
FP6-IST-507219

PROSYD:

Property-Based System Design

Instrument: Specific Targeted Research Project

Thematic Priority: Information Society Technologies

Final Proposal for PSL Analog Extensions
(Deliverable 1.3/2)

Due date of deliverable: January 1, 2007
Actual submission date: January 1, 2007

Start date of project: January 1, 2004 Duration: Three years

Organisation name of lead contractor for this deliverable: Verimag

Revision 1.0

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level

PU Public £

PP Restricted to other programme participants (including theCommission Services) ¤

RE Restricted to a group specified by the consortium (includingthe Commission Services) ¤

CO Confidential, only for members of the consortium (includingthe Commission Services) ¤

Notices

For information, contact Oded Maler maler@imag.fr.

This document is intended to fulfil the contractual obligations of the PROSYD project con-
cerning deliverable 1.3/2 described in contract number 507219.

The information in this document is provided ”as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability.

c© Copyright PROSYD 2006. All rights reserved.

ii • Final Proposal for PSL Analog Extensions

Table of Revisions

Version Date Description and reason By Affected sec-

tions

0.1 November 15, 2006 First draft Nickovic All

0.5 December 28, 2006 Updated and corrected version Nickovic All

1.0 December 31, 2006 Final Version Nickovic All

Authors
Dejan Nickovic
Oded Maler
Amir Pnueli
Paul Caspi
Antoine Girard

Executive Summary

This document presents the final proposal for an extension of PSL toward real-
time and analog properties. It is based on the results described in Deliverable
1.3/1 [M05] and on the feedback from the analog designers of ST Microelectronics
Italy. The resulting STL/PSL language allows to specify properties of analog and
mixed-signal systems. STL/PSL logic is mainly intended to be used forlightweight
verificationof such properties.

Purpose

The purpose of this document is to descibe the efforts of defining a language based
on temporal logic and in the spirit of PSL that will be the foundation of expressing
properties describing behaviors of analog and mixed signal systems.

Intended Audience

This document is intended for formal methods researchers who are particularely
interested in the analysis of timed and analog systems. It will provide them with
a formal specification language for expressing properties on continuous signals.
This document is also intended to designers familiar with PSL that are interested
in validating analog circuits. It is a pioneering work and a first step in trying to
bring closer the analog and digital communities.

Final Proposal for PSL Analog Extensions • iii

Background

This document is the continuation of the Deliverable 1.3/1 [M05]. The theoret-
ical background is mainly inspired by the results of [AFH96] and [MN04].The
distance-based operators included in the final proposal of STL/PSL are adapted
from the work done in [FGP06, KC06a, KC06b]. This document is also related
to Deliverable [NM06a] which presents thelightweight verificationtool based on
STL/PSL and to Deliverable 3.4/2 [NM06b] which describes a case study on mon-
itoring Flesh memory simulations against specifications written in STL/PSL.

iv • Final Proposal for PSL Analog Extensions

Contents
Table of Revisions ... iii

Authors .. iii

Executive Summary ... iii

Purpose .. iii

Intended Audience... iii

Background ..iii

Contents ... v

Table of Figures .. vi

Glossary ... vii

1 Introduction ... 1

1.1 Relation to Deliverable 1.3/1 .. 1

1.2 Overview ... 2

2 Theoretical Background .. 5

2.1 Signals... 5

2.2 Real-time logic MITL .. 5

2.3 Signal Temporal Logic... 7

2.4 Finitary interpretation of STL ... 7

3 STL/PSL Syntax and Semantics ... 11

3.1 Analog Layer.. 11

Absolute value ... 12

Derivative.. 12

Arithmetic Operations .. 12

Shift ... 13

3.2 Boolean Abstraction .. 14

3.3 Temporal Layer... 15

Boolean Operators.. 15

Untimed Operators ... 16

3.4 Timed Operators ... 17

Timed eventually operators.. 17

Timed until operators.. 19

3.5 Distance-based properties... 20

3.6 Threshold distance .. 21

3.7 Threshold-delay distance.. 23

4 Conclusion .. 27

5 References... 29

A Production Rules for STL/PSL... 31

Final Proposal for PSL Analog Extensions Contents • v

Table of Figures

Figure 1 - PSL and STL/PSL layers .. 3

Figure 2 - Absolute value... 12

Figure 3 - Derivative ... 13

Figure 4 - Arithmetic Operations .. 13

Figure 5 - Shift ... 14

Figure 6 - Threshold Boolean Abstraction.. 15

Figure 7 - Boolean Operators ... 16

Figure 8 - Untimed Eventually and Always.. 17

Figure 9 - Untimed Until and Weak Until .. 18

Figure 10 - Bounded Eventually and Always...................................... 20

Figure 11 - Bounded Until and Weak Until .. 21

Figure 12 - Threshold Distance... 22

Figure 13 - Analog Threshold-Delay Distance: Property Holds 24

Figure 14 - Analog Threshold-Delay Distance: Property Fails.............. 25

Figure 15 - Boolean Threshold-Delay Distance 25

vi • Table of Figures Final Proposal for PSL Analog Extensions

Glossary

Exhaustive verification

The process of proving the correctness of a system with respect to a formal speci-
fication by exhaustively exploring its mathematical model.

Leightweight verification

The procedure for proving the correctness of a single finite execution ofa system
with respect to a formal specification.

LTL

Linear-time Temporal Logic

MITL

Metric Interval Temporal Logic. The dense-time extension of the LTL logic,al-
lowing modalities ranging over a non-punctual interval

Monitoring

Seelightweight verification .

PSL

Property Specification Language

STL

Signal Temporal Logic. The analog extension of MITL

STL/PSL

Signal Temporal Logic/Property Specification Language. The analog extension of
PSL

Final Proposal for PSL Analog Extensions Table of Figures • vii

viii • Table of Figures Final Proposal for PSL Analog Extensions

1 Introduction
This document is the final proposal for an extension of PSL [KCV04, HFE04]
toward real-time and analog properties and is the continuation of the Deliverable
1.3/1 [M05]. The extension of temporal logics to richer semantic domains is a
recent direction of research in the field. It has been studied in [ASS+05] in the
context of run-time verification of synchronous software with complex datastruc-
tures. We can also mention using timed temporal logics in exhaustive verification
of continuous systems[FGP06].

The results described in this document represent mainly the work of Verimagand
Weizmann. The additional participation of ST on providing information about ana-
log design of circuits was crucial in identifying the useful properties that describe
analog behavior and enriching the language according to the industrial needs.

1.1 Relation to Deliverable 1.3/1
The final proposal for an analog extension of PSL [KCV04, HFE04] relies on
the report described by the Deliverable 1.3/1 [M05]. However, the proposed final
extension differs from the preliminary report in the following aspects:

1. Deliverable 1.3/1 included more options (such as regular expressions, and
preliminary ideas on frequency domain properties) that finally did not make
their way to the final proposal which is restricted to signal temporal logic
(STL) [MN04] and some metric constructs. The reason for this omission is
that we prefer to restrict the proposal to language constructs that havebeen
found useful for the treatment of the analog case study, and for which we had
feedback from designers. The project proposal was written with ST Crolles
as a partner which was supposed to give us more feedback from analogde-
signers but since the responsibility to this part has shifted to ST Italy, we had
less frequent contacts with designers and found no use to define hypothetical
extensions. Consequently we focused on STL, as the natural extensionof
the temporal logic part of PSL for expressing sequential properties of analog
signals.

2. While in Deliverable 1.3/1 the extensions were described in a purely mathe-
matical style, the present document follows the style and the syntax of PSL
and is richer in explanations and illustrations.

Final Proposal for PSL Analog Extensions Introduction • 1

3. The metric constructs presented in this document (and implemented into our
monitoring tool, see Delivrable 3.2/13 [NM06a]) which are used to mea-
sure the similarity between an analog signal and a reference signal were not
included in Deliverable 1.3/1 and appear here for the first time.

1.2 Overview
PSL [KCV04, HFE04] consists of four layers shown in Figure 1 (a): Boolean,
temporal, verification and modeling. The Boolean layer consists of Boolean ex-
pressions that are used by the other layers, mainly the temporal one. The temporal
layer is the heart of the PSL language and is used to express complex temporal
relations between Boolean signals. In PSL, temporal expressions are evaluated
over cycles (discrete steps). The verification layer consists of directives telling the
verification tools what to do with the properties described in the temporal layer.
Finally, the modeling layer is used to model the behavior of the design under veri-
fication.

Analog systems are different from the discrete system in several aspects. An im-
portant difference is that variables describing the dynamics of an analogsystem
are real-valued. Unlike digital systems whose dynamics evolve in cycles, which
are discretized time samples, the analog systems have continuous dense-time be-
havior. The effort of extending the expressiveness of PSL in orderto adapt its
semantics to such real-valued dense-time behavior has been conducted onseveral
different axes shown in Figure 1 (b):

• Adding ananalog layerwhich deals with real-valued variables to the current
structure of PSL

• Building a “bridge” between the analog and the temporal layers

• Identifying a proper subset of the temporal layer of PSL and adapting it to
the dense-time

The modeling, verification and Boolean layers can be used in the analog exten-
sion of PSL. However, from now on, we will concentrate only on the partsof
the language that have to be adapted to the new semantics, that is the embedding
of the analog layer and the Boolean abstraction to PSL, as well as the necessary
adaptation of the temporal layer to support the dense time semantics. We call the
resulting extended logic STL/PSL.

A basic notion in STL/PSL is that of asignal, a partial function from time to
some arbitrary domain (depending on the type of the signal). Signals are defined
formally in the next Section. Each operator in STL/PSL has arepresentative signal

2 • Introduction Final Proposal for PSL Analog Extensions

Boolean Layer

Temporal Layer

Verification Layer

Modeling Layer

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

Analog Layer

Temporal Layer

(a) (b)

dense tim
e

Modeling Layer

Verification Layer

Boolean Abstraction

Boolean Layer

Figure 1: (a) PSL layers (b) STL/PSL layers

associated to it. For the operators in the analog layer, we call themcontinous
signals, and they correspond to the result of applying the operator to the input at
different time instants. Thesatisfaction signalassociated to temporal and Boolean
subformulae shows at each time instant whether the subformula is satisfied ornot
at that time point.

The analog layer of STL/PSL consists of expressions that represent the analog de-
sign. It is shaped around built-in functions that manipulate real-valued variables.
Such functions allow expressing analog transformations such us derivatives or ab-
solute values of such variables. Note that the analog layer cannot be used on its
own to validate an STL/PSL property. The continuous behavior describedin the
analog layer needs first to be abstracted before relating the temporal behavior be-
tween different analog components.

The main objective of the PSL analog extension is to add constructs that relate
behaviors of analog variables at different points in time by applying standard oper-
ators from the PSL temporal layer. In order to achieve this goal we need toabstract
the values of analog inputs. The first method that we propose is the Booleanab-
straction of real valued variables withthresholds, and is at the heart of the STL
logic presented in [MN04]. Note that the Boolean abstraction based on inequality
contraints is already included in the Boolean layer of PSL. Given that it represents
an important feature of STL/PSL we will treat independently such abstractions in
this document.

The other technique that we use to bridge the analog to the temporal layer aremet-
ric distancesbetween analog variables. The attractiveness of the distance-based
operators comes from theirmetricnature, from which we can extract richer quan-
titative information about the degree of similarity between two continuous signals.
The distance operators will be mainly used for comparison of simulation traces
with respect to a reference (expected) output.

The temporal operators in STL/PSL are applied to the Boolean abstractions of the
continuous signals or directly to the Boolean (satisfaction) signals. For continuous
signals, the original values are lost in this process, but the timing information of
the Boolean abstraction remains dense. Hence, interpreting PSL over clock cy-

Final Proposal for PSL Analog Extensions Introduction • 3

cles is not adapted to this framework. Regular expressions, LTL and CTLare the
subsets of PSL that can be naturally extended to real time, using thetimed regu-
lar expressions[ACM02], M ITL [AFH96, MN04, MNP06] and TCTL [Y97] real
time formalisms. TCTL, the real time version of CTL is a branching-time logic,
and as such is not well adapted to describe temporal behaviors of individual traces,
which is the primary purpose of STL/PSL. Combining timed regular expressions
and MITL in the timed framework is difficult due to the difference in defining the
input alphabets. From our experience, MITL is the most natural formalism for
expressing real-time properties and has been chosen as the basis for thetemporal
layer of STL/PSL.

Finally, STL/PSL allows combining analog and Boolean variables in a single prop-
erty, and hence can also be used to express properties of mixed-signaldesigns.

This document is structured as follows:

• Section 2: presents the theoretical background behind the STL/PSL logic

• Section 3: Describes the effort of defining concretely the syntax and seman-
tics of STL/PSL, adapting the syntax to the one of PSL. It defines the analog
layer of STL/PSL and its operators, the Boolean abstraction part of the lan-
guage that allows “bridging” the analog and the temporal layers of STL/PSL,
the real-time extensions of the temporal layer of PSL, and embedding metric
distance-based operators into the language.

• Section 4: Conclusions.

• Appendix A: Production rules for STL/PSL.

4 • Introduction Final Proposal for PSL Analog Extensions

2 Theoretical Background
This Section presents the technical definitions behind the STL/PSL language.

2.1 Signals
A signalξ defined over an arbitrary domainD is a partial functionξ : R≥0 → D.
Signal ξ is said to be offinite lengthif its domain of definition is the interval
Tξ = [0, r). The length ofξ is denoted by|ξ| = r and we use the notationξ[t] = ⊥

whent ≥ |ξ|. Signals can be combined and separated using the standard operations
of pairing andprojectiondefined as

ξ1 || ξ2 = ξ12 if ∀t ξ12[t] = (ξ1[t],ξ2[t])
ξ1 = π1(ξ12) ξ2 = π2(ξ12)

We are interested in two particular types of signals, Boolean signalsξb : R≥0 → B

and continuous signalsξa : R≥0 → R.

A Boolean signal is a sequence of left-closed right-open intervalsξb = I0 · I1 · . . . , Ik
such thatI0 = [0, t1), Ii = [ti , ti+1), Ik = [tk−1, r) and the value ofξb is constant
in every interval. The definition of Boolean signals using left-closed right-open
disallows punctual intervals, in other words for anyIp = [t, t) is empty.

2.2 Real-time logic MITL

The temporal layer of the STL/PSL specification language is based upon thereal-
time logic MITL [AFH96] interpreted over dense Boolean signals. MITL is a nat-
ural real-time extension of the LTL logic supported by PSL. The principal modal-
ity of M ITL is the timed untilU I whereI is some non-singular interval. A for-
mula pU [a,b]q is satisfied by a model at any time instantt that admitsq at some
t ′ ∈ [t + a, t + b], and wherep holds continuously fromt to t ′. A consequence of

Final Proposal for PSL Analog Extensions Theoretical Background • 5

interpreting MITL over dense time is that thenextoperator loses its meaning and
hence is not used in the logic.

The basic formulae of MITL are defined by the grammar:

ϕ := p | ¬ϕ | ϕ1∨ϕ2 | ϕ1U ϕ2 | ϕ1U [a,b]ϕ2

M ITL formulae are interpreted overn-dimensional Boolean signals. The signalξb

is a multi-dimensional Boolean signal containing all propositional Boolean signals
p. We usep to denote the signalπp(ξb), the projection of the multi-dimensional
signalξb on p.

The satisfaction relation(ξb, t) |= ϕ, indicating that signalξb satisfiesϕ starting
from positiont, is defined inductively as follows:

(ξb, t) |= p ↔ πp(ξb)[t] = T
(ξb, t) |= ¬ϕ ↔ (ξb, t) 6|= ϕ
(ξb, t) |= ϕ1∨ϕ2 ↔ (ξb, t) |= ϕ1 or (ξb, t) |= ϕ2

(ξb, t) |= ϕ1U ϕ2 ↔ ∃t ′ ≥ t st (ξb, t ′) |= ϕ2 and
∀t ′′ ∈ [t, t ′].(ξb, t ′′) |= ϕ1

(ξb, t) |= ϕ1U [a,b]ϕ2 ↔ ∃t ′ ∈ [t +a, t +b] (ξb, t ′) |= ϕ2 and
∀t ′′ ∈ [t, t ′],(ξb, t ′′) |= ϕ1

From the basic MITL operators we can define theeventuallyandalwaysoperators:

♦ϕ = TU ϕ
¤ϕ = ¬♦¬ϕ
♦[a,b]ϕ = TU [a,b]ϕ
¤[a,b]ϕ = ¬♦[a,b]¬ϕ

Each subformula of an MITL property has an associatedrepresentative signal
called thesatisfaction signalξ′b = χϕ(ξb). The signalξ′b = χ f (ξb) satisfiesξ′b[t] = 1
iff (ξb, t) |= ϕ. Our definition of MITL [MN04] slightly deviates from the original
one in [AFH96]:

1. We disallow signals that admit punctuality

2. We restrict modalities to closed intervals

3. We modify the semantics ofpU q to require a “handshake” moment where
both p andq hold

The restriction to non-punctual signals is very reasonable from a semanticpoint
of view and constitutes the natural choice for signals (refer to [ACM02] for the
algebraic definition of signals and their properties). The two other modifications
are consequences of this choice as we want the signals representing thesatisfaction
of the temporal subformulae to be valid signals as well. The main limitation of this

6 • Theoretical Background Final Proposal for PSL Analog Extensions

logic is the inability to specify events (or the rising and falling of a signal) which
prevents, for example, expressing properties such as bounded variability 1.

2.3 Signal Temporal Logic

The analog part of STL/PSL relies upon the Signal Temporal Logic (STL), pre-
sented in [MN04]. STL extends the MITL logic and its semantic domain to real-
valued signals. The analog component of STL is embedded into MITL via static
abstractionsof the formµ : R →B, partitioning the continuous state-space accord-
ing to the satisfaction of some inequality constraints on the real-valued variables
and expressions.

We first define analog expression as:

φ := a | f (φ)

wherea is an analog variable andf (φ) is a function transforming real-valued sig-
nals into real-valued signals2 f : (R+ → R) → (R+ → R). Analog expressions in
φ have an associated signalξφ calledcontinuous signalsuch thatξφ[t] = φ(ξa)[t].

The syntax of STL is defined by the following grammar:

ϕ := p | φ◦c | ¬ϕ | ϕ1∨ϕ2 | ϕ1U ϕ2 | ϕ1U [a,b]ϕ2

whereφ is an analog expression,◦ ∈ {<,≤}, andc∈ Q is a constant. Note that
STL formulae are interpreted over a union of continuous and Boolean signalsξ =

ξa∪ξb. The satisfiability relation for the static abstractionφ?c is

(ξ, t) |= φ◦c ↔ φ[t]◦c

According to the layered approach of STL/PSL,φ corresponds to theanalog layer,
φ◦c is theBoolean abstractionandϕ is thetemporal layer.

1However, events can be approximated with arbitrary precision, see D3.2/13 [NM06a]
2The abstract definition off provides a general framework to easily “plug-in” specific built-in

analog functions into logics based on STL

Final Proposal for PSL Analog Extensions Theoretical Background • 7

2.4 Finitary interpretation of STL

The analog extension of PSL is intended for specification of properties that are to
be used for lightweight verification of simulation traces of finite length. Temporal
operators may have a termination condition that comes at an interval that occurs
after the end of the signal. This implies that the underlying logic has to provide
the finitary interpretation of formulae.

We take the approach developed in PSL, providingstrongandweakforms of the
temporal operators. Thestrong formrequires the terminating condition to occur
before the end of the signal, while theweak formmakes no such requirements. In
PSL for example,until! anduntil present the strong and the weak forms of the
until operator, respectively.

Consequently, we adapt the semantics of STL to finitary traces and call the result-
ing logic STL f . STL f is interpreted over a multidimensional signalξ = ξa∪ ξb.
The temporal operators of STL f are decorated withw ands superscripts, denoting
theirweakor strongform respectively. We remind thatTξ denotes the time interval
corresponding to the duration ofξ. The syntax of STL f is defined by the grammar:

ϕ := p | φ◦c | ¬ϕ | ϕ1∨ϕ2 | ϕ1U
sϕ2 | ϕ1U

s
[a,b]ϕ2 | ♦

sϕ1 | ♦
s
[a,b]ϕ1 | ♦

w
[a,b]ϕ1

Note that we explicitly define differenteventuallyoperators, since we will use
them to obtain timed versions of other operators. The semantics of the temporal
operators is defined as follows:

(ξ, t) |= ϕ1U
sϕ2 ↔ ∃t ′ ∈ [t,∞)∩Tξ st (ξ, t ′) |= ϕ2 and∀t ′′ ∈ [t, t ′] (ξ, t) |= ϕ1

(ξ, t) |= ϕ1U
s
[a,b]ϕ2 ↔ ∃t ′ ∈ [t +a, t +b]∩Tξ st (ξ, t ′) |= ϕ2 and

(ξ, t) |= ♦sϕ1 ↔ ∃t ′ ∈ [t,∞)∩Tξ st (ξ, t ′) |= ϕ1

(ξ, t) |= ♦s
[a,b] ϕ1 ↔ ∃t ′ ∈ [t +a, t +b]∩Tξ (ξ, t ′) |= ϕ1

(ξ, t) |= ♦w
[a,b] ϕ1 ↔ ∃t ′ ∈ [t +a, t +b]∩Tξ (ξ, t ′) |= ϕ1

or |ξ| ≤ t +b

From the basic operators, we can derive other ones, and we give someexamples:

¤wϕ = ¬♦s¬ϕ
¤w

[a,b]ϕ = ¬♦s
[a,b]¬ϕ

¤s
[a,b]ϕ = ¬♦w

[a,b]¬ϕ
ϕ1U

wϕ2 = ϕ1U
sϕ2∨¤wϕ1

ϕ1U
w
[a,b]ϕ2 = ϕ1U

s
[a,b]ϕ2∨¤w

[0,b]ϕ1

8 • Theoretical Background Final Proposal for PSL Analog Extensions

The untimedeventually(always) comes only in strong (weak) form, as the weak
(strong) form ofeventually(always) is trivially satisfied (falsified) by any trace.

Final Proposal for PSL Analog Extensions Theoretical Background • 9

10 • Theoretical Background Final Proposal for PSL Analog Extensions

3 STL/PSL Syntax and Se-
mantics

STL/PSL analog extension is built on top of the STL f temporal logic. It is intended
to describe temporal properties on finite-length real-valued and/or Boolean traces.
Some issued related to the representation of finite-length real-valued signalsare
discussed in the analog layer section. One of the main efforts has been done on
integrating the logic according to the standard PSL syntax. In this Section we
present different STL/PSL constructs, describing their syntax and semantics. We
use the notationx,x1,x2,y,y1,y2 andphi,phi1,phi2 for formulae from the
analog and the temporal layer respectively.

3.1 Analog Layer
The analog layer of STL/PSL allows reasoning about real-valued variables. While
STL f defines analog expressions in an abstract way, STL/PSL provides concrete
built-in functions. The choice of functions included in the language has been the
result of the discussions with analog designers of ST Microelectronics Italy and
their feedback. These functions are at heart of enabling the expression of richer
temporal properties, where analog signals can “communicate” between themselves
directly, and not only via Boolean abstraction. Some of the operators are memo-
ryless, like the absolute value function, while other operators likeshift require
memory. The analog layer has been designed to be easily extendable to new built-
in functions.

Note that the analog functions in STL/PSL manipulate continuous signals that
are defined asideal mathematical objectsconsisting of an uncountable number
of pairs(t,ξa[t]) for all t ∈ [0, r). Such signals do not admit anexact finite repre-
sentationwhich can be a problem in implementing and interpreting the STL/PSL
analog layer in tools. In fact, the signals generated by numerical simulators usu-
ally produce afinite collection of sampling points(t,ξa[t]) with t ranging over
some interval[0, r) ⊆ R≥0, whereξa[t] is stored using floating point representa-
tion. Hence, we leave the definitions in the analog layer as general as possible,
and delegate to the tools supporting the STL/PSL language to approximate the

Final Proposal for PSL Analog Extensions STL/PSL Syntax and Semantics • 11

sampled input signals to their continuous representation. This can be done for
example usingpiecewise-constantor linear interpolation, which “fill” the miss-
ing values between two samples. The latter one is implemented in the STL/PSL
Monitor tool, presented in Deliverable 3.2/13 [NM06a].

Absolute value

Syntax: abs(x)

x: analog expression
returns: analog expression

Informal description: abs(x) returns the absolute value ofx as shown in Fig-
ure 2.

Definition:

abs(x)[t] =







x[t] if x[t] ≥ 0
−x[t] else ifx[t] < 0
⊥ otherwise

(a) (b)

 1 1 1 1

0.3

−0.3

0

0.3

−0.3

0

abs(x)

0 0.5 1 1.5 2 0 0.5 1 1.5 2

x

Figure 2: Absolute value: (a)x (b) abs(x)

Derivative

Syntax: ddt(x)

x: analog expression

Informal description: ddt(x) computes the rate of change of the signalx (see
Figure 3).

Definition:

ddt(x)[t] =

{

dx[t]
dt if x[t] 6= ⊥

⊥ otherwise

12 • STL/PSL Syntax and Semantics Final Proposal for PSL Analog Extensions

(a) (b)

 1 1 1 1

0.3

−0.3

0

ddt(x)

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0.3

−0.3

0

x

Figure 3: Derivative: (a)x (b) ddt(x)

Arithmetic Operations

Syntax:

x1+x2, x1-x2, x1*x2, x1+c, x1-c, x1*c

x1,x2: analog expressions

c: real constant

Informal description: The arithmetic operations are defined in a straightforward
fashion as pointwise addition, subtraction and multiplication operations on
signalx and a constantc or another signaly. The Figure 4 shows the result
of the subtraction of signalsx andy

(x1?x2)[t] =

{

x1[t]?x2[t] if x1[t] 6= ⊥ andx2[t] 6= ⊥

⊥ otherwise

(x?c)[t] =

{

x[t]?c if x[t] 6= ⊥

⊥ otherwise

where? ∈ {+,-,*}.

(a) (b)

 1 1 1 1

0.3

−0.3

0

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0.3

−0.3

0

x2

x1 x1-x2

Figure 4: Arithmetic operations: (a)x1 andx2 (b) x1-x2

Final Proposal for PSL Analog Extensions STL/PSL Syntax and Semantics • 13

Shift

Syntax: shift(x,c)

x: analog expressionc: positive real constant

Informal description: The result of this operation is the signalx that is shifted
by the amount ofc as shown in Figure 5.

Definition:

shift(x,c)[t] =

{

x[t +c] if x[t +c] 6= ⊥

⊥ otherwise

(a) (b)

 1 1 1 1

0.3

−0.3

0

0 0.5 1 1.5 2 0 0.5 1 1.5 2

x
0.3

−0.3

0

shift(x,0.125)

Figure 5: Shift: (a)x (b) shift(x,0.125)

3.2 Boolean Abstraction
The Boolean abstraction allows mapping continuous signals to Boolean signals.
It is an important part of STL/PSL as the temporal properties are interpreted over
the Boolean abstractions of the analog inputs rather than on the continuous signals
themselves.

The abstraction that partitions the continuous state-space according to the satisfac-
tion of some inequality constraint on the real variables is calledthreshold Boolean
abstraction. The Figure 6 (b) is an example of the Boolean mapping of the signal
x from Figure 6 (a) with respect to a thresholdeps=0.3.

Although the Boolean abstraction operator is simple, when combined properly
with the operators from the analog layer, it becomes much more expressive. As an
example, we can express linear constraints of type5x <= 2y in STL/PSL by using
arithmetic operators and rewriting the constraint asx*5 - y*2 <= 0.

Syntax:

14 • STL/PSL Syntax and Semantics Final Proposal for PSL Analog Extensions

(a)

(b)

 1 1 1 1

0.3

−0.3

0

0

1

0 0.5 1 1.5 2

x

eps

x <= eps

Figure 6: Threshold-based Boolean Abstraction: (a)x (b) x <= 0.3

x < eps — x <= eps | x > eps | x >= eps

x: Boolean expression
eps: real constant

Informal description: The threshold Boolean abstractionx <= eps holds at time
t iff the value ofx(t) is smaller or equal to the threshold constanteps. We
can see an example in Figure 6 whereeps=0.3.

Semantics:
(ξ, t) |= x < eps ↔ x[t] < eps
(ξ, t) |= x <= eps ↔ x[t] ≤ eps
(ξ, t) |= x > eps ↔ x[t] > eps
(ξ, t) |= x >= eps ↔ x[t] ≥ eps

Rewrite rules:

x > eps = not (x <= eps)

x >= eps = not (x < eps)

3.3 Temporal Layer
The syntax of the temporal layer of STL/PSL is adapted to the original syntaxof
PSL, and we use similar syntactic sugaring in order to derive new operators from
the basic ones.

Final Proposal for PSL Analog Extensions STL/PSL Syntax and Semantics • 15

Boolean Operators

The Boolean operators in STL/PSL are defined in the usual manner and are inter-
preted over dense time.

Syntax:

not phi1 | phi1 or phi2 | phi1 and phi2

| phi1 -> phi2 | phi1 <-> phi2 | phi1 xor phi2

phi1,phi2: Boolean expression

Semantics:

(ξ, t) |= not phi1 ↔ (ξ, t) 6|= phi1
(ξ, t) |= phi1 or phi2 ↔ (ξ, t) |= phi1 or (ξ, t) |= phi2
(ξ, t) |= phi1 and phi2 ↔ (ξ, t) |= phi1 and(ξ, t) |= phi2
(ξ, t) |= phi1 -> phi2 ↔ (ξ, t) |= phi1 implies that(ξ, t) |= phi2
(ξ, t) |= phi1 <-> phi2 ↔ (ξ, t) |= phi1 iff (ξ, t) |= phi2
(ξ, t) |= phi1 xor phi2 ↔ (ξ, t) |= phi1 xor (ξ, t) |= phi2

Rewrite rules:

p and q = not (not p or not q)

p -> q = not p or q

p <-> q = (p and q) or (not p and not q)

p xor q = (not p and q) or (p and not q)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

0

1

0

1

0

1

0

1

0 0.5 1 1.5 2

0

0

1

0

1

0 0.5 1 1.5 2

0

1

0

1

Figure 7: Boolean operators: (a)p (b) q (c) not p (d) p and q (e) p or q (f) p -> q (g) p
<-> q (h) p xor q

16 • STL/PSL Syntax and Semantics Final Proposal for PSL Analog Extensions

Untimed Operators

Temporal operators that are untimed (not bounded by an interval) preserve their
standard PSL semantics, and are interpreted over real time.

Syntax:

always phi

eventually! phi

phi1 until! phi2

phi1 until phi2

phi,phi1,phi2: Boolean expression

Semantics:

(ξ, t) |= always phi ↔ ∀t ′ ∈ [t,∞)∩Tξ (ξ, t ′) |= phi
(ξ, t) |= eventually! phi ↔ ∃t ′ ∈ [t,∞)∩Tξ (ξ, t ′) |= phi
(ξ, t) |= phi1 until! phi2 ↔ ∃t ′ ∈ [t,∞)∩Tξ st (ξ, t ′) |= phi2 and

∀t ′′ ∈ [t, t ′] (ξ, t) |= phi1
(ξ, t) |= phi1 until phi2 ↔ (ξ, t) |= phi1 until! phi2 or

(ξ, t) |= always phi1

Rewrite rules:

phi1 until phi2 = (phi1 until! phi2) or always phi1

Notes: Due to the “handshake” semantics of theuntil operator in the dense time
framework, the PSL operatorsuntil anduntil are equivalent, and hence
the former is not included in the STL/PSL extension.

(a)

(b)

(c)

(d)

0

1

0

1

0

1

0

1

0 0.5 1 1.5 2 0 0.5 1 1.5 2

Figure 8: Untimed Eventually and Always: (a)p (b) eventually!p (c) q (d) always q

3.4 Timed Operators

Final Proposal for PSL Analog Extensions STL/PSL Syntax and Semantics • 17

(a)

(b)

(c)

(d)

0

1

0

1

0

1

0

1

0 0.5 1 1.5 2

Figure 9: Until and Weak Until: (a)p (b) q (c) p until!q (d) p until q

Timed eventually operators

Syntax:

eventually![a:b] phi

eventually [a:b] phi

eventually! [<=b] phi

eventually [<=b] phi

eventually! [>=a] phi

phi: Boolean expression

Semantics:

(ξ, t) |= eventually![a:b] phi ↔ ∃t ′ ∈ [t +a, t +b]∩Tξ (ξ, t ′) |= phi
(ξ, t) |= eventually[a:b] phi ↔ ∃t ′ ∈ [t +a, t +b]∩Tξ (ξ, t ′) |= phi

or |ξ| ≤ t +b
(ξ, t) |= eventually![<=b] phi ↔ ∃t ′ ∈ [t, t +b]∩Tξ (ξ, t ′) |= phi
(ξ, t) |= eventually[<=b] phi ↔ ∃t ′ ∈ [t, t +b]∩Tξ (ξ, t ′) |= phi

or |ξ| ≤ t +b
(ξ, t) |= eventually![>=b] phi ↔ ∃t ′ ∈ [t +a,∞)∩T

ξ (ξ, t ′) |= phi

Notes:

Intuitively, eventually![a:b] operator corresponds to the dense time extension
of the next e![a:b] PSL operator. We adapt the syntax to the standard
M ITL notation, and to the fact that thenextoperator does not exist in dense
time.

The weak version ofeventually![>=a] does not exist, since as in the untimed
case, it trivially evaluates totrue for all the finite length signals.

18 • STL/PSL Syntax and Semantics Final Proposal for PSL Analog Extensions

Syntax:

always![a:b] phi

always [a:b] phi

always![<=b] phi

always [<=b] phi

always [>=a] phi

phi: Boolean expression

Semantics:

(ξ, t) |= always[a:b] phi ↔ ∀t ′ ∈ [t +a, t +b]∩Tξ (ξ, t ′) |= phi
(ξ, t) |= always![a:b] phi ↔ ∀t ′ ∈ [t +a, t +b]∩Tξ (ξ, t ′) |= phi

and|ξ| > t +b
(ξ, t) |= always[<=b] phi ↔ ∀t ′ ∈ [t, t +b]∩Tξ (ξ, t ′) |= phi
(ξ, t) |= always![<=b] phi ↔ ∀t ′ ∈ [t, t +b]∩Tξ (ξ, t ′) |= phi

and|ξ| > t +b
(ξ, t) |= always[>=a] phi ↔ ∀t ′ ∈ [t +a,∞)∩Tξ (ξ, t ′) |= phi

Notes:

Intuitively, always[a:b] operator corresponds to the dense time extension of
thenext a[a:b] PSL operator. We adapt the syntax to the standard MITL

notation, and to the fact that thenextoperator does not exist in the dense
time.

The strong version ofalways [>=a] does not exist, since as in the untimed case,
it trivially evaluates tof alsefor all the finite length signals.

Timed until operators

Syntax:

phi1 until![a:b] phi2

phi1 until [a:b] phi2

phi1 until![<=b] phi2

phi1 until [<=b] phi2

phi1 until [>=a] phi2

phi1 until [>=b] phi2

phi1,phi2: Boolean expression

Final Proposal for PSL Analog Extensions STL/PSL Syntax and Semantics • 19

Semantics:

(ξ, t) |= phi1 until![a:b] phi2 ↔ ∃t ′ ∈ [t +a, t +b]∩Tξ st (ξ, t ′) |= phi2 and
∀t ′′ ∈ [t, t ′] (ξ, t) |= phi1

(ξ, t) |= phi1 until[a:b] phi2 ↔ (ξ, t) |= phi1 until![a:b] phi2 or
(ξ, t) |= always[<=b] phi1

(ξ, t) |= phi1 until![<=b] phi2 ↔ ∃t ′ ∈ [t, t +b]∩Tξ st (ξ, t ′) |= phi2 and
∀t ′′ ∈ [t, t ′] (ξ, t) |= phi1

(ξ, t) |= phi1 until[<=b] phi2 ↔ (ξ, t) |= phi1 until![<=b] phi2 or
(ξ, t) |= always[<=b] phi

(ξ, t) |= phi1 until![>=a] phi2 ↔ ∃t ′ ∈ [t +a,∞)∩Tξ st (ξ, t ′) |= phi2 and
∀t ′′ ∈ [t, t ′] (ξ, t) |= phi1

(ξ, t) |= phi1 until[>=a] phi2 ↔ (ξ, t) |= phi1 until![>=a] phi2 or
(ξ, t) |= always phi1

(a)

(b)

(c)

(d)

(e)

(f)

0

1

0

1

0

1

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0

1

0

1

0

1

Figure 10: Bounded eventually and always operators: (a)p (b) eventually!
[0.25:0.75] p (c) eventually [0.25:0.75] p (d) q (e) always![0.25:0.75] q (f)
always [0.25:0.75] q

3.5 Distance-based properties
A large part of analog design is based on comparing waveforms (signals)with
some reference signal that specify a desired behavior. These notionsare formalized
using a distance function (metric) which quantifies numerically the resemblance
of two signals. Mathematically speaking, a metric space is a pair(X,d) such
that X is the domain andd : X ×X → R+ is a function satisfying:d(x,x) = 0;
d(x,y) = d(y,x) and d(x,y) + d(y,z) ≥ d(x,z). There are many ways to define
distance function on waveforms, by taking the maximum of the pointwise distance
at every timet, summing/integrating over the pointwise distance, etc. Once such a

20 • STL/PSL Syntax and Semantics Final Proposal for PSL Analog Extensions

(a)

(b)

(c)

(d)

0

1

0

1

0

1

0

1

0 0.5 1 1.5 2

Figure 11: Bounded until operators: (a)p (b) p (c) p until! [0.25:0.75] q (d) p until
[0.25:0.75] q

distanced is defined, it can be used to define distance-based properties of the form
d(ξ,ξ′) < c for some positive constantc.

Below we define several properties of this type based on the maximal pointwise
distance [FGP06] and on a new variant of it which tolerated delays and is partic-
ularly suited for mixed signals [KC06a, KC06b]. The distance-based properties
represent an effort of enriching STL/PSL with metrical properties. However, we
have found equivalent STL/PSL formulae that can represent such distance opera-
tors.

3.6 Threshold distance
Syntax: distance (x,y,eps)

x,y: analog expression
eps: threshold

Informal description: The threshold distance holds at timet iff the values of
x(t) andy(t) do not deviate from each other more than the thresholdeps.
This distance is a pointwise operator that allows to define an acceptable
bound on how much two signals can differ one from the other.

The threshold distance is particularly useful in order to compare the output
of a simulation to a reference signal. The typical property using the thresh-
old distance would bealways distance (x,y,eps). In Figure 12 (a) and

Final Proposal for PSL Analog Extensions STL/PSL Syntax and Semantics • 21

(a)

(b)

(c)

(d)

(e)

(f)

 1 1 1 1

0.3

−0.3

0

0.3

0

0.3

0

0 0.5 1 1.5 2

0

1

0

1

0.3

−0.3

0

0 0.5 1 1.5 2

t1

x x

eps=0.3 eps=0.3

eps eps

t0 t2

y2

distance(x,y2,0.3)

abs(x-y2)

y1

abs(x-y1)

distance(x,y1,0.3)

Figure 12: Threshold distance: (a)x andy1 (b) abs(x-y1) (c) distance (x,y1,0.3) (d) x
andy2 (e)abs(x-y2) (f) distance (x,y2,0.3)

(d), we can see two signalsy1 andy2 compared to the reference signalx.
The maximum relative deviation from each other is denoted by the constant
eps=0.3. We can see from the Figure 12 (c) thatdistance(x,y1,0.3) is
satisfied at all time points. On the other hand, the propertydistance(x,y2,0.3)
fails att1 (Figure 12 (f), because the signalx2 has a peak (of short duration)
whose value with respect to the value of the reference signaly at the same
time is greater than0.3.

The threshold distance returns a Boolean value at different time points repre-
senting its satisfaction at that time, some useful qualitative measures can be
extracted from the pointwise comparison of signalsx andy. |x(t)-y(t)| is
a value that compared to the thresholdeps gives the actual level of similarity
betweenx andy at timet as we can see from Figure 12 (b) and (e). For
instance|x(t)-y(t)|=0 represents perfect equivalence ofx andy at timet
(this is the case for the signalsx andy2 at timet2, as shown in Figure12 (e)),
while any value|x(t)-y(t)| smaller thaneps but close to it indicates that
the threshold distance property betweenx andy still holds at timet but is
close to the failure. This is the case for the signalsx andy1 at timet0 in Fig-
ure 12 (b), indicating that the distance property holds, but is not robustwith
respect to the given threshold. As we can see, taking the maximum absolute
difference between the two signals, we can infer the degree of robustness
between two signals with respect to their threshold distance.

Rewrite rules: distance (x,y,eps) = abs(x-y) <= eps

Notes: The pointwise threshold distance compares only continuous signals. The
Boolean pointwise distance operator corresponds to<-> operator.

22 • STL/PSL Syntax and Semantics Final Proposal for PSL Analog Extensions

3.7 Threshold-delay distance
Syntax: distance (x,y,eps,T1,T2) | distance (p,q,T1,T2)

x,y: analog expression
p,q: Boolean expression
eps: threshold
T,T’: large and small time windows

Informal Description: The threshold-delay distance extends the threshold dis-
tance operator by adding a delay tolerance on the values of signalsx andy.
The delays tolerated are defined by the parametersT1 andT2 representing the
lengths of two time windows such thatT2 < T1. The threshold-delay dis-
tance is similar to the threshold distance operator in that it requires that the
absolute difference|x(t)-y(t)| between the two signals be smaller than
the thresholdeps. However, it allows this condition to become false, but for
small periods of time, not greater thanT2. Moreover, such episodes should
not be too frequent, ie. any period of time where|x(t)-y(t)|>eps has
to be followed by another period lasting at least forT1-T2 time, and where
|x(t)-y(t)|<=eps remains continuously true.

In other words, the threshold-delay distancedistance(x,y,eps,T1,T2)
holds at timet iff within the time windowI=[t,t+T1], there is a smaller
time windowI’=[t’,t’+T1-T2] such thatI’ ⊂ I where the absolute dif-
ference ofx andy continuously remains beloweps.

As examples, consider the propertydistance(x,y,0.3,0.375,0.125) and
different cases shown in Figures 13 and 14. In Figure 13, the signaly1 has a
peak at timet0 such thatabs(x,y1) is greater than0.3. Given that this pe-
riod lasts for less than0.125 time units, the threshold-delay distance holds
at t0. Note that the pointwise threshold distance would fail at timet0 for the
same inputs. The Figure 13 (d) shows the similar case, but now we have
two episodes where the threshold distance betweenx andy2 is greater than
0.3, that is during the intervals[t1, t2) and [t3, t4). Since both episodes are
smaller thanT2=0.125 and betweent2 and t3 their pointwise distance re-
mains continuously smaller than0.3 for more thanT1-T2=0.25 time units,
the threshold-delay distance also holds at all time points.

Now consider the Figure 14 (a). At timet0, the absolute difference between
x and y1 becomes greater than0.3, and remains continuously above the
threshold for more than 0.125 time units. Hence, the threshold-delay dis-
tance property is false att0. Finally, in Figure 14 (d), there are two episodes
whereabs(x-y1) is above0.3, starting att1 and t3 respectively. Both
episodes have a duration smaller thanT2=0.125, but since the duration in

Final Proposal for PSL Analog Extensions STL/PSL Syntax and Semantics • 23

between them whereabs(x-y1)<=0.3 holds is smaller thanT1-T2=0.25,
the property fails att1 too.

The threshold-delay distance operator can also be used to compare two Boolean
signals. In this case, the threshold is not specified, as two Boolean signals
can either have the same or the opposite values at a given time point. Hence,
two signalsp andq are similar with respect to their threshold-delay distance
at timet, iff within the time windowI=[t,t+T1], there is a smaller time
window I’=[t’,t’+T1-T2] such thatI’ ⊂ I andp <-> q throughoutI’.
An example of a Boolean threshold-distance operator applied to signalsp
andq is shown in Figure 15.

Rewrite rules: The threshold-delay distance can be fully expressed using the ba-
sic operators from the analog and temporal layer.

distance(x,y,eps,T1,T2) = (abs(x-y) > eps) ->
eventually! [0:T1]
always [0:T1-T2]
(abs(x-y) <= eps)

distance(p,q,T1,T2) = (p xor q) ->
eventually! [0:T1]
always [0:T1-T2]
(p <-> q)

(a)

(f)

(b)

(c)

(d)

(e)

0.3

−0.3

0

0.3

−0.3

0

0.3

0

0

1

0

1

0.3

0

0 0.5 1 1.5 20 0.5 1 1.5 2

y1

x x

y2

T2=0.125

eps=0.3 eps=0.3

T1=0.375

t0

t1

t2

t3

t4

eps eps

abs(x-y1) abs(x-y2)

distance(x,y1,0.3,0.375,0.125) distance(x,y2,0.3,0.375,0.125)

Figure 13: Analog Threshold-Delay Distance: Property Holds (a)x and y1
(b) |x-y1| (c) distance(x,y1,0.3,0.125,0.375) (d) x and y2 (e) |x-y2| (f)
distance(x,y2,0.3,0.125,0.375)

24 • STL/PSL Syntax and Semantics Final Proposal for PSL Analog Extensions

(d)(a)

(b)

(c) (f)

(e)

0.3

−0.3

0

0.3

−0.3

0

0

1

0

1

0.3

0

0.3

0

y1

x

y2

0 0.5 1 20 0.5 1 1.5 2

T2=0.125

abs(x-y1)

eps

t0

t1 t3

T1=0.375

distance(x,y1,0.3,0.375,0.125)

abs(x-y1)

eps

distance(x,y2,0.3,0.375,0.125)

t2

eps=0.3

x

eps=0.3

1.5

Figure 14: Analog Threshold-Delay Distance: Property Fails (a)x and y1
(b) |x-y1| (c) distance(x,y1,0.3,0.125,0.375) (d) x and y2 (e) |x-y2| (f)
distance(x,y2,0.3,0.125,0.375)

(a)

(b)

(c)

(d)

(e)

(f)

0

1

0

1

0

1

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0

0

1

0

1

0

1

Figure 15: Boolean Threshold-Delay Distance: (a)p (b) q1 (c)
distance(p,q1,0.125,0.375) (d) p (e)q1 (f) distance(p,q1,0.125,0.375)

Final Proposal for PSL Analog Extensions STL/PSL Syntax and Semantics • 25

26 • STL/PSL Syntax and Semantics Final Proposal for PSL Analog Extensions

4 Conclusion
We have presented in this document the final proposal for an analog extension of
the PSL language. The decisions on features that have been embedded inSTL/PSL
were driven by both theoretical constraints an practical feedback from the analog
designers and have been discussed in Section 1. The analog layer allowsto express
richer temporal properties and to relate continuous signals directly. The Boolean
abstraction is used in STL/PSL as a connection between analog and temporallay-
ers. The temporal layer has been extended in order to treat dense time. Finally, a
study on metric distances has resulted in new operators allowing to compare sim-
ulation outputs to a reference signal in a robust manner. As a pioneering work in
the domain, we believe that STL/PSL presents a foundation for further exploration
of property validation of analog systems.

Final Proposal for PSL Analog Extensions Conclusion • 27

28 • Conclusion Final Proposal for PSL Analog Extensions

5 References

[ACM02] E. Asarin, P. Caspi and O. Maler, Timed Regular Expressions, The
Journal of the ACM49, 172–206, 2002.

[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The Benefits of Relaxing
Punctuality.Journal of the ACM, 43(1):116–146, 1996.

[ASS+05] B. d’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, Z. Manna, LOLA: Run-
time Monitoring of Synchronous Systems InProc. TIME’05, pages
166–174. IEEE Computer Society Press, 2005.

[FGP06] G. Fainekos, A. Girard and G. Pappas, Temporal Logic Verification
Using Simulation InProc. FORMATS’06, pages 171–186. LNCS
4202, Springer, 2006.

[HFE04] J. Havlicek, D. Fisman and C. Eisner, Basic results on the seman-
tics of Accellera PSL 1.1 foundation language,Technical Report
2004.02, Accelera, 2004.

[KC06a] C. Konsentini and P. Caspi, Sampling and Voting in Hybrid Com-
puting Systems InProc. HSCC’06.

[KC06b] C. Konsentini and P. Caspi, Approximation, Sampling and Voting
in Hybrid Computing Systems InTR-2005-19, Verimag Technical
Report.

[KCV04] A. Kumari B. Cohen and S. Venkataramanan,Using PSL/Sugar for
Formal and Dynamic Verification, VhdlCohen Publishing, 2004.

[MN04] O. Maler and D. Nickovic, Monitoring Temporal Properties of
Continuous Signals,FORMATS/FTRTFT’04, 152-166, LNCS 3253,
2004.

[MNP06] O. Maler, D. Nickovic and A. Pnueli, From MITL to Timed
Automata InProc. FORMATS’06, pages 274–289. LNCS 4202,
Springer, 2006.

[M05] O. Maler,Extending PSL for Analog Circuits, PROSYD Deliverable
D1.3/1, 2005.

[NM06a] D. Nickovic, O. Maler,Manual for Property-based automatic gener-
ation of simulation monitors for digital, timed, and analog designs,
PROSYD Deliverable D3.2/13, 2006.

[NM06b] D. Nickovic, O. Maler,Analog Case Study, PROSYD Deliverable
D3.4/2, 2006.

[Y97] S. Yovine, Kronos: A Verification Tool for Real-time Systems,Inter-
national Journal of Software Tools for Technology Transfer1, 123–
133, 1997.

Final Proposal for PSL Analog Extensions References • 29

30 • References Final Proposal for PSL Analog Extensions

A Production Rules for STL/PSL
In this Appendix, we present the subset of STL/PSL which represents the exten-
sions with respect to the original PSL and that is ready for embedding with other
PSL layers not discussed in this document. The production rules of STL/PSL are
expressed in the BNF form.

* Analog Layer *\

Analog Expression :==

Analog Variable

| (Analog Expression)
| abs (Analog Expression)
| ddt (Analog Expression)
| shift (Analog Expression , REAL)
| Analog Expression - Analog Expression

| Analog Expression + Analog Expression

| Analog Expression * Analog Expression

| Analog Expression - REAL

| Analog Expression + REAL

| Analog Expression * REAL

* Boolean Abstraction *\

Boolean Expression :==

Boolean Variable

| Threshold Boolean Abstraction

Threshold Boolean Abstraction :==

Analog Expression <= REAL

| Analog Expression > REAL

| Analog Expression < REAL

| Analog Expression >= REAL

* Temporal Layer *\

Final Proposal for PSL Analog Extensions Production Rules for STL/PSL • 31

Stl Psl Property :==

Boolean Expression

| Distance

| (Stl Psl Property)
| not Stl Psl Property

| Stl Psl Property or Stl Psl Property

| Stl Psl Property and Stl Psl Property

| Stl Psl Property -> Stl Psl Property

| Stl Psl Property <-> Stl Psl Property

| Stl Psl Property xor Stl Psl Property

| eventually! Stl Psl Property

| always Stl Psl Property

| Stl Psl Property until! Stl Psl Property

| Stl Psl Property until Stl Psl Property

| eventually! [REAL : REAL] Stl Psl Property

| eventually [REAL : REAL] Stl Psl Property

| eventually! [<= REAL] Stl Psl Property

| eventually [<= REAL] Stl Psl Property

| eventually! [>= REAL] Stl Psl Property

| always! [REAL : REAL] Stl Psl Property

| always [REAL : REAL] Stl Psl Property

| always! [<= REAL] Stl Psl Property

| always [<= REAL] Stl Psl Property

| always [>= REAL] Stl Psl Property

| Stl Psl Property until! [REAL : REAL] Stl Psl Property

| Stl Psl Property until [REAL : REAL] Stl Psl Property

| Stl Psl Property until! [<= REAL] Stl Psl Property

| Stl Psl Property until [<= REAL] Stl Psl Property

| Stl Psl Property until! [>= REAL] Stl Psl Property

| Stl Psl Property until [>= REAL] Stl Psl Property

* Distance-based Operators (part of the Temporal Layer) *\

Distance :==

distance (Analog Expression , Analog Expression , REAL)
| distance (Analog Expression , Analog Expression ,
REAL , REAL , REAL)
| distance (Boolean Expression , Boolean Expression ,
REAL , REAL)

32 • Production Rules for STL/PSL Final Proposal for PSL Analog Extensions

