. Intu-
itively, on an interval of time where q is constant, we find ourselves to the
continuous case of previous sections and we can already assume that each
fq function is continuous and locally Lipschitz w.r.t. x. Obviously, things
get more complicated at points where q switches from one mode to another.
Since fq and fq′ functions have no reasons to be equal each time a mode
switch from q to q′ occurs, we have to expect F to be discontinuous. Simi-
larly to the input case, we distinguish two situations. Within the first and
simplest, mode switchings only depend on time, while in the second one,
they are determined by the state x.
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2.3. Hybrid Systems

2.3.1 Time Dependant Switchings

Time dependant switchings are predetermined to occur at fixed time in-
stants, assuming that the mode trajectory qx0 can be determined indepen-
dently or prior to the trajectory ξx0 . Under these conditions, there is a
unique maximal solution on an interval [t0, T [. It is defined recursively as
follows.

Firstly, Cauchy-Lipschitz Theorem states that there is a unique solution
to the problem

ẋ = fq0(t,x), x(t0) = x0,

defined on a maximal interval [t0, T0[ for some T0 > t0. If T0 < t1, then
ξx0 is this solution and T is T0. Otherwise, ξx0 is partially defined by the
restriction of the maximal solution on the interval [t0, t1].

Now, assume that we have constructed ξx0 on the interval [t0, ti]. Then
Cauchy-Lipschitz Theorem again states that there is a unique solution to
the problem

ẋ = fqi(t,x), x(ti) = ξx0(ti),

defined on a maximal interval [ti, Ti[ for some Ti > ti. This solution can be
used to extend ξx0 either over the interval [ti, Ti[ if Ti < ti+1, or over the
interval [ti, ti+1[ in which case we reiterate. Note that if the process never
ends, this means that the maximal solution to the hybrid problem is defined
on [0,+∞[, i.e. on the entire time set T .

2.3.2 State Dependant Switchings

To simulate systems with state dependant switchings, we propose the fol-
lowing model3. We define a set of ng switching hyper-surfaces Gi each given
implicitly by the zero level-sets of smooth4 functions gi : X 7→ R, i ∈ {1, ng}:

x ∈ Gi ⇔ gi(x) = 0.

ThenQ is constructed by enumerating possible sign configurations of {gi}i∈{1, ng}

so that to each mode q corresponds an open set of the form

Xq = {x ∈ X , gi(x) ♯iq 0, 1 ≤ i ≤ ng} where ♯iq is either < or > (2.18)

partitioning X . Each pair (Xq, fq) then forms a “simple” continuous sys-
tems as we are now getting used to. It is then tempting to try the same
construction of a solution as above, with the difference that the switching
instants are not known in advance. Starting in x0 in Xq0, we consider the
maximal solution of

ẋ = fq0(t,x), x(0) = x0,

3in fact heavily inspired by [SGB99] for switching functions and by the classic theory
of solutions in the sense of Filippov [Fil88, GT01] for sliding modes

4later we see that twice differentiable is sufficient to avoid too much problems.
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defined on the interval [t0, t1[. If t1 = +∞ then the system stays forever in
Xq0 and we are done. On the contrary, we know that ξx0(t1) is on the bound-
ary ∂Xq0 of Xq0 , meaning that for some i ∈ {1, . . . , ng}, g(ξx0(t1)) = 0 and
ξx0(t1) then belongs to surface Gi. Then things get a bit more complicated.
The problem is that until now, no dynamics has been defined for states at
the (finite) boundaries of the open sets (Xq)q∈Q. If we want to continue
the construction of our trajectory, then it must be true that whenever the
system has to change its dynamics, its current state qualifies as a consistent
initial state for a new flow. So we have to be able to decide, for every points
on the switching surfaces, to which mode they belong.

For simplicity, we restrict the discussion to points that belongs to only
one surface. So, let us note ξx0(t1) = x∗ ∈ Gi, assuming that gi(ξx0(t−)) < 0.
The simplest, and “expected” situation is depicted on Figure 2.1. The flow
fq0 in mode q0 drives the trajectory towards the switching surface while the
flow fq1 forces it to instantaneously leave it. Formally, the condition for such
a switch to occur is that

〈∇xgi(x
∗), fq1(t1,x

∗)〉 > 0 (2.19)

where 〈 , 〉 is the inner product of R
n.

Gi : gi(x) = 0

~fq0
~fq1

~∇xgi(x
∗)

ξx0(t)

x∗

Mode q1: gi(x) > 0

Mode q0: gi(x) < 0

Figure 2.1: Standard switching. The trajectory crosses the switching surface
and continues with dynamics fq1 within mode q1.

Even though x∗ is on the boundary and not inside Xq1, it is not difficult
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2.3. Hybrid Systems

to extend Cauchy-Lipschitz Theorem and prove that if (2.19) holds, then
there is a unique solution starting (or continuing) at time t1 from x∗ inside
Xq1 using dynamics fq1, either forever, or until it hits another switching
surface at time t2, or leaves X at time T , and so on.

2.3.3 Sliding Modes

If condition 2.19 is not satisfied, it means that both flows from mode q0 and
mode q1 lead to the surface Gi. Then the trajectory is forced to stay somehow
on the surface. Trivially, if we have exactly fq1(t1,x

∗) = −fq0(t1,x
∗), then

x∗ is a stationary point of the system. Else it enters a so-called sliding
mode in which it will move along surface Gi following a combination fg of
dynamics fq0 and fq1 as

fg(t,x) = α(x)fq0(t,x) + (1− α(x))fq1(t,x), (2.20)

where α(x) is determined by the fact that fg has to be tangent to Gi i.e.

〈fg(t,x), ∇xg(x)〉 = 0⇔ 〈 α(x)fq0(t,x)+(1−α(x))fq1(t,x) , ∇xg(x) 〉 = 0

thus

α(x) =
〈fq1(t,x),∇xg(x)〉

〈fq1(t,x)− fq0(t,x),∇xg(x)〉
. (2.21)

Note that if the function fg is well defined on Gi with (2.20) and (2.21), it
does not define an ordinary differential equation but an ODE on a manifold,
of the form

ẋ = fg(t,x)
0 = gi(x), x(t1) = x∗ (2.22)

In [Hai01], it is shown how this system can be reformulated as an ODE.
Since g is sufficiently smooth, we can always find a local parameterization
of Gi around x∗ such that

ψ : Y 7→ N (x∗) with x = ψ(y)⇔ x ∈ Gi.

Taking the time derivative of x = ψ(y), we get:

∇xψ(y) ẏ = fg(t, ψ(y)).

Note that since y is a parameter for an hyper-surface, it has n − 1
dimensions and then the rank of ∇xψ(y) is at most n − 1. By abuse of
notation, we write ψ(y)−1 to denote an invertible sub-matrix of ∇xψ(y),
and thus y satisfies

ẏ = f̃g(t,y), where f̃g(t,y) = ∇xψ(y)−1fg(t, ψ(y)). (2.23)
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A little more technicalities (that we omit here) is needed in order to show
that this system admit a unique maximal solution starting from (t1,y

∗),
where x∗ = ψ(y∗). Finally, we get the corresponding trajectory ξx0 on the
maximal interval through the change of coordinate x = ψ(y).

So we showed that when a trajectory hits a switching surface, either
it leaves it instantaneously to enter in a new mode, or the switching is
prevented by the new dynamics and the trajectory stays for a while on the
surface, sliding on it. This intermediate mode ends when the trajectory is
finally “granted” to enter either mode q1 or to resign and come back in
mode q0. This happens respectively when fq1 or fq2 become tangent to Gi.
The two situations are depicted on Figure 2.2.
This way, we have defined a dynamics for every states5 in X , which implies

that for every initial state x0 ∈ X , we can construct one unique trajectory
by “glueing” together the solutions of the different ODEs corresponding to
the different modes (including sliding modes) visited by the system.

2.3.4 Continuity w.r.t. Initial Conditions

Clearly, the mechanism of mode switching breaks the continuity of the flow
ξx w.r.t to x. Indeed, if it ever happens that ξx hit a switching surface
tangentially, an infinitesimal perturbation in x can make it miss the surface
and stay in the same mode, resulting in a completely different behavior. In
Section 1.4.1, we defined an equivalence relation ∼q which relates hybrid
trajectories (and equivalently their initial states) which have the same dis-
crete traces. We can use it to partition the state space X into its quotient
set, noted X/ ∼q. By definition, every two trajectories starting from an
element X̃ of this partition, which is also a subset of X (more precisely, it
is a subset of Xq for some q ∈ Q), go through the same sequence of modes.
Then if we cannot prove the continuity of ξx w.r.t. x for the whole state
space X , it is tempting to think that we can prove it for its restriction to a
such X̃ ∈ X/ ∼q.

5Note that a way to deal with the intersection I of two surfaces Gi and Gj is to define
the sliding mode in Gi and see I as an hyper-surface included in Gi and thus, if need
be, to define another sliding mode on I as a switching surface in Gi; and so on for the
intersection of more than two hyper-surfaces.
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Gi : gi(x) = 0

~fq1

~fq2

~∇xgi(x
∗)

ξx0(t)

x∗

xs

~fgi

~fq1(t2,xs)

~fq2(t2,xs) = ~fgi(t2,xs)

(a)

Gi : gi(x) = 0

~fq1

~fq2

~∇xgi(x
∗)

ξx0(t)

x∗

xs

~fgi

~fq1(t2,xs)

~fq2(t2,xs)

(b)

Figure 2.2: Sliding behavior. The trajectory hits Gi at x∗, coming from mode
q0. Then it enters in a sliding mode until it reaches the state xs where either
the dynamics from q1 (figure (a)) or from q0 (figure (b)) become tangent to
Gi, allowing the trajectory to leave the surface and (a) enter in mode q1 or
(b) to return to mode q0.
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However, the restriction to equivalent trajectories is
not sufficient to prove the continuity of the flow. In
fact, it is not difficult to find a system with a behav-
ior as depicted on the figure beside. Clearly, x and x′

can be arbitrarily near and still ξx and ξ′x very differ-
ent even though they share the same discrete switch.
This is due to the fact that ξx crosses Gi tangentially,
refered to as the grazing phenomena [DH06].

ξx

ξx′

q1 q2

Then we can state a continuity result, but restricted to non-grazing points,
i.e., states from which the trajectories never hit a switching surface tangen-
tially.

Definition 3 (non-grazing point). A non-grazing point on the interval [0, T ]
is state x such that ξx is defined on [0, T ] and for all (τ,x∗) such that τ ≤ T ,
ξx(τ) = x∗ and gi(x

∗) = 0, it holds that

〈∇xgi(x
∗), fq(τ−,x∗)〉 6= 0 where q = qx(τ−). (2.24)

Theorem 6. Assume that all assumptions made so far in Section 2.3 hold
and that fq functions for all q ∈ Q, are Lq-Lipschitz. Let X̃ be in X/ ∼q,
x ∈ X̃ , t ∈ T such that x is non-grazing on [0, t]. Then the mapping
(

x ∈ X̃ 7→ ξx(t)
)

is continuous in x.

proof(sketch). Assume that X̃ ⊂ Xq1, q1 ∈ Q. If X̃ represents all trajectories
staying forever in Xq1 , then the result is immediate. Otherwise, it is sufficient
to prove it for trajectories with only one switching, the general result being
deduced by induction on the mode sequence.

So let x ∈ X̃ and t ∈ T be such that ξx(t) ∈ Xq2. For simplicity, assume
that q2 is not a sliding mode. Let ǫ > 0. We must find η > 0 such that for
all x′ in X̃ , if ‖x− x′‖ ≤ η, then ‖ξx(t)− ξx′(t)‖ ≤ ǫ.
We note τ < t the time when ξx switches by crossing G1 in a state ξx(τ) = x∗.
Thus g1(x∗) = 0. If x′ ∈ X̃ , by definition, ξx and ξx′ have the same discrete
behavior. Then we know that ξx′ will eventually be in Xq2. In fact, we first
show that if x′ is in some neighborhood N1 of x, ξx′ is also in q2 at time
t. Condition 2.24 implies that there is a neighborhood N ∗ of x∗ and v > 0
such that if y ∈ N ∗, then 〈∇xgi(y), fq1(τ,y)〉 > v which we can interpretate
as: if ξ′x(τ) is still in q1 and also in N ∗, then it will continue toward Gi at
the minimum velocity of v. Since ξx(τ) is continuous in x and that fq1 is
bounded on N ∗, we can set ξx′(τ) as near as we want from ξx(τ) so that
it reaches Gi before leaving N ∗. This way, if d(ξx,G1) = δ is the distance
between ξx′(τ) and G, which is of the same order as the distance between
ξx(τ) and x∗ = ξx′(τ) (since x∗ ∈ G and G is smooth), then the time τ ′ when
ξx′ crosses G1 will not be greater than τ + δ

v . Consequentyly, we can choose
N1 so that if x′ is in, τ ′ is as near as we want from τ . In particular, we can
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x

x′
ξx(t)

ξx′(t)

ξx′(τ)
ξx(τ)

ξx′(τ ′)

ξx(τ ′)

q1 q2

Figure 2.3: Relative situations after the switches of two trajectories.

make it smaller than t, meaning that ξx′(t) is actually also in q2. Figure 2.3
depicts the whole situation so far.
Then from Proposition 2 we have

‖ξx(t)− ξx′(t)‖ ≤ ‖ξx(τ ′)− ξx′(τ ′)‖eLq2 (t−τ ′) (2.25)

where

‖ξx(τ ′)− ξx′(τ ′)‖

≤ ‖ξx(τ ′)− ξx(τ)‖ + ‖ξx(τ)− ξx′(τ)‖+ ‖ξx′(τ)− ξx′(τ ′)‖

≤
M1

Lq1

(

eLq1 (τ−τ ′) − 1
)

︸ ︷︷ ︸

(1)

+ ‖x− x′‖eLq1 τ

︸ ︷︷ ︸

(2)

+
M2

Lq2

(

eLq2 (τ−τ ′) − 1
)

︸ ︷︷ ︸

(3)

.

Expressions (1) and (2) result from Proposition 1 and (3) from Proposition 2.
Since we saw that we can make τ ′ − τ as small as we want by making x′ be
sufficiently near from x, then we can choose a neighborhood N of x, smaller
than N1, such that if x′ is in N , the right hand side of Equation (2.25) is
smaller than ǫ.

2.3.5 Continuous and Discontinuous Inputs

Extending the hybrid model above to an hybrid model with inputs can be
done by extending each continuous dynamics fq as discussed in Section 2.2.
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More interestingly, the hybrid modeling allows to deal with discontinuous
inputs. E.g., in case the input is provided by a switching controller which
can take a finite number of different values in U = {u1,u2, . . . ,ul}, then
u : T 7→ U is piecewise constant and we can identify modes to inputs values
and write

f(t,x,ui) = fqi(t,x).

which boils down using the previous formalism.

2.4 Practical Simulation

Numerical integration of ODEs is now a mature domain having provided a
large collection of well-tried methods able to cope with all sorts of systems
(see [HNW93, HW96, HLW96], and [HPNBL+05] for the numerical solver
we use in this work). All methods work by advancing the simulation using
small times steps. The simplest schemes take a state x0 a time t0 and some
time step h > 0 and return a new approximation

x1 = φ(x0, t0, h) ≃ ξx0(t0 + h).

Well known examples include Euler’s method where φ is simply

φ(x0, t0, h) = x0 + hf(t,x0). (2.26)

or Runge’s method where

φ(x0, t0, h) = x0 + hf

(

t0 +
h

2
,x0 +

h

2
f(t0,x0)

)

. (2.27)

These methods are characterized by their order, which relates the step-size
h to the error of approximation. Euler’s Method is of order 1, meaning that

‖φ(x0, t0, h)− ξx0(t0 + h)‖ = O(h)

while Runge’s method is of order 2, meaning that for it, the error above is
O

(
h2

)
. Simple explicit schemes like these are easy to use and are guaranteed

to converge as h becomes sufficiently small but they give little information
about how to choose the step size properly. They can also easily be inefficient
for certain problems, sometimes even failing completely to give a relevant
approximation. In general, it is a better choice to use more robust schemes
with adaptive step sizes. Such methods usually take an tolerance factor ǫ
and use some error evaluation function Err to determine the next step size
hǫ.

φ : (x0, t0, ǫ)→ (x1, hǫ) where x1 =≃ ξx0(t0 + hǫ) and Err(x1, hǫ) ≤ ǫ

Here, φ is basically a trial and error process: the solver tries a first estima-
tion of the step size, compute the corresponding estimation of the next state
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of the trajectory using e.g. a scheme of the type (2.26) or (2.27) and uses
the Err function to evaluate the error against the desired precision ǫ. If
the result is not satisfactory, it uses the error evaluation to produce a new,
smaller step size and iterates until finding an appropriate value hǫ.
Note that this error evaluation mechanism can and has to be tuned relatively
to the problem to solve (in particular by choosing appropriate tolerance fac-
tors that can be different for each dimension of the state space) in order
to get a good trade-off between accuracy and performances. This necessary
tuning, which unavoidably introduces a subjective flavor in the process, has
to be dealt with very carefully, in order to get reliable simulations of the
system. Very often indeed, once these are available, an important part of
the analysis work is already done.
Once the scheme for one step has been set up, a simulation of the contin-
uous model on a given interval [0, T ] is done with a loop of the following
form

k ← 0
repeat

(
xk+1, h

k
ǫ

)
← φ(xk, tk, ǫ) /*advance simulation one step */

tk+1 ← tk + hk
ǫ

k ← k + 1
until tk ≥ T

where the last step is chosen so that the simulation stops exactly at T .

2.4.1 Event Detection

For the simulation of continuous systems, then, we rely on existing robust
numerical methods. In Section 2.3, we showed that the hybrid model we use
can be simulated by successively solving different ODEs. Yet an important
issue remains when switchings are state dependent, namely event detection.
The problem is to find precisely when a switching occurs. If an accurate
simulation of the system is needed, this issue can be crucial since we saw
that a switching can change radically the course of a trajectory.

A simple method to detect when a switching should occur is to monitor
the sign changes of gi functions. If sign (gi(ξx(tk+1))) 6= sign (gi (ξx(tk))),
then we know that for some t∗ ∈ [tk, tk+1], gi (ξx(t∗)) = 0. Then a secant
method can be used to backtrack and try to find t∗ precisely.
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However, in [Gir06], it is noted that this approach
may fail in case gi has two consecutive roots close
together and the interval [tk, ti+1] is too large to
separate them. The author proposes a symbolic
approach to remedy to this issue but it is restricted
to the class of piecewise-affine systems. Since we
consider a more general class of piecewise contin-
uous system we have to rely on numerical methods. G

i

ξx0(t)

Different methods to improve the robustness of event detection have been
proposed in the literature ([SGB91, PB96, EKP01, BL01] among others). A
classic idea is to introduce a discontinuity variable zi such that

zi(t) = gi(x(t)) (2.28)

and to solve (2.15) and (2.28) together so that the evaluation of gi benefits
from the error control mechanism of the numerical solver involved. The
system induced is a differential algebraic system of equations (DAE) which
can be solved either using a specialized solver or as an ODE by writing:

żi = 〈∇xgi, fq(t,x)〉.

Backtracking from ti+1 to t∗ implies having integrated the equation be-
yond the switching instant t∗ with the “old” dynamics, which can cause
difficulties in certain cases. In [EKP01], a method inspired from control
theory is applied to select the step sizes in such a way that the simulation
“slows down” when getting near a transition surface.
In our simulations, we relied on the method for root detection implemented
in the solver CVODES and described in [HS06]. It implements a modified
secant method that can converge quickly to a root when one is detected
after an integration step. In addition, the integration method uses a multi-
step, variable-order strategy and after each successful step from tk to tk+1, it
provides a polynomial interpolation of the solution on the interval [tk, tk+1]
which is of the same order as that used for the successful step. With this
interpolation, we get a continuous evolution of gi(ξ(t)) for all t ∈ [tk, tk+1]
that we can use with any zero-crossing algorithm to double check whether
a zero is present in this interval or not.

2.4.2 “Lazy” Simulations with Discontinuities

If a precise event detection is not “so” important, we can use simpler strate-
gies to deal with discontinuities. Simply ignoring them (e.g. by integrating
directly Equation (2.17) function ignoring its discontinuous nature) is not
an option since the convergence of numerical schemes relies on the fact that
Cauchy-Lipschitz theorem applies and the continuity assumption would be
violated. Then for every step of the numerical integration, the solver must
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be provided with a continuous dynamics until it returns a step size hǫ satisfy-
ing the error tolerances (this is sometimes refered as “discontinuity locking”
since it forbids an event occurence during the computation of one step).
After each step, the sign of discontinuity functions has to be checked. If a
change is detected, then the continuous dynamics has to be updated for the
next step. Backtracking to the exact moment of the switching may not be
necessary however it is preferable to have a control on how risky nonethe-
less to just always accept the step-size hǫ and continue the simulation from
tk+1 = tk + hǫ using the new dynamics. The reason is that when the dy-
namics is simple (e.g. linear), a good numerical solver can automatically
select “large” step-sizes (relying on its error control mechanism) and thus
hǫ has no reason to be “reasonably small”. Then a good simple intermediate
solution is to set a maximum switching delay hmax > 0 and to backtrack
until time tk + hmax in case hǫ is greater than hmax.

Zeno Phenomenon Another phenomenon that we might want to avoid
is the Zeno phenomenon. This happens when the time between two consec-
utive switches decreases to zero. Then the system has to switch an infinite
number of time during a finite period and thus detecting all switchings
would last forever, resulting in a never ending simulation. Again, a simple
practical solution to avoid this situation is to set a minimum amount of
time hmin between two switchings. A simple clock can be used to control
the fact that the systems remains at least hmin units of time inside one mode.

Algorithm 1 give a slightly simplified (with only two modes) implemen-
tation of our “lazy” method to simulate an hybrid system.

Another interesting feature of Algorithm 1 is that it “ignores” sliding
modes. In fact since we never backtrack to a state where g is exactly 0, it
never enters a sliding mode but rather switches around it, spending alterna-
tively hmin units of time in each mode, resulting in a behavior that actually
simulates the sliding mode. Of course, the method may quickly become
inefficient if sliding modes are frequent but may nevertheless be acceptable
in practice as a first approach.

2.5 Summary

We presented different models of continuous and hybrid systems and char-
acterized some of their properties. We particularly insisted on continuity
and determinism of trajectories. Those are two important assumptions for
the soundness of the methods that we propose in the following of the thesis.
These properties are classically verified by solutions of ordinary differential
equations, thus we constructed the class of hybrid systems we consider by
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Algorithm 1 Simulation Algorithm with lazy event detection and minimum
delay before switching, one discontinuity function g and two modes.

c← 0, k ← 0, tk ← 0
while tk < T do

/* Perform one continuous step; we get ξ on [tk, tk + hk
ǫ ] */

(

hk
ǫ , ξ|[tk,tk+hk

ǫ ]

)

← φ(xk, tk, ǫ)

/* Update time spent in current mode */
c← c+ hk

ǫ

if c ≤ hmin then
/* Cannot switch yet: previous switching too recent */
tk+1 ← tk + hǫ, k ← k + 1
xk+1 ← ξ(tk+1)

else
/* Check if the sign of g has changed */
if sign (g(xk+1)) 6= sign (g(xk)) then

/* Proceed to switching */
q ← q′

hk
ǫ ← min(hk

ǫ , hmax)
tk+1 ← tk + hk

ǫ

xk+1 ← ξ(tk+1)
/* Resets the clock */
c← 0

else
tk+1 ← tk + hǫ, k ← k + 1
xk+1 ← ξ(tk+1)

end if
end if

end while
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adding switching events which assemble solutions of different ODEs. We
then showed how to preserve the determinism assumption and how conti-
nuity was affected by these events. From the practical side, we also showed
how accurate numerical simulations could be obtained.
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Part II

Reachability and Verification
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Chapter 3

Sampling-Based Reachability
Analysis

3.1 Introduction

Numerical simulation is a commonly-used method for predicting or validat-
ing the behavior of complex dynamical systems. It is often the case that due
to incomplete knowledge of the initial conditions or the presence of external
disturbances, the system in question may have an infinite and non-countable
number of trajectories, while only a finite subset of which can be covered by
testing or simulation.

Two major directions for attacking this coverage problem have been re-
ported in the literature. The first approach, see e.g. [ACH+95, DM98, CK98,
ADG03, Gir05] consists of an adaptation of discrete verification techniques
to the continuous context via reachability computation, namely computing
by geometric means an over-approximation of the set of states reached by
all trajectories. The other complementary approach attempts to find condi-
tions under which a finite number of well-chosen trajectories will suffice to
prove correctness and cover in some sense all the trajectories of the system
[KKMS03, AP04, BCLM05, BF06, GP06]. The second part of this thesis
is concerned with the second approach. Its main interest is that it draws
a methodology bridge between a form of “blind” testing and purely formal
methods by trying to extrapolate formal results from “real” trajectories.
The resulting methodology provides an extremely natural way of enlarging
the scope of already existing and widely-used practices in model-based de-
sign and prototyping.

With the intention to characterize a dense set by a finite number of tra-
jectories, we need some mechanism capable of extrapolating dense informa-
tion from punctual values. A first natural approach to do so is to partition
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the state space X , using some discretization technique, and to identify each
point in X with the partition element to which it belongs. Then if the reach-
able set from the uncertain initial set X0 is bounded, it is represented by a
finite partition, and a finite set of trajectories visiting every element in it
can be found. Then using continuity arguments like those developed in the
first part, we can argue that the more we refine the partition, the better
the set of trajectories represents the reachable set. We show that despite
its simplicity, this idea can already be implemented at almost no compu-
tational cost in addition to that of simulation and thus can easily be used
to complement simple testing. However, we also show that an a-priori and
arbitrary partition of the state space which does not take into account the
dynamics of the system may be unsatisfactory. Thus in the next chapter,
we will expose another extrapolation mechanism that takes advantage of the
knowledge of the system dynamics when available.

3.2 Sampling Theory

We begin the chapter by reviewing some definitions related to sampling
theory, in particular concerning dispersion, which is the criterion that we
will use to characterize the coverage quality of a sampling.

3.2.1 Sampling Sets

Assume that X is a bounded subset of R
n. We use a metric d and extend it

to distance from points to set d(x,X ) using:

d(x,X ) = inf
y∈X

(
d(x,y)

)

Depending on the context, d can be defined from a norm i.e. d(x,y) =
‖x − y‖. Unless otherwise stated, the notation ‖ · ‖ will be devoted to the
infinity norm. It induces a norm on matrices with the usual definition:

‖A‖ = sup
‖x‖=1

‖Ax‖ where A is an m× n real matrix.

A ball Bδ(x) is the set of points x′ satisfying d(x,x′) ≤ δ. we extend the
notation Bδ to sets and trajectories as follows:

Bδ(S) =
⋃

x∈S

Bδ(x) and Bδ(ξx) =
⋃

t∈[0,T ]

Bδ(t)(ξx(t))

where ξx is a trajectory defined on [0, T ]. Here δ is time-dependant, thus
Bδ(ξx) actually represents a “tube” with a varying radius around ξx.

Given a set X , a cover for X is a set of sets {X1, . . .Xk} such that
X ⊂

⋃k
i=1 Xi. A ball cover is a cover where each Xi is a ball.
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A sampling of X is a set S = {x1, . . . ,xk} of points in X . The notion of
dispersion is usually defined formally by

Definition 4 (Dispersion [LaV06]). The dispersion of a sampling S of X
is

αX (S) = sup
x∈X

(

min
x′∈S

(
d(x,x′)

)
)

This is the radius of the largest ball that one can fit in X without in-
tersecting with a point in S. To relate this quantity to the more intuitive
notion of “coverage”, we show the following lemma:

Lemma 2. The dispersion is equal to the smallest
radius ǫ such that the union of all ǫ radius closed
balls with their center in S covers X .

αX (S) = min
ǫ>0
{ǫ | X ⊂ Bǫ(S)} (3.1)

ǫ

Proof. Let ǫ be the minimum defined in the lemma and α be the dispersion
as given by the definition. Since S is a finite set, then minx′∈S d(x,x′) is the
distance from x to S so that α = supx∈X d(x,S). Then clearly Bα(S) is a
ball cover of X , because no point in X can be further than α from S. Since
ǫ defines the smallest ball cover, then ǫ ≤ α. Since Bǫ(S) is also a ball cover
of X , it means that d(x,S) can never be more than ǫ, then the supremum
cannot be strictly greater than ǫ meaning that α and ǫ are equal.

3.2.2 Refining Samplings

We now define the process of refining a sampling, which simply consists in
finding a new sampling with a smaller dispersion.

Definition 5 (Refinement). Let S and S ′ be samplings of X . We say that
S ′ refines S if and only if αX (S ′) < αX (S).

Note that if S ⊂ S ′ then αX (S ′) ≤ αX (S) but the inequality is not
necessarily strict since adding a point in S does not necessarily decrease the
radius of the balls needed to cover X . We can additionally define a local
notion of refinement:

Definition 6 (Local Refinement). Let S and S ′ be
samplings of X with respective dispersions α and α′.
We say that S ′ refines locally S if there exists a subset
S⊓ of S such that S ′ ∩ Bα(S⊓) refines Su in Bα(S⊓).

We denote by αX (S,Su) the local dispersion of S within X around Su.
If α is the dispersion of S within X , then

αX (S,Su) = αBα(Su)(S ∩ Bα(Su))
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Then from above definition, S ′ locally refines S if and only if there exists
Su ⊂ S such that αX (S ′,Su) < αX (S,Su).

A refining sampling can be constructed from the set to refine (e.g. by
adding sufficiently many points) or be found independently. In both cases,
we can assume that it is obtained through a refinement operator which we
define next.

Definition 7 (Refinement operators). A refinement operator ρ : 2X 7→ 2X

maps a sampling S to another sampling S ′ = ρX (S) such that S refines S ′.
A refinement operator is complete if ∀S,

lim
k→∞

αX

(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other words, a refinement operator is complete if a sampling of X
which has been infinitely refined is dense in X .

3.3 Grid Sampling

In this section, we assume that X is the unit hypercube [0, 1]n and we present
a classic sampling method and a simple refinement strategy, both based on
some form of griddization. Note that these methods can easily be applied to
sets which are not cubes but continuous mappings of cubes, in which case
we may lose some optimality properties but we keep the essential property
that is completeness of the refinement operator.

3.3.1 Sukharev Grids

A natural question concerning sampling, can be formulated in two dual ways:

• given a number ǫ > 0, what is minimum number of points needed to
get a sampling of X with dispersion ǫ ?

• given N points, what is the minimal dispersion that we can get by
distributing them in X ?

We say that these are two dual formulations of the same questions since, in
case we use the L∞ metrics, i.e., d(x,y) = maxi(|xi − yi|), the distribution
that provides the solution to both questions is the same, known as the
Sukharev grid (see e.g. [LaV06]). It simply consists in partitioning the
unit hypercube into smaller hypercubes of the appropriate size and put the
points in the respective centers. For the first formulation, the size of the
smaller hypercubes is clearly 2ǫ, since for L∞ metrics, a cube of size 2ǫ is
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Figure 3.1: Sukharev grids in two dimensions, 49 points.

an ǫ-ball. Consequently, the answer is that we need
(

1
2ǫ

)n
points. For the

second formulation, if we have to distribute N points, the size of the smaller
hypercubes needed is 1

⌊N1/n⌋
and thus the minimum possible dispersion is

2
⌊N1/n⌋

. Note that there are (⌊N1/n⌋)n small hypercubes, which may be

less than N . In this case, the remaining points can be placed anywhere
without affecting the dispersion (and without globally improving it neither).
Figure 3.1 gives an example of a Sukharev grid for n = 2 and N = 49 while
Figure 3.2 shows a three dimensional grid with N = 27 points.

3.3.2 Hierarchical Grid Sampling

The need for sampling often arises in the context of some trial-and-error
process, in which we incrementally select individual points, perform some
computational tests, and retry until getting a satisfactory answer. In case
we have good reasons to think that this satisfactory answer is likely to be
obtained as soon as our sampling is sufficiently precise, that is, as soon as
its dispersion has passed below a certain value, we need a strategy to pick
incrementally points in X so that during the process, the dispersion of the
points previously treated decreases as fast as possible.

Sukharev grids have optimal dispersion for a fixed number of points,
(or by duality, as we saw, it minimizes the number of points for a given
dispersion) but for an incremental process, we do not know in advance how
many points in the initial set will be used. In fact, we need to implement a
refinement operator as defined previously which, starting from a sampling
set S0 which is a singleton will incrementally add points to it while trying at
each step to minimize its dispersion. Obviously, if we have already N points
and managed to distribute them optimally, that is, on a Sukharev grid, it is
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Figure 3.2: Sukharev grids in three dimensions, 27 points.

very unlikely that by adding one point without moving the others, we will
always manage to get a Sukharev grid corresponding to N +1 points. What
we can do, on the other hand, is to superpose hierarchical Sukharev grids
for which resolutions are inverse of powers of 2. The refinement process is
then defined very simply in a recursive fashion. Let X be a hypercube of
size 1

2l (we say that such a cube is part of resolutions l grid) and S be a
sampling of X , then:

• if S = ∅ then ρX (S) = {x}, where x is the center of the hypercube X ;

• if S 6= ∅ then ρX (S) = S ∪
2n
⋃

i=1

ρXi(Si) where the sets Xi are the

2n hypercubes of size 1
2l+1 partitioning X and the sets Si contain the

points of S that are inside Xi.

This refinement process can be easily understood visually. On Figure 3.3,
we show the effect of three iterations in dimension 2 and 3.

The notion of local refinement is also easily captured by this process. The
idea is to choose for each resolution the cubes that need to be partitioned,
as illustrated on Figure 3.4.

From its definition, it is clear that the operator ρ is a complete refinement
operator. Each time a given resolution is filled, the dispersion is divided by
2:

αX (ρX (S)) =
1

2
αX (S).

A question remains about how to apply this refinement process incremen-
tally. It is that of the order with which we choose the different points to
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l = 0 l = 1 l = 2

n = 2

n = 3

Resolution:

Figure 3.3: Refinements for n = 2 and n = 3 dimensions for resolutions from
l = 0 to l = 2.

Figure 3.4: Local hierarchical refinement for a three-dimensional cube.
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fill each resolution level. A good answer is given in [LYL04] where a simple
procedure is described that selects the partitioning cubes so that the mutual
distance between two consecutive new points inserted is maximized.

3.4 Sampling-Based Reachability

3.4.1 Bounded Horizon Reachable Set

In this section, we set the problem of sampling-based reachability and give
a first algorithm to solve it.
We first consider a system S without inputs and consider its behaviors on
a finite interval [0, T ] (bounded horizon). We write ξx([0, T ]) to denote the
set of states visited by the trajectory ξx during interval [0, T ]. Then the set
reachable from X0 within interval [0, T ] is defined as:

Reach≤T (X0) =
⋃

x∈X0

ξx([0, T ])

For t ∈ [0, T ], we define the set reachable at time t to be

Reacht(X0) =
⋃

x∈X0

ξx(t).

Similarly,

Reach<t(X0) = Reach≤t(X0) \Reacht(X0) =
⋃

x∈X0

ξx([0, t[).

3.4.2 Sampling Trajectories

In this section, we extend sampling definitions from points to trajectories.
This is done by extending the distance d to the space of functions mapping
[0, T ] to R

n. If ξ1 and ξ2 are two such functions, then let d(ξ1, ξ2) be

d(ξ1, ξ2) = sup
t∈[0,T ]

d(ξ1(t), ξ2(t)),

which is one possible extension of the distance from points to functions.
This allows to naturally extend samplings of the initial set to samplings of
the reachable set : let S be a sampling of X0 then the set

ξS =
⋃

x∈S

ξx([0, T ])

defines a finite set of trajectories, by definition included in Reach≤T (X0),
and thus is a sampling of the reachable set. Since we defined a metric on
trajectories, the definition of dispersion given in the previous section applies
to sampling of trajectories. Then our goal is to find a sampling S of X0 such
that the dispersion of ξS in Reach≤T (X0) is less than a given δ > 0.
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3.5 First Algorithm

The first algorithm that we propose to compute an approximation of the
reachable set simply consists in computing trajectories, memorizing the re-
gions they visit, and stop when no new region is visited.

We first choose a partition of R
n with a countable number of elements,

which we index with Z
n, using multi-indexes of the form

j = (j1, j2, . . . , jn) .

A region is then noted Rj, so that the union of all Rj is exactly R
n:

R
n =

⋃

j∈Zn

Rj.

Because this is a partition, for every x in X , there is a unique region R that
contains it. We denote by j(x) the index of this region. Since we aim at
finding samplings with dispersion δ, we consider regions that are subsets of
balls with a radius equal to δ

2 . This way, if two trajectories go through the
same region, we know from the triangular inequality that within this region,
they cannot be distant for more than δ from each other.

Using L∞ distance, δ
2 -balls are cubes with edges of size δ (say δ-cubes).

Then we can partition R
n with the sets of (half-opened) δ-cubes of the form:

Rj = {x ∈ R
n| δj ≤ x < δ(j + 1)} (3.2)

Algorithm 2 Generic Sampling-Based Reachability Algorithm

Require: δ > 0
Set C0 = ∅, k = 0 and S0 such that αX0(S0) ≤ δ.
repeat

for all x in Sk do
Ck+1 ← Ck ∪ {Rj such that ξx([0, T ]) ∩Rj 6= ∅}

end for
Sk+1 = ρX0(Sk) /* Refine the sampling of X0 */

until Ck+1 = Ck
return Sk

Figure 3.5 illustrates the behavior of the algorithm in a very simple case.
On Figure 3.6, we show sampling trajectories and the regions they visit for
another example. Note that on these figures, the initial set was refined
locally around the points that generated trajectories visiting new regions,
which is a way to improve the efficiency of the algorithm.

55



Chapter 3. Sampling-Based Reachability Analysis

δ
X0

(a) The set X0 here is a single region.

(b) The sampling is refined and new regions are found.

(c) The algorithm refines once more; no new region is discovered, thus it
stops.

Figure 3.5: Behavior of Algorithm 2 in a simple case.
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X0

Figure 3.6: Another example demonstrating Algorithm 2 behavior. The
system dynamics has 3 state variables and is linear time varying (LTV).
Note that in this example, the initial set is two dimensional.

3.5.1 Algorithm Properties

It is important to emphasize that since we are doing sampling-based reach-
ability, the relevant output of Algorithm 2 is the sampling of the initial set
that we have obtained, which we note Sδ. Here, the regions are used to pro-
vide a stopping criterion but are not meant for being used an approximation
of the reachable set as in other approaches for set-based reachability analysis.

The following proposition characterizes the termination of Algorithm 2.

Proposition 5. Assume that ((x, t) 7→ ξx(t)) is continuous on X0 × [0, T ].
Then for all δ > 0, Algorithm 2 terminates.

Proof. X0 being compact implies that X0× [0, T ] is also compact. We know
that continuity on a compact set implies uniform continuity on this set then
ξx(t) is uniformly continuous on X0 × [0, T ]. Let δ > 0. Then there exists
ǫ > 0 and τ > 0 such that if d(x,x′) ≤ ǫ and |t−t′| ≤ τ , d(ξx(t), ξx′(t′)) ≤ δ

2 ,

which implies that d(ξx, ξx′) ≤ δ
2 .

Now, since the refinement operator is complete, after a finite number of
steps k, the dispersion of Sk is less than ǫ. By definition of the dispersion,
it means that for every x in Sk+1 at the next iteration, there is an x′ in
Sk such that d(x,x′) ≤ ǫ, and thus d(ξx, ξx′) ≤ δ

2 . Then ξx will visit the
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same regions as ξx′ did at the previous iteration, meaning that we will have
Ck+1 = Ck forcing the algorithm to stop.

Note that if the system is hybrid as discussed in Section 2.3, Proposition
5 also holds thanks to Theorem 6 about continuity of trajectories (provided
maybe X0 be partitioned w.r.t. the relation ∼q and that the refinement
operator is complete on each element of the partition, but we do not enter
the detail of this discussion here).

Then Algorithm 2 terminates and at the end, we know that we have
found a sampling Sδ = Sk+1 refining a sampling Sk such that for each x in
Sδ there is an x′ in Sk with d(ξx, ξx′) ≤ δ. Unfortunately, this is not enough
to ensure that the dispersion of ξSδ

inside Reach≤T (X0) be less than δ. In
fact, for a given refinement strategy, it may always be the case that we can
find two samplings, one refining the other such that their trajectories explore
the same set of regions while providing a poor coverage of the reachable set.
Such a situation is illustrated in Figure 3.7.

The argument of uniform continuity in the proof says that for a given δ,
there is a corresponding initial dispersion ǫ for which we get a sampling of
the reachable set with dispersion δ. Then we say that if we keep refining,
X0 is eventually sampled with a dispersion ǫ and the algorithm stops at
most one step further. The problem is that the algorithm may stop before
reaching this ǫ. Thus Algorithm 2 by itself does not provide completeness
guarantees. For this, we need to be able to relate explicitly the dispersion ǫ
of the initial set with the dispersion δ of the reachable set that we want to
obtain, in order to get a more reliable stopping criterion. This will be the
topic of the next chapter.

3.5.2 Practical Aspects

Despite the fact that Algorithm 2 has few theoretical guarantees, it has
several important practical interests.

Low computational cost. Algorithm 2 can be implemented efficiently: if
the regions are fixed cubes of the form given by (3.2), then the computational
cost that the algorithm adds to the simulation (or observation) of the system
can be made linear in the number of dimensions of the state space. In fact,
once we have obtained a state y = ξx(t), we need only to:

1. Find the index j such that y belongs to Rj;

2. Decide whether Rj had already been visited;

3. If not, mark Rj as visited.
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(a) (b)

Figure 3.7: An example where Algorithm 2 may stop prematurely if δ is too
coarse. The picture (b) represents a qualitatively correct sampling of the
reachable set. For (a), with larger cubes, the algorithm misses an important
number of trajectories which stem from a small portion of initial set in its
bottom left corner.

Since a region Rj can be identified with its index j, the idea is to use a
hash table to store the indices corresponding to the visited regions. Efficient
hash functions for integer indexes are standard and operations 2 and 3 above
can then be made in constant time in average. Operation 1 requires to take
the integer part of n reals and thus, the overall complexity is actually linear
in the number of dimensions n of the system.

Curse of dimensionality restricted to the parameter set. Even if
the additional computational cost over that of simulation is linear w.r.t. n,
the number of simulations needed to complete a run of the algorithm is likely
to be exponential. This is demonstrated, in particular, by the fact that the
minimum number of points needed to get a given dispersion ǫ in the cube
is

(
1
2ǫ

)n
, as mentioned in Section 3.3. Thus in the general case, the method

clearly suffers from the curse of dimensionality.

Here however, we argue that in the process of validating the behaviors of
a complex system, it is seldom the case that we need to analyze uncertainty
for every state variable of the system. More often, even if there may be a
“large” number of variables, only a small number of parameters are uncer-
tain and require reachability analysis. In other words, it is often the case
that the dimension of the initial X0, i.e. the set of uncertain parameters,
have a dimension n0 which is significantly smaller than n. Since we sample
only the initial set X0 and not the whole state space X , the exponential
in the complexity applies to n0, not to n. This applies, in general, for all
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trajectory-based methods: they can be efficient for systems with large num-
ber of variables n, provided that the number of uncertain parameters n0

remains small.

Wide applicability. Algorithm 2 does not need a model of the dynamics
and thus is widely applicable. Also, in practice, the lack of completeness
result can often be dealt with some systematic application of the algorithm
with different (decreasing) values for δ until no significant differences are
found in the result. Thus, for a rather large class of problems requiring a
form of reachability analysis, the use of Algorithm 2 can represent a good
first approximative approach, or if all other methods fail for some reason, a
potential last resort.

3.6 Extension to Unbounded Horizon

In this section, we assume that the dynamics is time-invariant and present
an extension from bounded horizon to unbounded horizon reachability. The
goal is to compute, if it is bounded, the set:

Reach(X0) =
⋃

x∈X0

ξx([0,+∞[)

We first give a formal algorithm assuming that we can compute exact bounded
horizon reachable sets, then we propose an adaptation to the sampling-based
case.

3.6.1 Formal Algorithm

The unbounded horizon reachable set can be computed by iteratively ap-
plying the Reach≤T operator:

R0 ← X0, i← 0
repeat

Ri+1 ← Reach≤T (Ri)
until Ri+1 = Ri

It is easy to show that this fix point iteration converges to an invariant
which is actually Reach(X0). However the resulting algorithm is not com-
putationally efficient since it implies redundant computations. For instance,
we can observe that

R2 = Reach≤T (Reach≤T (X0))

= Reach≤T (X0 ∪ Reach≤T (X0) \ X0)

= Reach≤T (X0) ∪ Reach≤T (Reach≤T (X0) \ X0))

= R1 ∪Reach≤T (R1 \ X0). (3.3)
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In the right hand side of (3.3), R1 has already been computed, then the
operator Reach≤T needs only be applied to the set R1 \ X0. The second
observation is that once the operator Reach≤T has been applied, it needs
only be applied, at the following iteration, to the end points of the resulting
set. We state this formally in the following lemma:

Lemma 3. For all X ,

Reach≤T (Reach≤T (X )) = Reach≤T (X ) ∪ Reach≤T (Reach=T (X )).

Proof. It is sufficient to prove the inclusion ⊂. Let y be in Reach≤T (Reach<T (X ))
and not in Reach≤T (X ). By definition, there exists some x in X , t1 ≤ T
and t2 < T such that

y = ξ(ξx(t1); t2)

= ξx(t1 + t2)

Because y is not in Reach≤T (X0), t1 + t2 is greater than T , then

y = ξ(ξx(T ); t1 + t2 − T ).

The fact that t1+t2−T is less than T proves that y is in Reach≤T (Reach=T (X)).

Taking this into consideration, we can partition Ri+1 as

Ri+1 = Ri ∪ Reach<T (Rnext
i ) ∪Reach=T (Rnext

i ).

where Rnext
i is defined recursively as

{
Rnext

0 = X0,
Rnext

i+1 = Reach=T (Rnext
i ) \

(
Ri ∩ Reach<T (Rnext

i )
) (3.4)

This is summarized in algorithm 3.

Algorithm 3 Infinite horizon reachable set

1: R0 ← X0, R
next
0 ← X0

2: k ← 0
3: repeat
4: Rk+1 ←Rk ∪ Reach≤T (Rnext

k )
5: Rnext

k+1 ← Reach=T (Rnext
k ) \ (Reach=T (Rnext

k ) ∩Rk)
6: until Rnext

k+1 = ∅
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3.6.2 Sampling-Based Adaptation

Next we propose a sampling based adaptation of Algorithm 3. For this,
we assume that we have a sampling-based version of the operator Reach≤T ,
that we note SReach≤T , and such that SReach≤T (X0) returns a sampling
S of X0 such that ξS([0, T ]) is a sampling of Reach≤T (X0) with the desired
dispersion δ. We can easily use it to define SReach[kT,(k+1)T ](X0), where
k ∈ N and which returns a sampling S such that ξS([kT, (k + 1)T ]) has the
desired dispersion in Reach[kT,(k+1)T ](X0). The idea of the algorithm is then
to maintain at each step k

• a sampling Sk for Reach≤kT (X0)

• a set of visited regions Ck

• a subset Snext
k of Sk used to compute Sk+1

and to stop when Snext
k is empty. The complete algorithm is given by Algo-

rithm 4.

Computation of Sk+1 Clearly Sk corresponds to Rk in Algorithm 3 and
Snext

k to Rnext
k . More precisely, if ǫk is the dispersion of Sk in X0, the set

Bǫk
(Snext

k )∩X0 is a subset of X0 from which trajectories explore new regions
of the state space during the time interval [kT, (k + 1)T ]. Let Snew

k be

Snew
k = SReach[kT,(k+1)T ]

(
Bǫk

(Snext
k ) ∩ X0

)
.

Then Sk+1 is simply defined as

Sk+1 = Sk ∪ S
new
k

Computation of Snext
k+1 To compute Snext

k+1 , we have to find in Snew
k which

trajectories end in new regions, and thus have to be continued, and which
end in previously explored regions, and thus can be stopped. We do this
together with the update of the set of visited regions. Thus we initialize
Ck+1 with Ck and then for each element x in Snext

k

• we check whether the end point y = ξx ((k + 1)T ) of trajectory ξx is
not in a region already in Ck+1; if it is the case, y is inserted in Snext

k+1 ;

• then we add to Ck+1 all the regions explored by ξx during the interval
[kT, (k + 1)T ].

We can prove that if Reach(X0) is bounded, then the algorithm termi-
nates. However, for reasons similar to those developed in Section 3.5.1, the
algorithm may terminate before exploring the whole reachable set with a
precision δ.
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Algorithm 4 Unbounded horizon sampling-based reachability algorithm

S0 ← ∅, C0 ← ∅, S
next
0 ← ∅,

Snew
0 ← SReach≤T (X0)
k ← 0
loop
Sk+1 = Sk ∪ S

new
k

ǫk+1 ← αX0(Sk+1)
Ck+1 ← Ck

/* Computation of Snext

k+1 and Ck+1 */
for all x ∈ Snew

k do
y← ξx ((k + 1)T )
if R(y) /∈ Ck+1 then

insert y in Snext
k+1

end if
Ck+1 ← Ck+1 ∪ {Rj such that ξx([kT, (k + 1)T ]) ∩Rj 6= ∅}

end for

/* Stop if no trajectory left to continue */
if Snext

k+1 = ∅ then
return Sk+1

end if

/* Else compute sampling trajectories on next time interval */
k ← k + 1
Snew

k = SReach[kT,(k+1)T ]

(
Bǫk

(Snext
k ) ∩ X0

)

end loop

63



Chapter 3. Sampling-Based Reachability Analysis

64



Chapter 4

Reachability Using
Sensitivity Analysis

In the previous chapter, we extended the classical definitions and notions
of sampling theory from finite sets of points to finite sets of trajectories.
Then we presented an algorithm that tries to compute a sampling of the
reachable set with a given dispersion δ. The idea was to refine the sampling
of the initial set and to compute the corresponding trajectories until we
could not find trajectories that were distant of more than δ from those
previously computed. We mentioned however that this method could stop
before ensuring that the actual reachable set was sampled with the desired
dispersion.

In this chapter, we take a different approach. For a sampling of X0

with a given dispersion ǫ, we try to evaluate the actual dispersion that we
obtain inside the reachable set by “observing” how the initial dispersion
evolves during time along the trajectories. To this end, we define and use
the concept of an expansion function which characterizes how neighboring
trajectories are getting closer to or further apart from each other as time goes
by. Then we show that this notion can be effectively approximated1 using
techniques used for sensitivity analysis implemented in standard numerical
integrators.

4.1 Expansion Function

4.1.1 Definition

The intuitive idea is to draw “tubes” around trajectories so that the union of
these tubes will provide an over-approximation of the reachable set. Given
a state x0 and an initial radius ǫ, The expansion function then maps t to
the radius of the tube at time t. Formally we have the following definition.

1For linear time-varying systems, as we show, these two notions coincide.
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Definition 8 (Expansion function). Given x0 ∈ X0, and ǫ > 0, the expan-
sion function of ξx0, denoted by Ex0,ǫ : R

+ 7→ R
+ maps t to the smallest

non-negative number δ such that all trajectories with initial state in Bǫ(x0)
reach a point in Bδ(ξx0(t)) at time t:

Ex0,ǫ(t) = sup
d(x0,x)≤ǫ

d
(
ξx0(t), ξx(t)

)
(4.1)

A first property of the expansion functions is that it approaches 0 as ǫ
tends toward 0 (which can be phrased as: the smaller is the initial radius,
the smaller is the radius at time t):

∀t > 0, lim
ǫ→0
Ex,ǫ(t) = 0 (4.2)

This directly results from the continuity of ξx(t) w.r.t. x.

In practice it is useful to consider the expansion in one particular di-
rection, i.e. the diameter of the projection of Reach=t [Bǫ(x0)] on one axis.
Thus we define

Definition 9 (Expansion in direction i). The expansion in direction i at
time t, noted E i

x0,ǫ(t) is the quantity:

E i
x0,ǫ(t) = sup

d(x0,x)≤ǫ
d
(
pi (ξx0(t)) , pi (ξx(t))

)

where pi(y) = yi is the ith coordinate of vector y ∈ R
n.

Obviously, using the L∞ metric, then the expansion function is the max-
imum over all directions of the directional expansions:

Ex0,ǫ(t) = max
i∈{1,...,n}

E i
x0,ǫ(t)

4.1.2 Properties

Another interpretation of the definition
is that Ex0,ǫ(t) gives the radius of the
ball which tightly over-approximates
the reachable set from the ball Bǫ(x0)
at time t. Obviously, if we take sev-
eral such balls so that the initial set X0

is covered, we obtain a corresponding
cover of Reach=t(X0). This is stated in
the following

x0

ξx0(t)

ǫ

Reach=t

[
Bǫ(x0)

]

Ex0,ǫ(t)

Proposition 6. Let S = {x1, . . . ,xk} be a sampling of X0 such that
⋃k

i=1 Bǫi(xi)
is a ball cover of X0 for some {ǫ1, . . . , ǫk}. Let t > 0 and for each 1 ≤ i ≤ k,
let δi = Exi,ǫi(t). Then

⋃k
i=1 Bδi

(ξxi(t)) is a ball cover of Reach=t(X0).
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Proof. By definition, the ball cover of X0 contains X0, and each Bδi
(ξxi(t))

contains Reach=t(Bǫi(xi)), and the rest follows from the commutativity of
the dynamics with set union and containment.

In particular, if S is a sampling of X0 with dispersion ǫ then we are in
the case where ǫi = ǫ for all 1 < i < k and since the result is true for all
t ∈ [0, T ], we have the following

Corollary 1. Let S = {x1,x2, . . . ,xk} be a sampling of X0 with dispersion
αX0(S) = ǫ. Let δ > 0 be an upper bound for Exi,ǫ(t) for all 1 < i < k and
t ∈ [0, T ], then the following inclusions hold

Reach[0,T ](X0) ⊆
⋃

x∈S

BEx,ǫ(ξx) ⊆
⋃

x∈S

Bδ(ξx) ⊆ Bδ

(
Reach[0,T ](X0)

)
(4.3)

Proof. The first inclusion is a direct application of the proposition. The
second results from the fact that δ is an upper-bound and the third inclusion
is due to the fact that ∀(xi, t) ∈ S × [0, T ], ξxi(t) ∈ Reach[0,T ](X0).

In other words, if we bloat the sampling trajectories starting from S
with a radius δ, which is an upper bound for the expansion functions of
these trajectories, then we get an over-approximation of the reachable set
which is between the exact reachable set and the reachable set bloated with
δ. Because of (4.2), it is clear that δ, and then the over-approximation error,
decreases when ǫ gets smaller.

As another consequence, again given S with dispersion ǫ, we can over-
estimate the dispersion of ξS(t) in Reach=t(X0). We note this upper bound
αt(S,X0). It is:

αt(S,X0) = max
x∈S
Ex,ǫ(t) (4.4)

This can be extended to the interval [0, T ]:

α≤T (S,X0) = sup
t∈[0,T ]

αt(S,X0) (4.5)

which in turn is an upper-bound for the dispersion of ξS in Reach≤T (X0).
Expansion function can then be a very useful tool for over-approximating

the reachable set of the system. For the moment, we assume that we are able
to compute it exactly. In Section 4.3, we show how it can be approximated
using sensitivity functions.

4.1.3 A Formal Algorithm

From the definitions and the properties that we have established so far, we
are able to write another sampling-based reachability algorithm. It takes
δ > 0 as input and returns a sampling S of the initial set such that the
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dispersion of ξS in Reach≤T (X0) is less than or equal to δ. It initializes
with a sampling S0 of X0 with a dispersion less or equal to δ. At each step,
it computes the dispersion ǫk of Sk in X0, the set Sk(t) = {ξx(t),x ∈ Sk}
and the corresponding values of the expansion function, and estimates the
dispersion δk of ξSk

in Reach≤T (X0) using equation (4.5). If δk is smaller
than δ, the algorithm returns Sk, otherwise it loops with Sk+1 refining Sk

using a complete refinement operator.

Algorithm 5 Sampling based reachability algorithm using expansion func-
tion.
Require: δ > 0

Define S0 s.t. αX0(S0) ≤ δ and k = 0
loop

Compute ǫk = αX0(Sk)
Compute δk = α≤T (Sk,X0) using (4.4) and (4.5)
if δk < δ then

return Sk

else
Sk+1 ← ρX0(Sk), k ← k + 1 /* Refine the sampling */

end if
end loop

As for Algorithm 2, termination of Algorithm 5 is guaranteed by the
completeness of the refinement operator, which implies that lim ǫk = 0 and
so lim δk = 0 by (4.2). Then for some k ≥ 0, δk < δ and then Algorithm 5
terminates.

4.1.4 Local refinement

At each step in the previous algorithm, the current sampling is refined glob-
ally. However, it may happen that some parts of the initial set need less
refinement than others. Intuitively, trajectories for which the expansion
function has small values will tend to get closer to each others, thus disper-
sion will tend to decrease and then need less refinement. Conversely, if the
expansion function has large values, trajectories move away from each other,
creating “holes” in the reachable set and so more trajectories are needed to
fill them. Figure 4.1 is a good illustration of this phenomenon. We used the
dynamics of the tunnel diode oscillator, detailed in the examples section.
To refine locally, we have to look at the values of the expansion function for
each trajectory and choose to refine in the neighborhood of those for which
these values are large. Formally,

‖Ex,ǫ‖ = sup
t∈[0,T ]

|Ex,ǫ(t)|
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represents the maximum radius of the “tube” coverage of the trajectory
starting from x. Thus, we need only to refine around those for which this
value is more than δ. In Algorithm 6, at each step, we partition Sk between
two sets, Snew and Su, which contain initial states from which the expansion
function takes values less than and more than δ. Then Snew is appended
to the final sampling to be returned while the algorithm loops with Sk+1

refining X0 locally around Su. The algorithm stops when Su is empty.

Algorithm 6 Sampling based reachability algorithm with local refinement.

Define S0 s.t. αX0(S0) ≤ δ
k ← 0, S ← ∅, Su ← S0,
loop

Compute ǫk = αX0(Sk,Su) /* local dispersion */
Compute the partition Sk = Snew ∪ Su

Where Snew = {x ∈ S s.t. ‖Ex,ǫ‖ ≤ δ}
And Su = {x ∈ S s.t. ‖Ex,ǫ‖ > δ}
S ← S ∪ Snew

if Su = ∅ then
return S

else
Sk+1 ← ρX0(Sk,Su)

end if
end loop
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(a) Initial sampling

x∗

(b) Local refining

Figure 4.1: Local refinement illustration. The goal is to get a dispersion
for trajectories less or equal to δ = .03. The initial set is [.25, .35] × {.25}.
The expansion function has a peak for trajectories starting around the point
x∗ = (.27, .25). On the right of this point, it has smaller values. As a result,
trajectories seeded in a neighborhood of x∗ move away from each others,
while those seeded on the right of this point get closer. The algorithm con-
sequently refines the sampling near x∗ until the dispersion of the trajectories,
taken from their initial states up to their end states, gets smaller than δ.
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4.2 Sensitivity Analysis

The concept of sensitivity to initial conditions is a classic topic in the field
of dynamical systems.

It is concerned with the question of what is
the effect at time t of the perturbation of the
initial state of a trajectory dx

dx(t)?

In this section, we recall that dx(t) can be approximated by a linear trans-
formation of dx and how this linear transformation, given by the so-called
sensitivity matrix, can be computed.

4.2.1 Sensitivity Analysis of Continuous Systems

We first consider continuous dynamics of the form:

ẋ = f(t,x), x(0) ∈ X0. (4.6)

In Chapter 2, we noted that the flow ξx0 was continuous w.r.t x0. In fact, it
is also the case that if f is C1, then ξx0 is also differentiable w.r.t x0 [HS74].
Its derivative, that we note sx0 , is the sensitivity matrix. At time t it is:

sx0(t) ,
∂ξx0

∂x0
(t). (4.7)

where sx0(t) is a square matrix of order n. To compute the sensitivity
matrix, we first apply the chain rule to get the derivative of sx0 w.r.t. time:

∂

∂t

∂ξx0

∂x0
(t) =

∂

∂x0
f
(
t, ξx0(t)

)
= Jf (t, ξx0(t))

∂ξx0

∂x0
(t)

which gives the following sensitivity equation:

ṡx0(t) = Jf (t, ξx0(t)) sx0(t) (4.8)

where Jf (t, ξx0(t)) is the Jacobian matrix of f along trajectory ξx0 . Hence,
this equation is a linear time-varying ordinary differential equation (ODE).
Note that this is a matrix differential equation but it can be viewed as a
system of n ODEs of order n. The ijth element of sx0(t) basically represents
the influence of variations in the ith coordinate xi

0 of x0 on the jth coordinate
xj(t) of ξx0(t). Then it is clear that the initial value sx0(0) of sx0 must be the
identity matrix, In. Efficient solvers exist that implement the computation of
sensitivity functions (in our implementations, we use the tool suite described
in [HPNBL+05]).
An interesting particular case is when the dynamics is linear time-varying,
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i.e. when f(t,x) = A(t) x. Indeed, in this case, we know that the Jacobian
matrix of f is just the matrix A which means that sensitivity matrix sx0(t)
shares the same dynamics as the flow ξx0. In fact, the columns of sensitivity
matrix are solutions of (4.6) where initial conditions are the canonical vectors
of R

n.

4.2.2 Sensitivity Analysis of Hybrid Systems

Extending sensitivity analysis to the hybrid case is simple in the case of time-
dependant switchings. Indeed, at the time when a switching occurs from a
mode with dynamics f1 to another mode with dynamics f2, the evolution of
the sensitivity matrix switches as well in the sense that the Jacobian of f1

is replaced by that of f2 in the sensitivity equation.

The situation is more complex in case of state-dependant switchings: In
general, the sensitivity matrix is discontinuous and the discontinuity jump
has to be evaluated. In the following, we detail how this is done in the case
of a single transition fired by the zero-crossing of a smooth function g. For
this event, the dynamics of the system is described by:

ẋ =

{
f1(t,x) if g(x) < 0
f2(t,x) if g(x) ≥ 0

,x(0) ∈ X0 (4.9)

We assume that the trajectory ξx0 performs a transition at time τ > 0
so that g(ξx0(t) < 0) ∀t ∈ [0, τ [ and g(ξx0(t)) = 0. We write x∗ = ξx0(τ)
and we assume that x∗ is not a grazing state ,i.e.

〈∇xg(x
∗), f1(τ−,x∗)〉 6= 0

which means, as we saw in Chapter 2, that trajectory does not cross the
frontier tangentially.
In this setting, we consider the most standard behavior of a hybrid system,
i.e. it follows a continuous trajectory for some time, then switches to another
continuous mode for again some time and so on. During a continuous evo-
lution, we know how sensitivity evolves. The remaining question is about
its continuity at transition times. We have the following

Proposition 7. Under the assumptions mentioned above, the sensitivity
function at time τ satisfies:

s(τ+)− s(τ−) =
dτ

dx0

(
f2(τ,x∗)− f1(τ,x∗)

)
(4.10)

where
dτ

dx0
=

〈∇xg(x
∗), sx0(τ)〉

〈∇xg(x∗), f1(τ,x∗)〉
(4.11)
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x = x0 + ∆x0

x0

ξx0(τ−)

ξx0(τ+)

ξx(τ−)

ξx(τ+)

g(x) = 0

≃
s(
τ
− )∆

x 0

≃
s(
τ

+ )∆
x 0

Figure 4.2: Discontinuity of sensitivity function. The jump condition 4.10
results from the fact that between τ− and τ+, the flows ξx0 and ξx evolve
with different dynamics f1 and f2.

Proof. We first emphasis the fact that the transition time is a function of
x0. Then if we differentiate ξx0(τ) w.r.t. x0, it gives :

d

dx0
ξx0(τ) =

∂ξx0

∂x0
(τ) +

∂ξx0

∂t
(τ)

dτ

dx0
(4.12)

= sx0(τ) + ξ̇x0(τ)
dτ

dx0
(4.13)

Since the flow is continuous at τ , we have

d

dx0
ξx0(τ−) =

d

dx0
ξx0(τ+)

⇔ sx0(τ−) + ξ̇x0(τ−)
dτ

dx0
= s(τ+) + ξ̇x0(τ+)

dτ

dx0

From this, we deduce:

sx0(τ+)− sx0(τ−) =
dτ

dx0
(f2(τ,x∗)− f1(τ,x∗))

So the jump condition for the sensitivity function is given by the right
hand side of (4.10), which is illustrated by figure 4.2. To compute it, we still
need to evaluate the sensibility of the transition time to the initial condition
x0, i.e. the derivative of τ w.r.t. x0. This can be done by exploiting the
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transition condition g(ξx0(τ)) = 0. By continuity of trajectories and g, there
is a neighborhood N of x0 such that for all x in N , we have g(ξx(τ(x)) = 0.
Then, clearly,

d

dx0
g(ξx(τ(x)) = 0 (4.14)

Applying the chain rule to this expression, we get:

〈∇xg(x
∗),

dξx0

dx0
(τ)〉 = 0 (4.15)

If we report (4.12) in this expression, we get:

〈∇xg(x
∗), sx0(τ)〉 +

dτ

dx0
〈∇xg(x

∗), f1(τ, ξx0(τ)〉 = 0 (4.16)

Hence, since x∗ is not a grazing point,

dτ

dx0
=

〈∇xg(x
∗), sx0(τ)〉

〈∇xg(x∗), f1(τ, ξx0)〉
(4.17)

Proposition 7 provides a constructive formula to compute the values of
jumps of sensitivity at mode changes. Then in most cases the sensitivity
can be computed for hybrid trajectories.

4.3 Sensitivity Analysis and Expansion Functions

In this section, we show how we can compute expansion functions using
sensitivity analysis.

4.3.1 Quadratic Approximation

The following important result relates sensitivity functions to expansion
functions:

Theorem 7. Let x0 ∈ X0, t ∈ [0, T ] and assume that f is C2. Then there
exists a real M > 0 such that ∀ǫ > 0:

|Ex0,ǫ(t)− ‖sx0(t)‖ ǫ | ≤ Mǫ2 (4.18)

Proof. Since f is C2, the flow ξx0 is also C2 w.r.t. x0 ([HS74]). Let x ∈ X0.
Then the Taylor expansion of ξx0(t) around x0 shows that there exists a
bounded function ϕ such that:

ξx(t) = ξx0(t) +
∂ξx0

∂x0
(t) (x− x0) + ‖x− x0‖

2 ϕt(x− x0)

⇔ ξx(t)− ξx0(t) = sx0(t) (x− x0) + ‖x− x0‖
2 ϕ(x − x0) (4.19)
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Equation (4.19) implies that ∀x ∈ Bǫ(x0),

‖ξx(t)−ξx0(t)‖ ≤ ‖sx0(t)‖‖x−x0‖+‖x−x0‖
2 ‖ϕt(x−x0)‖ ≤ ‖sx0(t)‖ǫ+ǫ2 M

which in turn implies that

Ex0,ǫ − ‖sx0(t)‖ǫ ≤ Mǫ2 (4.20)

On the other hand, 4.19 can be rewritten as

sx0(t) (x0 − x) = ξx(t)− ξx0(t)− ‖x− x0‖
2 ϕ(x− x0)

⇒ ‖sx0(t) (x0 − x)‖ ≤ ‖ξx(t)− ξx0(t)‖+ ‖x− x0‖
2 ‖ϕ(x − x0)‖

≤ Ex0,ǫ(t) + ǫ2M (4.21)

From the definition of matrix norm, we know that we can find a unit vector
y such that ‖sx0(t)‖ = ‖sx0(t) y‖. The inequality (4.21) is true for all
x ∈ Bǫ(x0) so in particular for x = x0 + ǫy in which case

‖sx0(t) (x0 − x)‖ = ‖sx0(t) (ǫy)‖ = ‖sx0(t)‖ǫ.

If we substitute in the right hand side of (4.21) and subtract Ex0,ǫ(t) , we
get:

‖sx0(t)‖ǫ − Ex0,ǫ(t) ≤ Mǫ2 (4.22)

The conjunction of inequalities (4.20) and (4.22) proves the result.

Moreover, we can show that for hybrid systems where the dynamics fqi

are C2, the result still holds if

1. ξx0 does not have grazing points before t (meaning that we can use
Equation 4.10 to compute the sensitivity matrix);

2. ǫ is sufficiently small so that if d(x0,x) ≤ then ξx0 and ξx have the
same discrete behavior, i.e. ξx ∼q ξx0 .

4.3.2 Exact Result for Affine Systems

In this section, we consider the particular case where the dynamics of the
system is affine, i.e. when f(t,x) = A(t)x + b(t), where A(t) and b(t) are
time varying matrices of appropriate dimensions, then expansion function
can be computed exactly.

Theorem 8. Let x0 ∈ X0, t ∈ [0, T ] and assume that f is affine. Then
∀ǫ > 0:

Ex0,ǫ(t) = ‖sx0(t)‖ǫ (4.23)
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Proof. This follows immediately from the fact that if f is affine, ϕ in equa-
tion (4.19) is null. Indeed, following the remark about affine dynamics at
the end of the previous section, we know from (4.8) that the lines of matrix
sx0(t) are solutions of the homogeneous system ẋ = A(t)x. Since this is
a linear system, the vector sx0(t) (x − x0) is also solution of this system.
Then ξx0(t) + sx0(t) (x−x0) is solution of the full system ẋ = A(t)x + b(t).
Furthermore, as sx0(0) is the identity matrix,

ξx0(0) + sx0(0) (x− x0) = x0 + (x− x0) = x.

In other words, ξx0 + s (x− x0) and ξx are both solutions of (4.6) with the
same initial conditions so by uniqueness of the solutions, they are equal.
Then clearly,

ξx(t)− ξx0(t) = sx0(t) (x0 − x)

⇒ sup
x∈Bǫ(x0)

‖ξx(t)− ξx0(t)‖ = sup
x∈Bǫ(x0)

sx0(t) (x0 − x)

⇔ Ex0,ǫ(t) = ‖sx0(t)‖ǫ.

Another important simplification in the case where the dynamics is affine
is that the sensitivity matrix sx0 does not depend on x0, so that it can be
computed only once and be reused for all simulations.

4.3.3 Bounding Expansion

From what precedes, then, we can approximate Ex0,ǫ(t) with the quantity
‖sx0‖ǫ and use it to implement Algorithm 6. In the case of affine systems,
the implementation is exact and in the general case, we know that the error
is quadratic with respect to ǫ. If this approximation is not satisfactory and
we need a more conservative result, we can try to find an upper bound of
the expansion function by maximizing the norm of sensitivity matrix on X0.
In fact, applying Taylor’s inequality to ξx0(t) as a function of x0, we have
for all x in X0

‖ξx0(t)− ξx(t)‖ ≤ sup
x0∈X0

‖
∂ξx0(t)

∂x0
‖ ‖x0 − x‖.

So if we note

s̄(t) = sup
x0∈X0

‖
∂ξx0(t)

∂x0
‖ = sup

x0∈X0

‖sx0(t)‖

then
‖ξx0(t)− ξx(t)‖ ≤ s̄(t) ‖x0 − x‖ (4.24)

meaning that
Ex0,ǫ(t) ≤ s̄(t)ǫ. (4.25)
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This way, if we can compute s̄ or find an upper-bound, then we can bound the
expansion as well and get a conservative reachability algorithm, in the sense
that if we bloat our sampling trajectories using this bound, we get an over-
approximation of the reachable set. We can remark that Equation (4.24)
resembles Equation (2.5). In fact, in case the dynamics of the system is
given by f being L-Lipschitz, we could use e−Lt instead of s̄(t) in (4.25).
But if L is not easily available or if t becomes large, this exponential bound
is likely to be ineffective.

In the general case, it is clear that s̄ is not available, but since for each
point x in X0 we can compute a trajectory and its sensitivity, we can ap-
proach it by taking the maximum sensitivity over a finite number of points.
In that matter, the refinement strategy can be viewed as a form of di-
rect search optimization technique to find the maximum of the function
(x ∈ X0 7→ ‖sx(t)‖). This search of a maximum can be combined with the
computation of the sampling trajectories in order to form a sampling-based
reachability algorithm trying to be conservative. The algorithm takes δ > 0
as the desired dispersion and an additional parameter tol > 0 which repre-
sents the precision with which we want to approach the maximum sensitivity
s̄. The idea is to maintain at each step k an estimation s̄k of s̄ and use it to
over-estimate the dispersion δk of the sampling trajectories. Two conditions
forces the algorithm to stop, if they are met, or to refine the sampling and
proceed to step k + 1 else:

• s̄k approaches s̄ with the given precision tol and

• the estimated dispersion δk is less than the desired one δ.

A simple way to implement this algorithm is given by Algorithm 7.

An interesting fact with this algorithm is that the factor tol can be used
to tune the “conservativeness” of the reachability computation against the
computation cost. Different ways are possible to improve the efficiency of
this algorithm and would deserve further investigations. The more impor-
tant is certainly to try to take advantage of local refinements, e.g. using
a specialized maximization technique (maybe independent from the refine-
ment strategy used) to find quickly local maximum of the sensitivity and
then refine only where it is needed.

4.4 Application Examples to Oscillator Circuits

In this section, we analyzed the robustness of the oscillations of two oscillator
circuits. These circuits are designed to exhibit periodic behaviors under
certain initial conditions. The question is then: given a state leading to
oscillations, does the system still oscillates if the initial state is pertubated
with a given amplitude ?
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Algorithm 7 Sampling-based reachability algorithm

Require: δ > 0, tol > 0
Define S0 s.t. αX0(S0) ≤ δ
s̄0 ← max

x0∈S0

sup
t∈[0,T ]

‖sx0(t)‖

k ← 0
loop

ǫk ← αX0(Sk)
s̄k ← max

x0∈Sk

sup
t∈[0,T ]

‖sx0(t)‖

s̄k ← max(s̄k, s̄k−1)
δk ← s̄kǫk /* Evaluates the dispersion of ξSk

in Reach≤T (X0) */
if δk < δ and |s̄k − s̄k−1| ≤ tol then

return Sk

else
Sk+1 ← ρX0(Sk), k ← k + 1 /* Refine the sampling */

end if
end loop

This question is naturally expressed in terms of reachability analysis.
The initial set X0 is a neighborhood of a state from which the system oscil-
lates and the set reachable from X0 after a period T of oscillations is com-
puted. If Reach=T (X0) is found to be included in X0, it means that every
perturbated trajectory will remain in the neighborhood of the oscillations
and that these oscillations are stable. On the other case, some trajectories
may diverge from the oscillations.

As pointed in [GF06], this problem may be difficult for existing tools
performing conservative reachability analysis because most often, the reach-
able set is over-approximated using small time steps forward in time and
the error of over-approximation accumulates at each step. Consequently,
the error after one period may have become too large to conclude. Our
method, however, is much less sensitive to this error propagation problem.
If we neglect the inherent error of the numerical solver used to compute the
trajectories, In fact, the quality of the over-approximation that we get with
the sensitivity function depends on the precision with which we compute it
at time t, and this precision is guaranteed by the high order of the numerical
method used for the simulation.
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R L IL

C
VCVin

Id

Vd
(0.,0.)

(0.055,1e−3)

(0.35,1/9e−3)

(0.50,1e−3)

Figure 4.3: Schema of the Tunnel Diode Oscillator and diode characteristic.
The constants are C = 1pF, L = 1µH, G = 5mΩ−1, Vin = 0.3V .

4.4.1 The Tunnel Diode Oscillator

The first circuit is a tunnel-diode oscillator (TDO). Its schema is given on
Figure 4.3 and its dynamics is of the form:

V̇d =
1

C
(−Id(Vd) + IL)

İL =
1

C
(−Id(Vd) + IL).

where the diode characteristic Id(Vd) and the constants values are given on
Figure 4.3.

The initial set was given by IL(0) = .6 and VD(0) ∈ [.4, .6]. At T =
0.0146, all the trajectories completed a cycle by crossing the initial set. The
norms of the sensitivities of VD(T ) and IL(T ) are decreasing functions of
VD(0) so that they are bounded by their values at VD(0) = .4. As de-
scribed in the previous section, we can use these values to compute an
over-approximation of the expansion functions and thus of the set reach-
able at time T . It shows that the cycle is strongly contractive and thus
the oscillation are stable. The results of this analysis are summarized on
Figure 4.4.

4.4.2 The Voltage Controlled Oscillator

The second circuit is a voltage controlled oscillator (VCO) circuit. Its schema
is given on Figure 4.5. Its dynamics is governed by the following third-order
differential equation:

V̇D1 = −
1

C
(IDS(VD2 − VDD, VD1 − VDD) + IL1)

V̇D2 = −
1

C
(IDS(VD1 − VDD, VD2 − VDD) + Ib − IL1)

İL1 = −
1

2L
(VD1 − VD2 −R(2IL1 − Ib))

79



Chapter 4. Reachability Using Sensitivity Analysis

(a) (b)

(b’)

(c)

Vd

IL

s̄2 = 0.1556

s̄1 = 0.0197

X0

Sensitivity of IL

Sensitivity of VD

Sensitivity at T = 0.0146

Resulting Expansion at T = 0.0146

Figure 4.4: (a) a global view of the cycle of the TDO circuit. (b’) sensitivity
norms. (c) expansion at the end of trajectories. The union of the rectangles
is actually an over-approximation of the reachable set at time T = .0146.
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RR

CC

IDS1 IDS2

IL1 IL2

Vctrl

VDD

VD1 VD2

LL

Vtp = −0.69V

K ′
p = 86µA/V 2

W/L = 240µm/.25µm

λ = −0.07V −1

VDD = 1.8V

Ib = 18mA

C = 3.43pF

Vctrl = 0V

L = 2.857nH

R = 3.7Ω

Figure 4.5: Schema of the voltage controlled oscillator (VCO) circuit.

where IDS(VGS , VDS) is given piecewise by:

• VGS > Vtp then IDS = 0

• VGS ≤ Vtp and VDG > −Vtp then IDS = K ′
p

W
L

[
(VGS − VTP )VDS −

1
2V

2
DS

]
(1−

λVDS)

• VGS ≤ Vtp and VDG ≤ −Vtp then IDS =
K ′

p

2
W
L (VGS −VTP )2(1−λVDS)

More details on the design of this model can be found in [GF06]. We
applied the same methodology as for the TDO circuit. The initial set X0 was
given by IL(0) = 0, VD1 ∈ [1.55, 2.15] and VD2 ∈ [−1.4 − .8] and we could
compute bounds on the sensitivity at time T = 7.1, shortly after a period,
and the corresponding expansions showing that the cycle is contractive and
consequently that oscillations are stable from this initial set.

Proving the stability of oscillations for this circuit is more difficult than
for the TDO circuit since its limit cycle is less contractive. In our analysis,
we found a bound for the sensitivity norm of VD2(T ), in particular, which
was near .5. The results are given on Figure 4.6.

4.5 Safety Verification

As an application of the sampling-based reachability techniques presented
previously, in the following we are interested in a safety verification problem.
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(a) (b)

(b’)

(c)

VD1

VD1

VD2

VD2

VD2

IL1

IL1

IL1

Sensitivity of VD1

Sensitivity of VD2

Sensitivity of IL1

Sensitivity norm at t = 7.1

Figure 4.6: Cycle of the voltage controlled oscillator (VCO) circuit stability.
On (c) we note that the expansion in VD2 is less contractive than that in
VD1 , which is obvious on (b’) from the fact that sensitivity of VD2 is higher.
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We want to verify that the system is safe, in the sense that all trajectories
starting from any x0 ∈ X0 do not intersect a given set F of bad states. A
usual way to prove this property is to prove emptiness of the intersection
of the reachable set Reach≤T (X0) with the set F . Hence, the verification
algorithm that we propose is an adaptation of the sampling-based reachabil-
ity algorithms presented in the previous chapters, the main difference being
that the local refinement will now focus on finding falsifying trajectories.

The following proposition is a corollary of Proposition 6 and underlies
our verification strategy.

Proposition 8. Let S = {x1, . . . ,xk} be a sampling of X such that
⋃k

i=1 Bǫi(xi)
is a ball cover of X0. For t ∈ [0, T ] and 1 ≤ i ≤ k, let δi(t) = Exi,ǫi(t). If for
all t ∈ [0, T ],

Bδi(t)(ξxi(t)) ∩ F = ∅,

then for all trajectory ξx starting from x ∈ X0, the intersection of ξx and
the bad set F is empty and thus the system is safe.

In theory then, a unique trajectory can be sufficient to verify the sys-
tem. In fact, we can take one point x0, find ǫ such that X0 ⊂ Bǫ(x0), and
then check for all t ∈ [0, T ] that the intersection Bδ(t)(ξxi(t)) ∩ F , where
δ(t) = Ex0,ǫ(t) is empty. If this is the case, then the system is safe. Ob-
viously, the opposite case does not mean that the system is unsafe since
Bδ(t)(ξxi(t)) is actually an over-approximation of Reach=t(X0), rather it in-
dicates that the distance between the reachable set and F is less than δ(t). If
this indication is not sufficient, then more trajectories have to be simulated
until a sufficiently dense sampling of X0 is found.

To implement this idea, we modify Algorithm 6 to take into considera-
tion the distance to the bad set in the local refinement process. The first
obvious difference is that the algorithm stops as soon as a simulated trajec-
tory crosses the bad set F , in which case it returns unsafe and the falsifying
trajectory. While no such falsifying trajectory is found, it partitions the sam-
pling Sk into safe trajectories and uncertain trajectories. The latter ones
are those for which the neighborhood induced by the expansion function
has a non-empty intersection with the bad set, indicating that there might
be actually a falsifying trajectory in this neighborhood. Safe trajectories
are the other ones. Thus, the algorithm drops safe trajectories and refines
around uncertain ones. During this processing, thanks to the hierarchical
property of the sampling strategy, large pieces of the initial set can then be
“dropped” - or rather “validated” - at a time, and the algorithm quickly
focus on small risky parts of the initial sets. If it happens that the uncertain
set is empty, then the algorithm returns safe. Otherwise, the algorithm
behaves as Algorithm 6 and stops when the local dispersion of the uncertain
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trajectories is less than a given parameter δ. Then it returns unsafe and the
uncertain sampling Su. The different steps of the algorithm are illustrated
on Figure 4.7.

X0

F

X0

F

The expansion around the first
trajectory intersects with the
bad set, then it is uncertain.

After refining, three trajecto-
ries are found safe and one is
still uncertain.

X0

F

X0

F

The algorithm keeps refining
locally. Note that if the expan-
sion becomes smaller that δ,
the algorithm terminates and
returns uncertain.

The algorithm finally finds a
falsifying trajectory.

Figure 4.7: Steps of Algorithm 8

We state that the resulting algorithm has a correct behavior in the fol-
lowing theorem.

Theorem 9. Under assumptions mentioned above, algorithm 8 terminates
and its output satisfies:

• it is safe only if the system is safe.

• it is (unsafe, {x}) only if the system is unsafe and {x} is a counter-
example, i.e.: ξx intersects F .
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Algorithm 8 Safety verification algorithm

S0 ← {x0} with x0 ∈ X0, k ← 0,S ← ∅
loop

for all x ∈ Sk do
if ξx ∩ F 6= ∅ then

return (unsafe, x)
end if

end for
Compute ǫk = αX0(Sk,Su) /* local dispersion */
Compute Su = {x ∈ S s.t. ∃t ∈ [0, T ], |Ex,ǫ(t)| > d(ξx(t),F)}
if Su = ∅ then

return safe

end if
Compute δk = supx∈Su

|Ex,ǫk
‖

if δk ≤ δ then
return (uncertain,Su)
Sk+1 ← ρX0(Sk,Su) /* local refinement */

end if
end loop

• it is (uncertain, Su) only if all the points in Su induce uncertain
trajectories: ∀ x ∈ Su, d(ξx,F) ≤ δ.

Proof. For unsafe, the result is obvious from the algorithm. For safe and
uncertain, the algorithm terminates because ρ is complete, lim

k→0
ǫk = 0 and

lim
ǫk→0

δk = 0. Consequently for some k, δk < δ. Now, if Su was found empty,

at or before iteration k, this means that proposition 8 applies which proves
that the system is safe, while if Su is still not empty at iteration k i.e. if the
algorithm has returned (unsafe, Su), then Su contains states x for which

d(ξx,F) ≤ sup
t∈[0,T ]

(Ex,ǫk
(t)) ≤ δk ≤ δ.

The algorithm requires δ > 0 as input to guarantee termination. In fact,
the problematic case is when the distance between the reachable set and the
bad set is exactly 0. In this case, there is no way to get an answer other
than uncertain. On the other hand, we can state the following theorem:

Theorem 10. If d
(
Reach≤T (X0),F

)
> 0, then there exists a δ > 0 for

which algorithm 8 returns safe.

Proof. This is true for any δ < d
(
Reach≤T (X0),F

)
. Indeed, since for some
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k, the inclusion 4.3 is true for Sk then

Bδ

(
Reach[0,T ](X0)

)
∪ F = ∅ ⇒ Bδ

( ⋃

x∈S

ξx

)

∪ F = ∅

so Su is empty at the end of the for loop and the algorithm will return
safe.

4.6 Application to High dimensional Affine Time-
varying Systems

We have implemented the techniques described in the preceding sections
on top of a numerical ODE solver that supports sensitivity analysis (see
[HPNBL+05], and our implementation as a whole is described in chapter 8)
and have applied it to several examples. In this section we present some
results demonstrating the applicability of the method for high dimensional
systems. We consider a system with a generic affine time-varying dynamics
of the form

ẋ = A(t)x + b(t)

with A(t) = e−tM− In and b(t) = b0e
−t sin t

and where M and b0 are respectively n× n and n× 1 matrices. The qual-
itative behavior of these systems is that the exponential e−t make them
asymptotically stable but their transient behavior is rather chaotic. The
safety question that we ask is whether during this transient period a state
variable can a certain saturation level. On Figure 4.7, we used an instance
of this problem with n = 10 dimensions (trajectories were projected on the
first two coordinates). Here we detail another instance with n = 50 dimen-
sions, M and b0 having been chosen randomly. We used a 2-dimensional
X0 = [0.5, 1.5] × [0.5, 1.5] × 148. The bad set F was the half plane given
by an inequality of the form x1 ≤ d. Figure 4.8 illustrates the behavior
of the verification algorithm in different scenarios (projected on the three
first coordinates). In all cases, a small number of trajectories was needed to
obtain the answer.

Note that for this example, since the problem was to verify that there
was no saturation in one direction, we needed only to compute expansion in
this direction. Also, since the initial set has two dimensions, only two lines
of the sensitivity matrix need to be computed. We computed

sx0 =

(
sx1

sx2

)

where sxi is the sensitivity function w.r.t. the ith coordinate of x0. According
to sensitivity equation (4.8), this results in solving two additional ODEs
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x1x1x1

x2x2

x2x2
x3

X0

F

d = 2.6: One trajec-
tory was enough to
prove that the sys-
tem is safe.

d = 2.5: The system
is declared uncertain
using δ = 0.1 after 25
trajectories.

d = 2.5: The sys-
tem was found un-
safe with δ = 0.01 af-
ter 63 trajectories.

Figure 4.8: Results for the 50 dimensional affine example.

of dimension n. However, the actual additional computational cost w.r.t.
solving the single ODEs is not multiplied by three in this case because the
numerical solver can take advantage of the fact, in particular, that the right
hand side of the sensitivity equation is the Jacobian of f , and thus can reuse
a lot of calculations.

The computation time actually depends on the number of simulations
performed, thus mainly on the dimension of X0, which makes possible the
verification of such high dimensionnal systems provided X0 is low-dimensional.
The following table gives the average computation times for 64 simulations
with the computation 2 sensitivity functions for different instances with in-
creasing number of dimensions (performed on a standard laptop computer):

Nb of dimensions 50 100 150 200 250 300

Computation Time 3s 12s 30s 60s 100s 160s
Further, one simulation with 2000 state variables took 320s. If the algorithm
returns after a few simulation, as is the case for the fifty-dimensional instance
above, we can argue that a 2000-dimensional affine time-varying system can
be formally verified in a few minutes. We are not aware of other methods
capable of comparable results for this type of systems and problems.

4.7 Extension to Systems with Inputs

If we equip the set of input functions on the interval [0, T ] with a distance,
e.g. the L∞ metric on functions

d(u1,u2) = sup
t∈[0,T ]

‖u1(t)− u2(t)‖,
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and if U is bounded, then the notions of sampling and dispersion apply to
the set U [0,T ]. Furthermore, a complete refinement operator for U [0,T ] can
be defined (the simplest possibility is to use the set of piecewise constant
functions on U which is known to be dense in U [0,T ]). Then a straightfor-
ward way to extend the different sampling-based algorithms that we have
presented to systems with inputs is just to apply them while taking the
product X0 × U

[0,T ]. as the “initial” set to sample.

The extension is then “straightforward” in theory, however we know that
it is not in practice. The difficulty comes from the fact that U [0,T ] being a
set of functions, it is intrinsicly an infinite dimensional set which can not
in general be sampled as easily as a static finite-dimensionnal set such as
X0. In fact, if u is scalar and bounded and if we sample [0, T ] into N sub
intervals and consider piecewise constant inputs, then the problem becomes
equivalent to the sampling of a set with n0 + N dimensions. In all cases,
unless a simple parameterization of the input set is used, the presence of
inputs introduces a supplementary combinatorial complexity.

To deal with this complexity requires the use of specific search heuristics,
such as Rapidly exploring Random Trees (see [BF06, LaV06, DN07] among
others), or more general techniques issued from control theory.

4.8 Summary

In the second part of the thesis, we have presented different sampling based
methods for the reachability analysis and the safety verification of contin-
uous and piecewise continuous systems. These methods have in common
the fact that they rely on a systematic sampling of the initial set, which is
refined until a certain “coverage” of the reachable set is obtained.

The simplest method, described in Chapter 2, stores regions that are
visited by the computed trajectories and stops when no new region is found.
It can be applied to systems without a model.

In Chapter 3, we introduced the concept of expansion function that
relates the coverage of the initial set by a set of points to the coverage of the
reachable set by a set of trajectories. We showed that the expansion function
can be computed exactly for linear systems, approximated in general using
sensitivity analysis, and over-approximated if a bound on sensitivity can be
found. This means that it can be used to get an over-approximation of the
reachable set of the system.

As an application, we described a safety verification algorithm which tries
to quickly validate large portions of the initial set and refines automatically
in zones that may lead to unsafe behaviors. Several examples illustrate the
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4.8. Summary

applicability of the proposed methods, in particular to the verification of
high dimensional systems.
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Part III

Controller Synthesis
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Chapter 5

Continuous Dynamic
Programming

In the previous chapters, we developed sampling-based methods to approx-
imate the reachable set of a system without input. The last sections were
dedicated to the application of reachability analysis to safety verification,
that is, the problem of verifying that a “bad” set was never reached by
trajectories of the system, and to a possible extension to systems with in-
puts. We then pointed out the fact that a direct adaptation of the presented
methods may be inefficient.

To make a smooth transition from the previous part to this one, we ar-
gue that a clear duality exists between the safety verification problem and
the optimal control problem. An illustration of this duality can be found
in [DDM04] where a Delta-Sigma analog-to-digital converter is analyzed to
verify the absence of saturation. The circuit is modeled with an hybrid
automata but due to its frequently switching behavior, the property could
not be verified using reachability computation methods. In the article, an
optimal control formulation is proposed where the cost function to minimize
is the distance to the saturation zones and the input of the circuit is the
control variable. Solving this problem and proving that the minimum cost
possible was positive thus meant that no input could drive the system to
saturation. The method gave promising results and motivated our interest
in optimal control theory.

Traditional methods for solving optimal control problems can be roughly
divided into two categories, namely open loop control and closed loop con-
trol. In the former, the problem is set as an optimization problem where the
quantity to minimize is the cost over one run of the system from one initial
state to one final state and the resulting answer is a function of time that
returns the optimal action value u(t) for each instant. In the latter category,
the goal is rather to synthesize a state-feedback controller, i.e. a function of
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the state u(x) which returns the optimal action to take for each state x of
the system.

Closed loop controllers generally provide more robust solutions since
optimal control actions are defined for every state, which means that if a
perturbation or a measurement error leads the system in an unpredicted
state, it will still be able to recover and to optimally adapt its behavior to
the new situation. On the contrary, in the open loop case, a new solution
would have to be computed from scratch. On the other hand, the cost of
computing an optimal state feedback for every state of the system can be
prohibitive. Since the problem is equivalent to an optimization problem
over a set of functions from R

n to R
p (where n is the dimension of the state

space and p the dimension of the input space), its complexity is at least
exponential in the number of dimensions n (the “curse of dimensionality”),
which becomes intractable as soon as n is more than an order of 10 at best
in the general case. For certain classes of systems, such as linear systems,
the feedback control can be obtained in closed form, which overcomes this
difficulty1. But for general continuous and hybrid systems, as considered in
this work, there is no universal methods and each new problem is challenging.
In this work, we attack these problematics with the following methodology.
We first consider the classic theory of dynamic programming as our main
theoretical background. Initiated at the end of the fifties by Richard Bellman
([Bel57]), this theory already offers a number of algorithms solving general
optimal control problems and for which proof of correctness are available.
Since the main drawback the applicability of these algorithms is that they
are subject to the curse of dimensionality, we then reviewed the different
methods available to deal with this issue and try to design our own new ones.
In doing so, we try to stick with the property that the methods proposed
are somehow asymptotically equivalent to a known “exact” method. We
also try to design practical methods, i.e. that can be applicable to wide
range of problem with a reasonable investment of a potential user. Dynamic
programming makes this possible in the sense that its fundamental principles
are simple and basically only requires that if the system is in the state x,
we are able to observe in which states x′ it will be at the next time instant
given an input u, and to know the cost of this transition.

1Henceforth, a popular strategy used to address an optimal control problem is first to
solve an open loop formulation to get a reference optimal trajectory, to linearize the dy-
namics in the neighborhood of it and then design a linear optimal state feedback controller
to robustly track the reference.
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5.1 Introduction to Dynamic Programming

The expression “Dynamic Programming” has to be put in relation with
that of “Mathematical Programming”, which is sometimes used to denote
the process of solving a general optimization problem of the form

min
x
f(x)

s.t. g(x) ≤ 0

where x is a real vector in R
n and f and g some functions from R

n to R.
One of the most common instances of such a problem is when the objective
function f and the constraint function g are linear, in which case we get a
linear program of the form

min
x
Ax

s.t. Cx ≤ 0

which is solved using linear programming techniques. Obviously, the term
“linear” refers to the fact that the functions in the optimization problem are
linear. Similarly, “dynamic” means that time is involved in the objective and
constraint functions of the problems addressed by dynamic programming
techniques. In the case of discrete time, they can take the form:

min
u
V (ξx,u)

s.t. ξx,u(t + 1) = f(ξx,u(t),u(t))

where V is the cost function of a trajectory ξx,u. Thus, the problem is to
minimize a functional over a set of functions, which is in general a very
difficult problem. In this section, we present a basic algorithm called value
iteration which allows us to introduce the fundamental principles of dynamic
programming in both the discrete and the continuous settings.

5.1.1 Discrete Dynamic Programming

We first consider a deterministic discrete system with a state set X , an input
or action set U and a transition map →: X × U 7→ X . At each pair (x,u)
of state-action, a cost function c(x,u) reflects the price of taking action u
from state x. We assume that the function c is positive and bounded by a
constant c̄. Given a state x0 and an infinite input sequence u = (un), we

define the cost-to-go or value function of the trajectory x0
u0→ x1

u1→ . . . as:

V u(x0) =

∞∑

n=0

γnc(xn,un) (5.1)
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where γ is a real number lying strictly between 0 and 1. This discounting
factor guarantees that the infinite sum V u remains bounded. For instance,
if the cost is maximal for all n, i.e. c(xn,un) = c̄, then

V u(x0) = Vmax =

∞∑

n=0

γnc̄ =
c̄

1− γ

Since V u(x0) represents the cost of applying the input sequence u from x0,
the optimal control problem consists in finding a sequence u∗ that minimizes
this cost, i.e. that solves the problem

min
u∈UN

V u(x0)

Note that the minimum for the cost function V u∗

(x0) is unique but may
be obtained with different sequences. Hence it does not depend on u∗ and
we denote it by V ∗(x0). The function V ∗ that maps x ∈ X to this optimal
value V ∗ is then called the optimal value function.

Rather than trying to compute directly an optimal sequence, the goal
of dynamic programming is to compute the optimal value function V ∗(x)
for all x ∈ X . This can be done thanks to the Bellman equation which is
satisfied by V ∗ and can be deduced from (5.1) and the previous definitions:

V ∗(x) = min
u, x

u
→x′

c(x,u) + γV ∗(x′). (5.2)

Once V ∗ has been computed, an optimal sequence u∗ is obtained by
solving in u the right hand side of Bellman equation, which gives a state
feedback controller:

u∗(x) = arg min
u, x

u
→x′

c(x,u) + γV ∗(x′) (5.3)

Since (5.2) is a fix point equation, V ∗ can be computed using fix point
iterations. This gives the value iteration algorithm.

Convergence proof of this algorithm is straightforward thanks to the
presence of the discount factor γ. Indeed, it is easy to see that

‖Vi+1 − Vi‖∞ ≤ γ‖Vi − Vi−1‖∞

Thus the mapping F : V i 7→ F (V i) = V i+1 is contracting which implies
that the fix point iteration converges.
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Algorithm 9 Value Iteration

1: Init V 0, i← 0
2: repeat
3: for all x ∈ X do
4: V i+1(x)← min

u, x
u
→x′

c(x, u) + γV i(x′)

5: end for
6: i← i+ 1
7: until V has converged

5.1.2 Continuous Dynamic Programming

In this section, we present an adaptation of the previous algorithm to the
continuous case. Let X and U now be bounded subsets of R

n and R
m

respectively and f : X ×U 7→ R
n the dynamics of the system, so that for all

t ≥ 0,

ẋ(t) = f(x(t),u(t)) (5.4)

Cost and cost-to-go functions have their continuous counter parts: For each
x and u, c(x,u) is a positive scalar bounded by a constant c > 0, and for
any initial state x and any input function u,

V u(x) =

∫ ∞

0
e−sγtc(x(t),u(t))dt

Where x(t) and u(t) satisfy (5.4) with x(0) = x0. The optimal value function
is such that ∀x ∈ X ,

V ∗(x) = min
u∈UR+

∫ ∞

0
e−sγtc(x(t),u(t))dt

The worst value, i.e. when ∀t, c(x(t),u(t)) = c̄ becomes:

Vmax =

∫ ∞

0
c̄e−sγtdt =

c̄

sγ

The simplest way to apply the discrete value iteration algorithm de-
scribed in the previous section is first to discretize time and space and then
to find an equivalent of the Bellman equation (5.2). Let us fix a time step
∆t and a regular grid Xǫ of resolution ǫ covering X . We evaluate V ∗ on each
point of the grid and interpolate for any x in X outside Xǫ (see figure 5.1).

In order to get a transition function, one can classically perform an Euler
integration of (5.4):

x
u
→ x′ ⇔ x′ = x + ∆x

where ∆x = f(x,u)∆t
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ǫ

ǫ

ǫ

ǫ

xx x ′x′

XX

V (x′)

Figure 5.1: Simple grid of resolution ǫ covering the state space X of the
system. The value function V is stored in the grid points (e.g. in x) and has
to be interpolated between these points (e.g. in x′).

Moreover we can write :

V u(x0) =

∫ ∆t

0
e−sγtc(x(t),u(t))dt +

∫ ∞

∆t
e−sγtc(x(t),u(t))dt

≃ c(x(0),u(0))∆t+ e−sγ∆t

∫ ∞

0
e−sγtc(x(t + ∆t),u(t + ∆t))dt

≃ c(x(0),u(0))∆t+ e−sγ∆tV u(x(0) + ∆x)

≃ c(x0,u0)∆t+ γV u(x0 + ∆x) (5.5)

where we note e−sγ∆t = γ then V ∗ satisfies

V ∗(x) ≃ min
u, x

u
→x′

c(x,u)∆t+ γV ∗(x′) (5.6)

which provides a continuous equivalent of the discrete Bellman equation.
From here, then, we can apply Algorithm 9 using (5.6) as a fix point itera-
tion.

V i+1(x) = min
u, x

u
→x′

c(x,u)∆t+ γV i(x′) (5.7)

for every point x in the grid Xǫ and with the adaptation that, as mentioned
above, V i(x′) has to be interpolated from the values of V i at the nearest
grid points of x′ if x′ itself is not in Xǫ. Again, a contraction argument can
be used to prove the convergence of the resulting algorithm.
Finally, note that for this algorithm, we can obtain better performances if

in approximation (5.5), instead of assuming that e−sγtc(x,u) is constant on
[0,∆t], we only consider that c(x,u) is constant and keep the exponential,
which can be integrated formally. If γ = e−sγ∆t, this results in

V ∗(x) ≃ min
u, x

u
→x′

c(x,u)
(1 − γ)

sγ
+ γV ∗(x′) (5.8)
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Algorithm 10 Continuous Value Iteration

1: Init V 0
ǫ , i← 0

2: repeat
3: for all x ∈ X do
4: V i+1

ǫ (x)← min
u, x

u
→x′

c(x, u)∆t+ γV i
ǫ (x′)

5: end for
6: i← i+ 1
7: until V i

ǫ has converged

which is a more precise continuous equivalent of the discrete Bellman equa-
tion than (5.6).

5.1.3 Remark on the State Space

In general, dynamic programming algorithms are then basically fix point
iterations. This means that they need to be applied to sets which are invari-
ants for the system, i.e. sets from which a trajectory never leaves. Indeed,
they somehow rely on back propagation of costs along trajectories. Then, if
a trajectory exits the set on which we try to compute the value function, it
will bring some irrelevant information from the “unknown outside”, which
may disturb the convergence of values inside the set of interest.

Until now, we have assumed implicitly that the set X was such an invari-
ant (which is obviously the case if it is the whole state space of the system);
and that it was bounded, so that it was computationally feasible to compute
an approximation of the value function on X . A less restrictive assumption
is that we know an initial feedback controller u0 that can force the system
to stay within X (e.g. a stabilizing feedback controller).

Assuming that X is bounded or that we know a stabilizing controller is
still a strong requirement. Existing numerical methods, e.g. using discretiza-
tion schemes or finite elements as in [Mun00] or level sets as in [Mit02], rely
on carefully defined boundary conditions on the limits of the domain on
which the value function has to be computed. Still, Another way of spec-
ifying such boundary conditions is to artificially stop the evolution of the
system when it reaches the limit of the domain. Hence, a trajectory leaving
the domain becomes a trajectory that reaches the frontier and then stays
forever at the same point, with a fixed instantaneous cost corresponding to
the desired boundary condition2. This way, we can always assume that we
are in the case where X is an invariant set of the system.

2Note that the global cost of the trajectory remains bounded due to the discounting
factor e−sγ .
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5.2 The Hamilton-Jacobi-Bellman Equation

In the previous section, we moved from the discrete case to the continuous
case. To deal with the specific problematics of dense time and space, it may
be useful to first set the problem in a purely continuous context and only
move back to discretization at the implementation level, within appropriate
numerical methods.

The first step there is to notice that (5.6) and (5.8) can be seen as some
finite differences approximation schemes of the Hamilton-Jacobi-Bellman
(HJB) equation:

min
u∈U

(
c(x,u) + 〈∇xV

∗(x), f(x,u)〉 − sγV
∗(x)

)
= 0 (5.9)

Basically, it can be obtained from (5.6) by dividing each term by ∆t and by
taking the limit when ∆t tends toward zero. Let us define the Hamiltonian:

H(x,u, V,∇xV ) = c(x,u) + 〈∇xV (x), f(x,u)〉 − sγV (x) (5.10)

Then the HJB equation means that given the optimal value function V ∗ and
a corresponding optimal control u∗,

u∗(x) = arg min
u∈U

H(x,u, V ∗,∇xV
∗) (5.11)

and

H(x,u∗, V ∗,∇xV
∗) = 0 (5.12)

These equations have two practical interests:

• Assume that we already computed a value function V which is an
approximation of the optimal value function V ∗. Then from (5.11) we
can hope that

u(x) = arg min
u∈U

H(x,u, V,∇xV ) (5.13)

is a good candidate for an efficient, if not optimal, feedback controller.
Since this is an optimistic hope, we denote this policy as the optimistic
controller.

• If we have a value function V and a controller u, then the quantity
H(x,u, V,∇xV ) can be used as an error measurement since we know
that for the optimal value function it has to be zero.

The second point has to be considered carefully: trying to find a function
V and a controller u such that the Hamiltonian H is 0 is not a “robust”
method to solve (5.9) (or the criterion H = 0 is not a “robust” criterion).
Here we mean robust in the sense that if we find a function that is almost a
solution of this problem, this does not imply that this solution is almost a
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solution of the original optimal control problem. There might be an infinite
number of generalized solutions of the HJB equation, i.e. an infinite number
of functions V for which H = 0 almost everywhere, i.e except for a set of
points of measure 0. Then a method that would use only the minimization of
H as error measurement could easily converge toward such a solution, which
is almost optimal from the point of view of the Hamiltonian minimization
but can be at the same time arbitrarily far from the optimal solution of the
original control problem. Defining proper conditions for the value function
V to be (or to approach) the optimal value function V ∗ solution of the HJB
equation is the subject of the theory of viscosity solutions. For instance, in
[Mun00] this theory is applied to prove that Algorithm 10 actually converges
toward the true value function, i.e. :

lim
ǫ→0

Vǫ = V ∗

5.3 Computing the “Optimistic” Controller

To get the optimistic control value given by (5.13), we need to solve the
optimization problem

min
u∈U

(
c(x,u) + 〈∇xV (x), f(x,u)〉 − sγV (x)

)
(5.14)

which has no general solution. Moreover, we need to get the solution quickly,
since it is mandatory for the computation of the f function in the dynam-
ics. In the ideal case, u would be obtained in closed form, as a function of
state x. Otherwise, if an exact solution requires too much computation, the
problem has to be solved approximatively, e.g. by discretizing U in a finite
number of values and by taking the minimum over those.

For certain classes of problems, f can be decomposed as

f(x,u) = fs(x) + fc(x) u.

This is the case for most Newtonian mechanical systems ( e.g. where the
acceleration is proportional to the force). If furthermore the cost function c
is quadratic w.r.t the input u, i.e. if there exist a symmetric matrix Q and
a function cs such that

c(x,u) = cs(x) + 〈u, Q u〉,

then after removing the terms that do not depend on u, the problem 5.14
becomes

min
u∈U

(
〈u, Q u〉+ 〈a(x), u〉

)
(5.15)
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where a(x) = ∇xV (x) fc(x), which is a quadratic programming problem
and for the systems sizes that we usually consider in the context of dynamic
programming, standard solvers can handle it efficiently in case a closed form
solution cannot be found.
Note that for the simpler case where the input is a scalar u in an interval
U = [−umax, umax] and the cost function does not depend on u, the problem
becomes

min
−umax≤u≤umax

a(x) u (5.16)

for which the solution is the so-called bang-bang control

u(x) = − sign(a(x)) umax

= − sign(∇xV (x) fc(x)) umax.

Thus the optimistic (and then optimal) control law is discontinuous.

Problem 5.14 may have several solutions, but if we have a method to find
one of them, we can assume that it is deterministic, so that the resulting
state feedback controller u(x) is always uniquely defined. Thus a trajectory
ξx0,u using this policy is also uniquely defined by its initial state x0. In the
following, we denote such a trajectory by ξx, omitting the controller u when
the controller used is clear from the context.
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Temporal Differences
Algorithms

Dynamic programming algorithms presented so far compute the next es-
timation V i+1(x) based on V i(x) and V i(x′) where x′ is in the spatial
neighborhood of x. The slightly different point of view taken by tempo-
ral differences (TD) algorithms is that instead of considering that x′ is the
neighbor in space of x they consider it as its neighbor in time along a trajec-
tory. This way, with the same algorithm, V i+1(x) would be updated from
V i(x) and V i(ξx,u(∆t)), where x and x′ = ξx,u(∆t) are then viewed in the
context of the same trajectory ξx,u. Then, it is clear that if V i(ξx,u(∆t))
holds interesting information for the update of V i(x), then it is also the
case for V i(ξx,u(t)) for all t > 0. Henceforth, TD algorithms update their
current approximation of the value function thanks to data extracted from
complete trajectories.

6.1 General Framework

In this section, we propose a general, high level framework common to most
of TD algorithms that will allow us to separate the different issues involved in
their concrete implementation, assuming that some are solved and focusing
on the others. This high-level framework is represented by Algorithm 11.

To implement an instance of this generic algorithm, we need the following
elements:

• A simulator that can generate a trajectory ξx,u of duration T > 0
given an initial state x0 and an input function u, or if no model is
available, we need to be able to monitor the state of the system. This
issue has been extensively treated in the first part of the thesis;

• A function approximator to be used to represent any function V
from X to R

+ and allowing us to simply write V (x) for any x in X
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Algorithm 11 Generic TD algorithm

1: Init V 0, i← 0
2: repeat
3: Choose x0 ∈ X
4: Compute ξx0 on [0, T ]
5: Compute update trace e(·) from ξx0 and u
6: for all t ∈ R

+ do
7: V i+1(ξx0(t))← V i(ξx0(t)) + e(t)
8: end for
9: i← i+ 1

10: until Some stopping condition is true

e.g. on lines 7 of Algorithm 11. This issue is fundamental and will be
discussed further in Chapter 7;

• An update function which, given a function V , a state x and a
quantity e, alters V i into V i+1 so that V i+1(x) is equal to or near
V i(x) + e, which is written line 7 as an assignment statement. When
parameterized function approximators are used, updating can be done
e.g. by gradient descent on the parameters [Doy00];

• A policy, or controller, which returns a control input at each state
x(t), needed by the simulator to compute trajectories. As mentioned
in Section 5.2, one possible choice is

u(x) = arg min
u∈U

(
c(x,u) +∇xV

i · f(x,u)− sγV
i(x)

)
(6.1)

In this case, we get a continuous version of optimistic policy iteration
algorithm discussed in [Tsi02];

• An update trace generator used to extract information from the
computed trajectory ξx0 and to store it into the update trace e(.) (line
5). In the field of RL, e(.) is classically called the eligibility trace
[SB98].

Variants of TD algorithms differ in the way this last point is imple-
mented, as discussed in the rest of this chapter.

6.2 Continuous TD(λ)

In this section, we present our adaptation of the classical TD(λ) to the
continuous problem.
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6.2.1 Formal algorithm

The objective of TD algorithms is to build an improved estimation of the
value function based on the data of computed trajectories. The main ad-
ditional information provided by a trajectory x(·) is the values of the cost
function along its course. If we combine these values with the current esti-
mation V i, we can then build a new estimation for a given horizon τ > 0,
which is:

Ṽτ (x0) =

∫ τ

0
e−sγtc(x,u)dt + e−sγτV i(ξx0(τ)) (6.2)

In other terms, the estimation Ṽτ (x0) relies on a portion of the trajectory of
duration τ and on the old estimation V i(ξx0(τ)) at the end of this portion.
Let us remark that if V i is already the optimal value function V ∗, then
Ṽτ = V ∗ for all τ > 0, this equality being, in fact, a generalization of
Bellman equation.
Question is then, how to choose horizon τ ? In the case of TD(λ), the
algorithm constructs a new estimation Ṽλ which is a combination of the
Ṽτ (x0) for all τ > 0. In our continuous framework, we define for sλ > 0:

Ṽλ(x0) =

∫ ∞

0
sλe

−sλτ Ṽτ (x0)dτ (6.3)

We make several remarks about this definition:

• Equation (6.3) means that Ṽλ is constructed from all Ṽτ , τ > 0, each
one of them contributing with an exponentially decreasing amplitude
represented by the term e−sλτ . In other words, the further Ṽτ looks
into the trajectory, the less it contributes to Ṽλ.

• This definition is sound in the sense that it can be seen as a convex
combination of Ṽτ , τ > 0. In effect, it is true that:

∫ ∞

0
sλe

−sλτdτ = 1

Thus, if each Ṽτ is a sound estimation of V ∗, then Ṽλ is a sound
estimation of V ∗.

• This definition is consistent with the original definition of TD(λ) algo-
rithm [SB98]. In fact, by choosing a fixed time step ∆τ , assuming that
Ṽτ is constant on [τ, τ +∆τ ] and summing sλe

−sλτ on this interval, we
get:

Ṽλ(x0) ≃ (1− λ)

∞∑

k=0

λkṼ i
k∆τ (x0) (6.4)

where λ = e−sλ∆τ
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which is the usual discrete TD(λ) estimation built upon the k-step TD
estimation

Ṽ i
k∆τ (x0) =

∫ k∆τ

0
e−sγtc(x,u)dt + e−sγτV i(ξx0(k∆τ ))

≃
k−1∑

j=0

γjc(ξx0(j∆τ),u(j∆τ)) + e−sγk∆τV i(ξx0(k∆τ))

=

k−1∑

j=0

γjc(xj ,uj) + γkV i(xk) (6.5)

where γ = e−sγ∆τ

6.2.2 Implementation

In practice, we compute trajectories with finite duration T . As a conse-
quence, Ṽτ can only be computed for τ ≤ T . In this context, (6.3) is
replaced by

Ṽ i
λ(x0) =

∫ T

0
sλe

−sλτ Ṽ i
τ (x0)dτ + e−sλT Ṽ i

T (x0)

≃ (1− λ)
N−1∑

k=0

λkṼ i
k∆τ (x0) + λN Ṽ i

T (x0)

where T = N∆τ (6.6)

Combining (6.6) and (6.5), one can show that:

V i(x0)− Ṽλ(x0) ≃
N∑

j=0

λjγjδj (6.7)

where

δj = c(xj ,uj) + γV i(xj+1)− V i(xj) (6.8)

is what is usually referred as the temporal difference error [Tsi02]. This
expression is used in an implementation given in Algorithm 12 which refines
in fact line 5 of Algorithm 11. There, we assume that the trajectory has
already been computed with a fixed time step ∆t = ∆τ , thus at times
tj = j∆t, 0 ≤ j ≤ N + 1.

Note that the computation complexity of the update trace is in O(N)
where N + 2 is the number of computed points in the trajectory x. Thus
the overall complexity of the algorithms depend only on the number of
trajectories to be computed to obtain a good approximation of V ∗.
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Algorithm 12 TD(λ): Update traces

1: for j = 0 to N do
2: δj ← c(xj ,uj) + γV i(xj+1)− V i(xj)
3: end for
4: e(tN )← δN
5: for k = 1 to N do
6: e(tN−k)← e(tk) + (λγ)e(tN−k+1)
7: end for

6.3 Qualitative interpretation of TD(λ)

In the previous sections, we started by presenting TD(λ) as an algorithm
that compute a new estimation of the value function using a trajectory and
older estimations. This allowed us to provide a continuous formulation of
this algorithm and an intuition of why it should converge towards the true
value function. Then, using a fix time step and numerical approximations
for implementation purposes, we came to equation (6.7) and Algorithm (12).
These provide another intuition of how this algorithm behaves.
The TD error δj (6.8) can be seen as a local error in ξx0(tj) (in fact, it is an
order one approximation of the Hamiltonian). Thus, (6.7) means that the
local error in ξx0(tj) affects the global error estimated by TD(λ) in x0 with
a shortness factor equal to (γλ)j . λ ranges from 0 to 1 (in the continuous
formulation, sλ ranges from 0 to ∞). When λ = 0, then only local errors
are considered, as in value iteration algorithm. When λ = 1 then errors
along the trajectory are fully reported to x0. Intermediate values of λ are
known to provide better results than these extreme values. But how to
choose the best value for λ remains an open question in the general case.
Our intuition, together with experiments, tend to show that higher values of
λ often produce larger updates, resulting in a faster convergence, at least at
the beginning of the process, but also often return a coarser approximation
of the value function, when it does not simply diverge. On the other hand,
smaller values of λ result in a slower convergence but toward a more precise
approximation. In the next section, we use this intuition to design a variant
of TD(λ) that tries to combine the qualities of high and low values of λ
without the burden of finding its best value.

6.4 TD(∅)

6.4.1 Idea

The new TD algorithm that we propose is based on the intuition about local
and global updates presented in the previous section. Global updates are
those performed by TD(1) whereas local updates are those used by TD(0).
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The idea is that global updates should only be used if they are “relevant”.
In other cases, local updates should be performed. To decide whether the
global update is “relevant” or not, we use a monotonicity argument: from a
trajectory ξx0 , we compute an over-approximation V̄ (ξx0(t)) of V ∗(ξx0(t)),
along with the TD error δ(ξx0(t)). Then, if V̄ (ξx0(t)) is less than the current
estimation of the value function V i(ξx0(t)), it is chosen as a new estimation
to be used for the next update. In the other case, V i(ξx0(t)) + δ(ξx0(t)) is
used instead.
Let us first recall that since c is bounded and sγ > 0, then V ∗(x) ≤ Vmax,
∀x ∈ X , where

Vmax =

∫ ∞

0
e−sγt c̄ dt =

c̄

sγ
(6.9)

This upper bound of V ∗ represents the cost-to-go of an hypothetic forever
worse trajectory, that is, a trajectory for which at every moment, the pair
state input (x,u) has the worse cost c̄. Thus, Vmax could be chosen as a
trivial over-approximation of V ∗(x(t)). In this case, our algorithm would be
equivalent to TD(0). But if we assume that we compute a trajectory ξx0 on
the interval [0, T ], then a better over-approximation can be obtained:

V̄ (x0) =

∫ T

0
e−sλtc(x,u)dt + e−sγTVmax (6.10)

It is easy to see that (6.10) is indeed an over-approximation of V ∗(x(0)):
it represents the cost of a trajectory that would begin as the computed
trajectory x(·) on [0, T ], which is at best optimal on this finite interval, and
then from T to ∞ it behaves as the ever worse trajectory. Thus, V̄ (x0) ≥
V ∗(x0).

6.4.2 Continuous Implementation of TD(∅)

In section 6.2.2 we fixed a time step ∆t and gave a numerical scheme to
compute estimation Ṽλ. This was useful in particular to make the connection
with discrete TD(λ). In this section, we give a continuous implementation
of TD(∅) by showing that the computation of V̄ can be coupled with that
of the trajectory ξx0 in the solving of a unique dynamical system.
Let xV (t) =

∫ t
0 e

−sγrc(x,u)dr. Then,

V̄ (x0) = xV (T ) + e−sγ(T )Vmax

and more generally, for all t ∈ [0, T ],

V̄ (ξx0(t)) = esγt(xV (T )− xV (t)) + e−sγ(T−t)Vmax
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Where xV can be computed together with x by solving the problem:






ẋ = f(x,u)
ẋV = e−sγtc(x,u)

x(0) = x0 , xV (0) = 0
(6.11)

From there, we can give Algorithm 13.

Algorithm 13 TD(∅)

1: Init V 0 with Vmax, i← 0
2: repeat
3: Choose x0 ∈ X
4: Compute ξx0 on [0, T ] and (xV (t))t∈[0,T ] by solving (6.11)
5: Compute V̄ (ξx0) and δ(ξx0)
6: for all t ∈ [0, T ] do
7: V i+1(ξx0(t))← min(V̄ (ξx0(t)), V i(ξx0(t)) + δ(ξx0(t)))
8: end for
9: until Stopping condition is true

We make several remarks:

• Initializing V 0 to Vmax imposes a certain monotonicity with respect to
i. This monotonicity is not strict since when local updates are made,
nothing prevents δ(ξx0(t)) from being positive, but during the first
trajectories at least, as long as they pass through unexplored states,
V̄T will be automatically better than the pessimistic initial value. Of
course, if V ∗ is known at some special states (e.g. at stationary points),
convergence can be fastened by initializing V 0 to these values.

• Computing ξx0 and xV (and hence V̄ ) together in the same ordinary
differential equation (ODE) facilitates the use of variable time step
size integration, the choice of which can be left to a specialized efficient
ODE solver, and thus permits a better control of the numerical error
at this level.

6.5 Experimental Results

To compare the performances of TD(∅) with TD(λ) for various values of λ,
we implemented and applied Algorithms 12 and 13 to the classical problem
of the swing-up of a pendulum. The goal is to drive a pendulum to the
vertical position using a limited torque that does not allow a trivial, “brute
force” solution. The dynamics of the system is described by a second order
differential equation:

θ̈ = −µθ̇ + g sin θ + u (6.12)

−10 < θ̇ < 10, −3 < u < 3
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θ

g

b

b

Figure 6.1: Pendulum

The cost function is c(θ) = (1 − cos(θ)). Thus it is minimal, equal to 0
when the pendulum is up (θ = 0) and maximal, equal to 2, when the pendu-
lum is down. The variable µ is a friction parameter and g the gravitational
constant. The optimal value function is shown on Figure 6.2.

Figure 6.2: Optimal value function for the pendulum swing up problem

For this problem, we used a regular grid with linear interpolation to
represent values of V i. We call a sweep a set of trajectories for which the
set of initial states cover all points of the grid. We then applied TD(λ) and
TD(∅) to such set of trajectories and after each sweep, we measured the
2-norm of the Hamiltonian error (noted ‖δ‖2) over the state space. This
allowed to observe the evolution of this error depending on the number of
sweeps of the state space performed. The results are given in Figure 6.3. We
observe that the value of λ that worked best in our experiments was around
0.7 and that TD(∅) seemed to perform better than TD(λ) for any value of
λ. This tends to show that TD(∅) behaves as expected as well as TD(λ) for
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the best value of λ, independently of this value, which could release us from
the burden of finding it. However, more experiments are needed to validate
this conclusion.
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Figure 6.3: Hamiltonian error for the pendulum swing up problem
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Chapter 7

Approximate Dynamic
Programming

The expression “approximate dynamic programming” refers to a family of
methods which relax some requirements of classic dynamic programming in
order to overcome the difficulty related to the curse of dimensionality. The
major reason for this curse is the discretization of the state space into a
simple grid, an object whose size grows exponentially with the number of
dimensions. Thus most of the methods try to use more efficient function
approximators.

Among classical alternative solutions are variable-resolution discretiza-
tion [MM99], sparse coarse coding [SB98], or neural networks [Cou02], [Tes95].
All these techniques approximate a function defined over a subset of R

n us-
ing a set of parameters {ωi, i ∈ I}, where I is some index set. In the case
of simple grids, these parameters are associated to the exponentially many
grid points. In the case of neural networks, the parameters are the weights
of the “neurons” in the network, whose number is dimension independent.
Although methods based on sophisticated function approximators like neu-
ral networks proved to be potentially very powerful in some practical cases,
such as for swimmers in [Cou02], they offer in general no guarantee of con-
vergence nor optimality. In these contexts, function approximators are in
fact double-edged swords. On one hand, they provide generalization, that is,
while the value function is updated at a point x, it is also updated in some
neighborhood of x, or more precisely in all points affected by the change of
the parameters of the approximator; and the bad side is interference which
amounts to excessive generalization, e.g. if an update in x affects the value
function at y in such a way that it destroys the benefits of a previous update
at y.

In this work, we choose to focus on function approximators which have
local generalization capabilities, i.e. for which each parameter ωk has a
bounded domain of influence. In the above enumeration, they correspond
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to “sparse code coding” techniques advocated in [SB98].

7.1 Local Generalization

We write V (x) = V (x; ~ω) to denote the fact that V is interpolated using a
function approximator represented by a vector of parameters ~ω = {ωi, i ∈ I},
where I is some index set. Let ~ω + ∆ωi denote a variation of the parameter
i in the vector ~ω and let Di ⊂ R

n be the set of states influenced by the
parameter ωi. We have

Di = {x ∈ X s.t. ∆ωi 6= 0⇔ V (x; ~ω) 6= V (x; ~ω + ∆ωi)}. (7.1)

We say that a given approximation scheme is local if for all i ∈ I, the
influence domain Di is bounded. For each Di then, its diameter is:

Diam(Di) = sup
(x,x′)∈X

‖x− x′‖.

The supremum of the diameters of all parameters in ~ω is then called the
generalization radius of the function approximator and is denoted by

g~ω = sup
i∈I

(Diam(Di)).

Finally we define the interference degree:

Definition 10 (Interference Degree). The interference degree of x is the
number Ξ~ω(x) ∈ N of parameters influencing the value V (x; ~ω):

Ξ~ω(x) = Card {i ∈ I s.t. x ∈ Di}

From the definitions, it is clear that the function approximator covers
the set X if and only if the interference degree is greater than 1 for all x,
i.e. ∀x ∈ X , Ξ~ω(x) ≥ 1. The interference degree allows us to estimate the
number of degrees of freedom that we have in the value interpolation of V at
x. Intuitively, if we want to set V to four different values in a neighborhood
of x which has an interference degree Ξ~ω(x) of three, then somehow we will
have to solve a system with four equations (giving the values of V ) and
three unknowns (the parameters ωi such that x ∈ Di) which is in general an
over-determined problem with no exact solution.

To illustrate the previous definitions, consider the simple discretization
scheme used in Section 5.1.2. On Figure 7.1, we show how to compute the
value of V in x knowing the values in x1, x2 and x3. In this scheme, the
parameters are simply the values of V at the grid points. Thus, on the
figure, we have V (xi) = ωi. As x is in the triangle formed by the three
points x1, x2 and x3 then V (x) depends on ω1, ω2 and ω3, which means
that Ξ~ω(x) = 3. Now, assume that we want to set four different values in
the same triangle, then clearly if they are not in the same plane, no value
for the parameters ωi exist that will match exactly these values.
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x
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V (x1)
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Figure 7.1: Simple grid function approximator. V (x) is interpolated from
the values on the grid points. Thus, it depends on the three parameters ω1,
ω2 and ω3 which are in fact equal to V (x1), V (x2) and V (x3).

7.2 The CMAC Function Approximator

In this section we detail the function approximator with local generalization
properties that we implemented and used in our experiments. The acronym
CMAC originally stands for Cerebellar Model Articulation Controller and
was first introduced by James S. Albus in the seventies [Alb75] and since has
been a popular function approximation technique, generally advocated for
its fast learning capability and the fact that the simplicity of its structure
allows efficient digital hardware implementations, see e.g. [IBWG90, HS98].

The basic idea is to superpose overlapping grids of coarse resolution. To
each region of each grid, a basis function φj and a parameter (or weight)
ωj is associated and the interpolated value at a state x is obtained by the
weighted combination of the basis functions values at x. The generaliza-
tion is obtained via the coarse resolution and the interpolation capability
depends on the number of grids used.

Formally, a CMAC is defined by

• its generalization factor K

• its quantization δ > 01

The generalization factor defines the number of grids used. Hence, a state
x ∈ X is in K different regions, each of which being part of a coarse grid.

1The quantization δ is actually a vector but to simplify the presentation, we assume
that its coordinates are the same for all dimensions and treat it as a scalar.
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Thus the value of the interpolated function in x is influenced by K param-
eters, which gives the interference degree as defined in the previous section.
The quantization δ defines the size of the regions where all points corre-
sponds to the same K parameters. It defines the precision of the CMAC
since inside these regions, it will not be able to match more than K values.
Thus, ideally, the function that we want to approximate should not vary too
much at the scale of δ.

Different methods exist to organize the K overlapping regions. We rep-
resent some of them for 2 dimensions and a generalization factor of K = 4
in the following picture:

δδδ

The configuration on the left is the one originally proposed by Albus. Each
δ-region is the intersection of K regions of size Kδ evenly distributed over the
main diagonal. The advantage of this configuration is that it works for any
dimension, but on the other hand, it tends to concentrate the generalization
effect in the direction of the diagonal. This may be inadequate and gets
worse as the number of dimensions increase. The second configuration,
which can also be generalized to any dimension, is an attempt to get a more
uniformly distributed generalization among all directions [MAGC91, An91].
It actually improves the situation but still can produce unpredictable results
depending on the choice of K. The third configuration requires K to be
a power of n but guarantees that the generalization is the same in every
direction. This is the configuration that we use in the following.
Under these conditions, a CMAC with quantization δ and a generalization
factor K has K regular grids of resolution K

1
n δ. Since to each location

of each grid is associated one parameter, then the generalization radius is
exactly

g~ω = K
1
n δ.

7.2.1 CMAC output

Instead of considering the parameters of the CMAC as a discrete set of reals,
it is equivalent and more convenient here to consider K different piecewise
function ωj : R

n 7→ R such that ωj is constant on each location of grid j.
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f fiom

x

V (x) =
P

ωi(x)φi(x)
P

φi(x)

Figure 7.2: Example of a 2D CMAC with a generalization factor of 4. The
functions φi are the basis functions, ωi are the piecewise-constant functions,
and V (x) is the resulting output.

Then the CMAC output is defined as:

V (x; ~ω) =

∑K
j=1 ωj(x)φj(x)
∑K

j=1 φj(x)
(7.2)

where φj is the “pyramidal” function on each location of grid j. Then to
compute the value V (x; ~ω), we have to

1. Find the δ-region to which x belongs;

2. Get the K corresponding coefficients ωj(x) and compute the K values
φj(x) for j = 1, · · · ,K;

3. Compute V (x; ~ω) using (7.2).

This is illustrated in Figure 7.2. Note that from Chapter 3, Section 3.5.2,
we know how to do step 1 efficiently. Of course we only store non zero co-
efficients in memory, and for that we use the same hash table that we used
to store the visited regions for the sampling-based reachability algorithm.

7.2.2 Adjusting CMAC weights

Assume that we want to adjust the parameters ωi so that the output in x
matches a given value F (x). We note ∆V = F (x) − V (x; ~ω) the difference
between the value of V before the update and the desired value F (x). Then
the update is given by the Least Mean Square (LMS) rule
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∀i, ∆ωi(x) = β ∆V φi(x)

∑K
i=1 φi(x)

∑K
i=1 φi(x)2

(7.3)

where β > 0 is a learning factor such that β ≤ 1 . If β = 1, then the update
is exact.

7.2.3 Sampling Training

Now let us assume that we want to adjust the weights of the CMAC so
that its outputs is a good interpolation of a given function F on the set X .
Knowing that we can train the CMAC at given values using the LMS rule,
we can think of using a sampling S of X and apply this rule to each point
of the sampling. Then we have to cope with generalization and interference,
i.e. the fact that adjusting at some point may interfere with a previous up-
date at another point nearby.

A simple, good enough solution is to iterate the process of applying the
LMS rule to all point of S until the norm of the global adjustment becomes
sufficiently small. To ensure the convergence, we have to use a decreasing
learning factor βk; Usually, βk is chosen satisfying the following conditions:

lim
k→

βk = 0 and
∞∑

k=1

βk = +∞ (e.g. βk =
1

k
.)

This gives Algorithm 14.

Algorithm 14 Sampling training with a set (S, F (S)) = {(xi, F (xi), i =
1..N}.

k ← 1
repeat

for all i ∈ 1..N do
adjust V (xi; ~ω) to F (xi) using (7.3) with β = 1

k
end for
k ← k + 1

until ‖∆ω‖ ≤ ǫ.

7.2.4 Sampling Dispersion and Generalization

It is intuitively clear that the behavior of Algorithm 14 will be affected by
the related values of the dispersion of S and the generalization radius of
the CMAC used. Recall that the dispersion of a sampling S measures how
far the points are from each others. If this distance is greater than the
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7.2. The CMAC Function Approximator

generalization radius, this means that the points in S are not linked by the
generalization mechanism of the CMAC. In this case Algorithm 14 should
terminate after one iteration, since there is no interference to correct, but
on the other hand, the learning is likely not to cover properly the set X .

This observation allows us to give a simple necessary condition needed to
ensure that if the algorithm converges, the resulting function approximation
is an acceptable approximation of the desired function. The condition is
that the coverage of the sampling is less than the coverage of the function
approximator. Otherwise, it is clear that some part of the set X will not
be covered by the generalization mechanism and thus the approximated
function will not be trained in these parts. So if g is the generalization
radius then we must have:

αX (S) ≤ g~ω (7.4)

Then for the CMAC, this condition becomes αX (S) ≤ K
1
n δ.

7.2.5 Experimental results on test functions

We used Algorithm 14 to test a 2D CMAC on three different functions
(Figure 7.3):

1. A simple piecewise linear function:

F1(x, y) = |x+ y|

on X1 = [−1, 1]× [−1, 1].

2. A smooth function:

F2(x, y) = 3(1−x)2e−x2−(y+1)2−10(
x

5
−x3−y5)e−x2−y2

−
1

3
e−(x+1)2−y2

on X2 = [−3, 3]× [−3, 3].

3. A discontinuous function:

F3(x, y) =
xy2

x2 + y4

on X3 = [−4, 4]× [−4, 4].

We set K = 25 and took a constant factor Diam(Xi)
g~ω

= 10 meaning that

the condition given by (7.4) is verified as soon as we have 10 points along
each dimension, i.e. more than 100 points. Then we tested training sam-
pling sets with different dispersion values and plotted some resulting training
statistics against the factor g~ω

α where α is the dispersion of the sampling (it
corresponds to right hand side in (7.4)). These are shown in Figure 7.4.
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F1(x, y) F2(x, y) F3(x, y)

Figure 7.3: The three test functions
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Figure 7.4: Training of a 2D CMAC with three different functions using
sampling sets with decreasing dispersions. (a)-(b) errors in ∞-norm and
2-norm. (c)-(d) computation time and memory used.
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The best results are obtained for the smooth function F2. For the other
two, the results in infinity norm are due to values around the discontinuity
for F3 and in the corners for F1. Note that for F1, a much coarser value for g~ω

could have been used due to the linearity of the function. In the three cases,
we see that after a certain dispersion value, the memory does not increase
any more. This means that a saturation threshold in interference has been
reached. From there, the convergence becomes more difficult (computation
time increases) while the global quality of the approximation (error in 2-
norm) only slightly increases. This indicates that there is an optimal value
for the factor g~ω

α in terms of quality against computational cost (for the
CMAC used above, we can observe that this value is around 4, considering
the three different test functions).

7.3 Reducing The State Space Exploration

To combat the curse of dimensionality, we then have two different mecha-
nisms. Firstly the local generalization mechanism allows to update the value
function in a whole region of size g~ω from an update in one point. Secondly,
it assumes that only a fraction of the state space is actually explored and
then only a small number of parameters needs actually to be updated (this
explains the name “sparse coarse coding” used in [SB98]). In this section,
we propose a heuristic to reduce the state space explored by dynamic pro-
gramming algorithms presented so far.

Now we assume that we do not need to compute a control law on X but
only on particular subset X0 of it. Since the set X0 has no reason a priori to
be invariant, our idea is to try to build an invariant set which contains X0

and to apply approximate dynamic programming on it. It is well known that
the smallest invariant that contains X0 is Reach(X0), the set reachable from
X0, thus it is clearly the ideal candidate. However, we saw in the second
part of the thesis that computing reachable sets for systems with inputs was
a problem whose difficulty was comparable to that of optimal control prob-
lems. So trying to compute Reach(X0) for all inputs is unrealistic. On the
other hand, the closed-loop system using the optimistic controller becomes
an autonomous system on which we can apply the algorithms developed in
Part 2, so this is what we propose. Using the unbounded horizon algorithm
described in Section 3.6.2, we can get a sampling with a desired dispersion of
the set reachable from X0 using the optimistic policy defined by a function
V i. We note it SReach(X0, V

i). If we use a CMAC to approximate the value
function, we saw that the dispersion of SReach(X0, V

i) had to be less than
the generalization radius g~ω.

Then an iteration of our heuristic consists in two main steps:

1. The computation of a sampling Si = SReach(X0, V
i)
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2. The iteration of a TD algorithm using all points of Si to get a new
estimation V i+1 of the value function.

Then ideally, V i converges to the optimal value function and Si to a
sampling of the set reachable from X0 using the optimal feedback controller.
Note that in practice, the TD algorithm can be iterated several times before
updating Si. Also to improve local exploration at each of these iterations,
each point in Si can be added a random offset whose amplitude is less than
the global dispersion of Si.

The major interest of this heuristic is that it allows to build automatically
the domain on which we compute the value function. This can potentially
avoid to compute it on large parts of the state space. The counter part of it
is that as many optimizing heuristics, the algorithm may get stuck in a local
optimum. In fact, there is possibility that it converges to a value function
which is optimal on the invariant set that it induces but different from the
optimal value function on X .

The occurrence of such a situation is highly sensitive to the choice of
X0 and also to the initial estimation V 0 of the value function. It is thus
important to use all the information available about the system and the
problem to do these choices. In particular if the value function is known at
particular points of the state space, these points should be included in X0

and V 0 initialized consequently.

7.4 Examples

7.4.1 Swing up of the Pendulum

We applied the heuristic of the previous section to the pendulum swing up
problem described in Section 6.5. Recall that the dynamics is defined by:

θ̈ = −µθ̇ + g sin θ + u. (7.5)

The state space is thus 2-dimensional, the two state variables being the angle
θ and the angle velocity θ̇. the cost function is c(θ) = (1− cos(θ)).

In this example, there is a goal state, which is the vertical position with
zero velocity, and an obvious set of initial states consisting in the possible
positions of the pendulum. On the other hand, we do not know a priori
which velocity the pendulum will need to reach the goal position. Thus a
good choice for X0 is the set defined by θ ∈ [−π, π] and θ̇ = 0. Since the
problem is symmetric, we can even restrict to positive angles, then

X0 = {(θ, θ̇) s.t.θ ∈ [0, π] and θ̇ = 0}

Note that the goal state, for which we know that the value function is 0, is
actually in X0. On Figure 7.5 we show the set reachable from X0 using the
initial controller and then the reachable using the optimal controller.
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(a) (b)
θ

θ̇ X0X0

Figure 7.5: (a) Reachable set using the initial controller. (b) Reachable set
using the optimal control law.

(a) (b)

Figure 7.6: (a) Value function computed on (θ, θ̇) ∈ [−π, π] × [−10, 10].(b)
Value function computed on the set reachable from X0 = (θ ∈ [−π, π], θ̇ =
0).

We used a CMAC with a quantization vector δ = ( pi
15 , 0.625) and a gen-

eralization radius g~ω = 6δ (corresponding to K = 36) and trained it with
the value 0 for θ = 0 and θ̇ = 0. On Figure 7.6, we show a comparison
between the value function computed on the whole state space and its re-
striction to the reachable set from X0. In the first case, the CMAC used
1177 coefficients against 853 in the second case.

7.4.2 The Acrobot

The acrobot is a classic challenging under-actuated motor-control problem.
It is basically a double pendulum where the torque is at the articulation
between the “body” and “legs” (see Figure 7.7). The goal is to reach the
vertical position for both the body and the legs and keep it with a zero
velocity.
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g = 9.81, gravity acceleration
m1 = 1, mass of acrobot body
m2 = 1, mass of acrobot legs
l1 = .5, half-length of body
l2 = .5, half-length of legs
µ1 = .05, friction coefficient of body
µ2 = .05, friction coefficient of legs
−2 ≤ u ≤ 2, torque applied to legs.

θ1

θ2

Figure 7.7: The acrobot

The state variables are the angles θ1 and θ2 and the angle velocities θ̇1
and θ̇2. The dynamics is given in a compact form by

(
a11 a12

a21 a22

)(
θ̈1
θ̈2

)

=

(
b1
b2

)

(7.6)

where






a11 = (4
3m1 + 4m2)l21,

a22 = 4
3m2l

2
2,

a12 = a21 = 2m2l1l2cos(θ1 − θ2),

b1 = 2m2l2l1θ̇
2
2 sin(θ2 − θ1) + (m1 + 2m2)l1g sin θ1 − µ1θ̇1 − u,

b2 = 2m2l1l2θ̇1
2

sin(θ1 − θ2) +m2l2g sin θ2 − µ2θ̇2 + u.

and the cost function used was

c(θ1, θ2) = 3− cos(θ1)− cos(θ2)−
cos(θ1 − θ2)

2
−

cos(θ1 + θ2)

2
.

We used a CMAC with δ = (.125, .125, .48, 1) and K = 256. Figure 7.8
shows a trajectory that we obtained projected in the plane (θ1, θ2). From
the bottom position with zero velocity, the controller manage to reach get
near the goal position (0, 0) but cannot stabilize.

7.5 Summary

In this chapter, we investigated the use of dynamic programming meth-
ods to solve optimal control problems for a general class of systems. More
specifically, we presented a framework for the design of temporal differences
algorithms in continuous time and space. This framework is attractive as
it clearly separates different issues related to the use of such algorithms,
namely:
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π

π

π
2

π
2

0

0

−π

−π
−π
2

−π
2

θ1

θ2

Figure 7.8: A trajectory of the acrobot projected in the plane (θ1, θ2). The
starting point is (−π, π).
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1. the choice of the sampling trajectories and the controller used;

2. the representation of the optimal value function;

3. the update of the value function, based on the information provided
by simulated trajectories.

After describing the context of continuous dynamic programming and
our framework, we presented a continuous version of TD(λ) which is consis-
tent after appropriate discretization with its original discrete version. We
then discussed its efficiency with respect to the parameter λ, and presented
a variant, TD(∅), that we found to be experimentally as efficient as TD(λ)
for the best values of λ. Then in the last chapter, we investigated the issue of
function approximation with local generalization and presented the CMAC,
for which we tested the ability to represent various functions. Finally, in
Section 7.3, we proposed to restrict the computation of the value function
to the set reachable from a subset of the state space, using a set of sampling
trajectories. This reachable set can be potentially much smaller than an ar-
bitrarily chosen domain for the computation of the value function, in which
case the method helps against the curse of dimensionality. Controlling the
dispersion of these trajectories is then done to facilitate the convergence of
the function approximation.
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Chapter 8

Implementation

8.1 Introduction

In this chapter, we describe Breach, a prototype toolbox that gathers all the
implementation we made of the various algorithms described in the thesis.
This toolbox intends to provide a coherent set of routines for the analysis
of deterministic models of dynamical systems. We tried to make it generic,
efficient and flexible.
Basically, genericity is achieved by the use of a robust numerical solver of
ODEs; in the first part of the thesis, we showed how continuous systems,
systems with inputs and a class of hybrid systems could be simulated by
solving ODEs. Efficiency relies on the implementation of the most compu-
tationally demanding routines in C++. And flexibility is achieved by the
use of Matlab to implement easily high level routines, and to benefit from its
rich interface and plotting capabilities. In the following, we give an overview
of the toolbox organisation and features.

8.2 Organisation

The toolbox organisation relies on five distinct “modules”:

The Simulator is the essential module used to compute trajectories of the
system;

The Sampling Module gathers some routines to manipulate sampling
sets that are union of rectangular samplings, i.e. finite sets of points
in hyper rectangles;

The CMAC Module is an efficient implementation of the CMAC func-
tion approximator described in Section 7.2;
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CMACLAB

Approx. DPReach Set

Simulation

Sampling

Figure 8.1: Modules interdependance diagram. An arrow means ’uses’. The
CMAC module is used for reach set computations, not as a function approx-
imator but to store regions visited by trajectories.

The Reach set Module implements reachability algorithms described in
Part 2, basic sampling reachability, and reachability using sensitivity
analysis, both for bounded and unbounded horizon;

The Approximate Dynamic Programming Module implements Tem-
poral Differences algorithms described in Part 3.

The first three modules are independant and could be used for any other
purpose, while reachability and TD routines heavily rely on the first three.
Figure 8.1 provides a diagram showing the modules interdependance.

More details about each module are given in the following sections.

8.3 Simulation and Sensitivity Analysis using CVodes

Simulation is the first and maybe the most important step in the analysis
of a dynamical system. The simulation module of the toolbox is based on
CVodes solver, which implements efficient methods to solve both stiff and
non stiff ODEs, with the capacity to compute sensitivity functions. Another
positive feature of this solver is that it has a mature and highly tunable in-
terface, with a complete documentation [HS06].

To solve an ODE of the form

ẋ = f(t,x), x(0) = x0,
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CVodes needs at least that the user provides a routine computing the right-
hand-side (rhs) function f . The core of the solver is implemented in the C
language but recently a Matlab interface was released that allows to write
the rhs function as a Matlab routine. However the repeated calls of the
Matlab routine from the C solver dramatically decrease the performances of
the solver. In our implementation we thus adopted a compromise between
the efficiency of C implementation and the flexibility of Matlab interface.
We modified the existing Matlab interface of CVodes to accept rhs functions
written in C.

Concretely, to set up the simulator of a system, the user has to write
three functions in C:

• An initialization function, InitFdata, to manage problem specific
data and parameters; it is used in particular to set up a CMAC used
as the value function to compute the control inputs;

• The RHS function f ;

• An update function,UpdateFdata, which is called by the solver dur-
ing the computation of the trajectory after each successful step; this
function has primarily in charge

– the computation of input values;

– the mode changes of the system in case it is hybrid;

– the computation of sensitivity jumps in case of a transition.

Once these functions have been written and compiled using a dedicated
script, the tuning of the solver (numerical method used, tolerances, sen-
sitivity components to compute etc) can be done integrally from Matlab
prompt or using Matlab scripts using the CVodes Matlab interface. When
the system is hybrid or has discontinuous inputs, transitions are handled us-
ing Algorithm 1. Thus the user has to specify a value for hmax for the event
detection and for hmin to limit the frequency of transitions (thus preventing
zeno behaviors).

Once the simulator has been set up, trajectories of the system can be
computed by specifying their initial states and a time interval. Depending
on the routine called, we can obtain the trajectory values at specified time
instants or points of the trajectory such that two consecutive points are not
further than a certain value from each other. Additionnal informations such
as sensitivities or values of a value function along the trajectory can also be
computed.
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8.4 Samplings

8.4.1 Definition of a Rectangular Sampling

To represent sampling sets, the toolbox uses rectangular samplings. These
are basically sets of points which are at the center of hyper-rectangles. In its
most basic form, a rectangular sampling is a structure S with the following
fields:

• dim is a vector indicating in which dimensions the rectangles have a
volume; e.g if dim= 1, they are segments parallel to the x1 axis, and if
dim= (1, 3), they are flat rectangles parallel to the plane (x1, x3) and
so on;

• pts is a list of points of dimension n

• epsi is the corresponding list giving the dimensions of the rectangles.

We call dispersion of the rectangular sampling the vector whose components
are the maximal sizes of the rectangles in each dimension.

A sampling S can be used as a set of initial states for the computation
of trajectories. When this is the case, the computed trajectories are stored
in an additional field traj, and another additional field Xf store their end
points. If the expansion function is required, the appropriate sensitivities
are computed and the dimensions epsi of the rectangles are used for the ǫ
used in Chapter 4.

8.4.2 Refinement

A generic routine Refine allows to refine a rectangular sampling S. Each
rectangle in S is sampled using Sukharev grids as described in Section 3.3,
except that cubes are replaced by hyper-rectangles. Local refinement is ob-
tained by preselecting the points and their rectangles that we want to refine.
The new sampling can be obtained as a new independant rectangular sam-
pling or if we want hierarchical refinement as an additional field child of
S.

8.4.3 Plotting

Several routines allow the visualization of sampling sets and sampling tra-
jectories.

• SplotPts and SplotXf allows to plot points, and trajectory end points
of S;

• SplotTraj plot trajectories of S in the state space;
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• SVoxelPts vizualise the rectangles of the sampling

• SVoxelTraj and SVoxelXf vizualize the expansion function around
the trajectories and their end points.

Optionnally if the dimension of the state space is more than 2 or 3, a
projection vector can be specified.

8.5 The CMAC Module

The CMAC module implements the creation and the usage of CMAC ob-
jects. Each of them is an individual function approximator and its principal
characteristics are

• its number of dimensions n,

• its quantization vector δ,

• and its generalization factor K

which are explained in Section 7.2. Additionally, the CMAC can be made
periodic in specified dimensions.

A CMAC is equipped with a hash table that serves for the storage of its
parameters. Each entry of this table corresponds to one δ-region in the state
space, as described in Section 3.5.2. It stores the K corresponding weights
when used as a function approximator or it is just marked as “visited” when
used within a reachability routine.

The basic operations that can be performed on CMAC objects are

• the creation of new object by specifying the above characteristics

• the training at one point or at a set of points as described in 7.2

• the output of the interpolated functions or of one of its partial deriva-
tives;

Additional routines allows to plot the function approximated by a CMAC
in 1D or as a surface w.r.t. 2 state variables.

An important feature of this module is the fact that we can create,
modify, test and save easily different instances of CMAC objects. This adds
a great deal of flexibility in their use.
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8.6 Reachability and Safety Verification

The toolbox implements the sampling-based reachability algorithms de-
scribed in Chapter 3 and Chapter 4. The implemented routines are de-
noted by xxreach where xx can be b, for “box”, s for “sensitivity”, sb for
both “box” and “sensitivity”, or vb for “very basic”. They require three
arguments:

• an initial sampling S0;

• a desired dispersion vector δ;

• and either

– a time interval [t0, t1], on which to perform bounded horizon
reachability;

– or a time step T , in which case unbounded horizon reachability is
performed using Algorithm 4 described at the end of Chapter 3.

They return a sampling with the set of computed trajectories.

The four routines differ mainly on the refinement strategy and the stop-
ping criterion used:

• vbreach never refines the initial sampling. It only computes the tra-
jectories starting from the points in S0. It can be useful to make a
quick-and-dirty unbounded horizon analysis;

• breach refines locally the initial sampling when new regions are visited
(Algorithm 2 of Chapter 3);

• sreach refines locally the initial sampling based on the computation
of the expansion function using sensitivity (Algorithm 6 of Chapter 4);

• sbreach mixes the use of boxes and expansion; it stops either when
expansion is less that δ or when no new region is visited. This way, the
expansion criterion can avoid unnecessary refinements even when new
regions were discovered. Conversely, if the expansion is highly over-
approximated (or if it diverges due to a grazing phenomenon in the
hybrid case), the eventual absence of new boxes forces the algorithm
to terminate.

The verification Algorithm 8 is implemented by the routine verif. It
requires the same inputs as the reachability routines, plus the specifications
of the bad set. Those take the form of a simple user-provided function whose
input is a trajectory and its corresponding expansion function and output
is bad, safe or uncertain.
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8.7 Temporal Differences Algorithms

The main routine of the Approximate Dynamic Programming module is
named td. It takes a CMAC object and a structure with different options
and returns an updated CMAC object and a structure with statistics on the
run. It implements the generic Temporal Differences algorithm described in
Chapter 6. The main possible options are

• A sampling S;

• The time interval [0, T ];

• The λ parameter;

• A number of iterations nb_iter.

It performs nb_iter iterations during which for each points xi in S,

• it picks randomly a points x in the rectangle associated to xi;

• it computes the trajectory ξx on [O,T ];

• it computes a TD(λ) estimation of the value function;

• it uses this estimation to train the CMAC at points visited by the
trajectory.

Statistics returned by the routine mainly include the average performance
of the computed trajectories and the average Hamiltonian error. The per-
formance is more relevant when monitoring the actual progress of a coarse
suboptimal controller while the Hamiltonian error is rather used when try-
ing to get a precise approximation of the optimal value function.

It is important to recall that the controller used for the computation of
trajectories is problem specific. In Section 5.3, it is suggested to use the op-
timistic controller obtained by solving the optimization problem (5.13). This
solution can be obtained and implemented within the C function UpdateFdata,
from where the CMAC object can be called to get values of the current value
function approximation and its derivatives. But different controllers can be
used as well when we have good reasons to do so. In particular at the be-
ginning of the process, when the value function has just been initialized, it
is often much better to use a controller with initially guessed values or that
first tries to stabilize the system.
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Chapter 9

Conclusion and Perspectives

In this thesis, we presented the theory and implementation of a coherent set
of methods devoted to the analysis of a large class of dynamical systems.
Three topics were addressed:

• simulation;

• reachability analysis and safety verification;

• controller synthesis via approximate dynamic programming techniques.

9.1 Contributions

We believe that the main contributions of the thesis are the followings.
Firstly we developed a novel and general trajectory-based method for the
reachability analysis of continuous and piecewise continuous systems. The
only requirement is that the system can be accurately simulated using a stan-
dard numerical solver, which means that the applicability and the scalability
of the method is large. We showed that we could obtain conservative over-
approximation of reachable sets using finite number of trajectories and thus
could verify formally safety properties. We think that this opens new per-
spectives for the formal analysis of complex systems that were not possible
before. This methodology is also more likely to be accepted by practitioners
who already use simulation as a key validation tool.

The second main contribution is the development of a flexible frame-
work for the application of approximate dynamic programming techniques,
in particular temporal difference algorithms adapted to systems in contin-
uous time and space. We showed how to efficiently generate samplings
of trajectories taking in consideration the generalization properties of the
function approximators used in these techniques. We also detailed how to
use sampling-based reachability techniques to restrict the exploration of the
state space and thus limit the computational cost of the method.
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9.2 Perspectives

This work can be extended in number of ways. Firstly we can extend the
range of mathematical models that we consider, e.g. to differential alge-
braic equation models often arising naturally in the field of analog circuits
[DDM04], and for which sensitivity analysis is also already well-studied
[BL02, SGB99]. Also from a technical point of view, we can adapt our
implementation to the use specialized simulation tools widely used in the
industry like the circuit simulator SPICE.

The verification part of the thesis is also closely related to the method-
ology presented in [GP06], the main difference being that in this work the
concept of bisimulation is used to characterize the relative coverage of tra-
jectories. Thus in the spirit of the extensions that were made in this other
context in [FGP06, FP06], we believe that we can extend our technique to
the verification of temporal logic properties.

Aside from those considerations, a number of practical and theoretical
issues related to approximate dynamic programming can still be explored.
In that matter, the flexibility of our framework and implementation allows
a great deal of possible experimentations of new algorithms and techniques.
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