
PROSYD Deliverable D1.3/1
Extending PSL for Analog Circuits

Oded Maler
No Logo

January 12, 2005

1

1 Introduction

This document is a first proposal for an extension of PSL toward real-time and analog
properties. It represents mainly the work of Verimag and Weizmann with a partici-
pation of ST in giving insights about the the design and validation of such circuits.
Additional useful information about analog design was provided by sources outside
PROSYD, including Dolphin SA, CEA/LETI, Intel, ProfessorsRutenbar and Krogh
from CMU and Prof. Hedrich from Hannover.

The rest of the document is structured as follows:

• Section 2: scientific and technological background of this work, emphasizing the
sharp contrast in maturity levels between digital and analog verification.

• Section 3: continuous-valued signals and the problems related to their processing
by computers.

• Section 4: properties in the context of such signals and characterization the type
of properties that we focus on.

• Section 5: the major part of this document where we introducethe specification
languageSTL (Signal Temporal Logic) that we develop. We start with an intu-
itive explanation of the way it treats the particular features of signals, namely
infinite state-space and dense metric time and then proceed with formal defini-
tions of the syntax and semantics ofSTL.

• Section 6: some examples ofSTL formulae and of signals that satisfy and violate
them.

• Section 7: a sketch of some further possible extensions of the language.

• Section 8: some additional related work that has been conducted within PROSYD
but is not part of the current deliverable, namely the development of property
monitors for STL and the exhaustive verification of some analog circuits test
cases.

• Section 9: Conclusions.

2

2 Background

We start by situating the role of this work-package within PROSYD. Property based
system design means that a system is characterized by a set ofproperties it should
satisfy. These properties specify, in a formal language, which traces of I/O behaviors
the system may exhibit while interacting with its external environment. There are ba-
sically two approaches for validating a system with respectto a given property. Both
of them are based on transforming the property into aproperty monitor, a mechanism
that checks whether a given behavior (sequence of I/O events) satisfies the property.
This monitor can be viewed either as an automaton accepting exactly the set of satisfy-
ing behaviors [VW86] or as a procedure working recursively both on the length of the
sequence and on the syntactic structure of the property.

In simulation/testinga model of the system is used to generate simulation traces,
and each of those is checked by the monitor. If one of the traces violates the property
the system is incorrect. However since the system is to be exposed to a potentially
infinite (or prohibitively large) number of inputs, it is impossible to complete this pro-
cedure for all possible inputs. A large effort in this domainis about the systematic
generation of test-cases that somehow “cover” all classes of behaviors.

The goal ofalgorithmic verificationis more ambitious. The transition graph of
the system is explored in order to show thatall the sequences it can generate are ac-
cepted by the monitor. A major problem here is that of state-explosion as the number
of states of the system is exponential in the number of state-variables (memory holding
elements, in the case of digital circuits). Much of the current research in verification is
about finding clever ways to cope with this situation and about developing the method-
ological aspects of property-based system design, as the PROSYD project attempts to
do. This work-package is concerned with extending this methodology to analog and
mixed-signal systems. To assess the contrast between the respective situations in the
digital and analog domains it is worth recalling the evolution of (digital) formal verifi-
cation up to the present:

• Early work on program verification (1965-1977).

• Introduction of Temporal Logic as a formalism for specifying properties of reac-
tive systems (Pnueli 1977).

• Work on deductive (partly-manual) verification for TL (1977-present).

• First model-checking algorithms for fully automatic verification (Queille and
Sifakis 1980, Emerson and Clarke 1981).

• First workshop on computer-aided verification (Grenoble, 1989).

• First symbolic model-checker that could treat systems withstate-space too large
to be enumerated (McMillan 1992).

• The development of industrial-strength verification tools(1993-present)

• The Intel bug and the proliferation of formal verification into the semi-conductor
industry (1995).

3

• The development of Sugar (1994-1998).

• Accelera discussions that culminate in PSL (1998-2004).

• The PROSYD project starts (2004)

As we can see, it took almost 30 years to push theoretical ideas into industrial-
strength tools and along the way, in addition to impressive algorithmic development,
cultural gaps between theoreticians and practitioners hadto be bridged. Verification
is founded upon logic, automata and semantics which are partof theoretical computer
science. To a certain extent some knowledge of these topics is part of the background
of digital designers via Boolean logic and sequential finite-state machines. In the other
direction, most theoretical computer scientists have a basic understanding of digital
circuits, at least at the gate and flip-flop level of abstraction. Conferences likeCAV:
Computer-Aided Verification, as well as collaborations between researchers and indus-
try, contributed a lot to the creation of a common verification culture.

The situation in the analog domain is radically different. The electrical behavior
of transistors in digital circuits is just a means to realizelogical gates. This implies
that the functional correctness of a circuit can be validated using an abstract model that
corresponds to a sequential machine, without worrying too much about the physical re-
alization. Such physical details may influence “non-functional” properties of the circuit
such as timing or power consumption, but the logical abstraction is robust with respect
to such variations. In contrast, the functionality of analog circuits is defined directly
in terms of continuous electrical quantities. As such they are much more sensitive to
unavoidable (and sometimes random) perturbations from theoverall operating environ-
ment such as voltage from the supply, temperature, noise from nearby electronics or
noise from fundamental sources such as the physics of the insides of the basic transis-
tors. One unpleasant consequence of this situation is that important parameters of the
circuit dynamics are determined only after physical placement or even fabrication.

The behavior of analog circuits is simulated and analyzed using models of contin-
uous dynamical systems specified by differential and algebraic equations. Systematic
mathematical support for these activities exists typically only for linear systems. The
culture of designers may include many non-digital parts of electrical engineering, in-
cluding signal processing and its mathematical basis (Fourier analysis, information the-
ory), linear algebra and linear systems theory, numerical computations and of course,
intimate knowledge of the behavior of real transistors and of the physics of the par-
ticular application domains in which the circuits are used.Most of these domains are
outside the background of computer scientists. The historyof the attempts to export
formal verification methodology toward models admitting real-valued variables and
dense time is much shorter and is outlined below:

• First attempts to define specification formalisms and computational models for
real-time systems (1985-1995).

• Positive results concerning the verification of timed automata (Alur and Dill
1990 [AD94]).

• A first proposal to verify hybrid systems (Maler, Manna and Pnueli 1991).

4

• Development of the algorithmic approach for the analysis oftimed and “linear”
hybrid automata (Henzinger et al); First tools: Kronos (timed automata, Ver-
imag), Hytech (hybrid automata, Berkeley); Negative undecidability results that
show that exact verification is impossible even for systems with few continuous
variable and very simple dynamics (1992-1998).

• Development of the first tools for approximate verification of continuous and
hybrid systems having non-trivial continuous dynamics with few state variables
(Checkmate, CMU 1999; d/dt, Verimag 2000; Hysdel, ETH 2000); Control sys-
tems analysis is the main application domain.

• First attempts to apply formal verification to analog circuits (2002-present).

As one can see, the verification of systems having continuousvariables is, provably,
much more difficult than that of finite-state systems, and that verification tools for such
systems are still in their infancy. Before trying to export verification methodology to
analog circuits we should first clarify the motivation for doing so. Chips with analog
or RF function on them are notoriously difficult to get right on the first try, so anything
we do that helps uncover more functional flaws or “bad behaviors” in subtle corners
of the performance space is regarded as worthwhile. Designers of such circuits do use
mathematical models for analytical and numerical computations, but the treatment of
these models is more in the engineering and applied mathematics tradition, without the
careful semantic and methodological concepts developed for modeling digital concur-
rent systems. Since the importance of analog components grows as systems become
more integrated on a chip and more embedded in the physical world, any contribution
toward accelerating their development will have significant economic consequences.
It is believed that formal methods will occupy some complementary niche among the
currently-used design methods for analog systems, as they already do for digital sys-
tems.

The goal of the analog part of PROSYD is to lay the foundation for such future
progress by developing verification methods for analog and mixed-signal circuits and
by proposing extensions to the property specification language (PSL) that will allow
designers to specify desired properties of such circuits and to check whether given
behaviors of the system satisfy them.

5

3 Behaviors

A behavior of a system is a function from a time domain to its state-space. In discrete
systems, such as automata, the time domain is typically a discrete linearly-ordered set
which is order-isomorphic to the natural numbers (we ignorehere partial orders used
sometimes for distributed systems). This time domain is more of a “logical” nature
rather than metric. This means that we are interested more inthe order among the
events rather than the real-time temporal distance betweenthem. In other words, if
we take a behavior of a system and “accelerate” parts if it without changing the order
of events, the behavior will be considered as practically equivalent and will satisfy
the same set of properties. In digital synchronous circuits, this time domain often
corresponds to the ticks of the main clock, and hence some metric aspects of time are
represented. The state-space of a digital system consists of all possible combinations of
values of memory holding elements. At the gate level this means essentially Boolean
vectors and, more generally, the possible values of registers, encoded as well in binary.
Hence a behavior of a digital system can be viewed as a sequence of states,s : N → Bn.

In analog systems the state variables hold continuous quantities such as voltage and
current which are perceived as real numbers. Unlike digitalsystems where such values
are observed only at certain time instants, in analog systems we are often interested in
the evolution of these quantities over the entire time axis.Mathematically speaking,
such behaviors are viewed as signals of the forms : R+ → Rn. This much richer type
of objects raises some conceptual problems that do not existin digital sequences.

The first problem is related to the effective representationof signals, a pre-condition
for their treatment by computers. Digital sequences can be simply represented by a list
s[0], s[1], . . . that specifies their value at each time instant. Analog signals cannot be
wholly specified in this way due to the density of real numbers. In some cases they
can be specified by a closed form expression, for examples[t] = sin(t), while for the
purpose of simulation they are represented via discretization of both the time domain
and the state-space. For the latter, one typically uses the floating-point numbers, a finite
but rather dense subset of the rationals. Thus instead of saying thats[t] = x for some
x ∈ Rn, we can only say thats[t] = x′ wherex′ is a floating point number in the
neighborhood ofx. Much of the research in numerical analysis and simulation tools is
concerned with the effect of such imprecision, accumulation of errors, etc. We do not
consider this to be a major issue in the definition of temporalproperties of signals.

The finite representation of the time domain and the values ofthe signal on it is
much more problematic. There are two basic (non-analytic) ways to give a finite repre-
sentation of a signal. The first approach is based on uniform sampling. A discretization
stepδ is chosen, and the discretized time domain is set to be the sequenceδ, 2δ,
A signal is then specified ass′ = s(δ), s(2δ) This leads to an inherent loss of
information as we do not know the value of the signal between two sampling points.
This means thats′ represents an infinitude of signals, all those that agree with s′ on the
sampling points. This representation can be interpreted asdefining a specific default
signal (piecewise-constant, piecewise-linear or other interpolation) which can be made
as close as we want tos (using various metrics) by makingδ smaller.

The complementary approach for representing signals is by using a non-uniform
subset of the time domain. For example, one may use large discretization steps when

6

the signal value is in “less important” parts of the state-space, and then use more dense
sampling when the values are in the important range. In the same spirit, we can require
that the discretized time domain will include all instants when important events do
happen, for example when the value of a variable crosses somepre-defined threshold.
It is clear that using this approach different signals will have different discretized time
domains as they cross thresholds at different times. These approaches are sometimes
referred to as “time-triggered” and “event-triggered” sampling.

These considerations will have practical consequences as we define what it means
for a given signal to satisfy a property. However, since these featuresof the signal
presentation may vary depending on the simulation method used and other details, we
adopt the following strategy: we define the semantics of the specification language in
terms of the ideal mathematical objects, that is, signals ofthe forms : R+ → Rn, and
only when considering concrete algorithms for checking satisfaction we refer to the
actual finite presentation of the signal.

It is also worth mentioning that the richness of the mathematical reals allows one
to define pathological signals such as those with infinite frequency1 which should be
excluded from the discussion. However, one should be careful because it is not always
clear what is to be assumed and what is to be proved. For example, if we know the val-
ues ofs at two sampling pointt andt′, we may use some bound on the time derivative
of s to deduce bounds on its value during the whole interval[t, t′], but sometimes the
bound on the derivative can be exactly what we want to verify.

1For example, signals which are1 on rationals and0 on irrationals.

7

4 Properties

In digital verification properties are used to distinguish between good and bad behav-
iors. The simplest and most frequently used properties specify the absence of certain
“bad” states in the sequence in question. More sophisticated properties speak of the
occurrence of certain sequential patterns in the behavior,for example, “a is followed
by b”. The two most popular specification styles are based ontemporal logicand on
regular expressions, respectively. One difference between these formalism is that tra-
ditionally temporal logic is more adequate for multi-dimensional signals while regular
expressions, at least classically, were oriented toward monolithic alphabets. The main
distinguishing feature between the two is in the operator used for sequencing. Tempo-
ral logic uses theuntil operator (or its past analogue, thesinceoperator), while regular
expressions use concatenation (concatenation was also introduced into temporal logic
via the “chop” operator). Both formalisms are very natural in the context of digital
sequential machines and are supported by the PSL language. On the other hand, they
are quite different from the way continuous signals are evaluated by practitioners and
theoreticians in domains that are relevant for analog systems.

Perhaps the most natural way to introduce properties to these domains is to start
from the more general notion ofperformance measure. A performance measure is a
function that maps a signal into one ore more numbers that measure its quality, and can
serve as a basis for preferring one signal over the other. Such measures can be based
on integrating the value of the signal over time, on its beingperiodic, on the frequency
spectrum of the signal or on its distance from some referencesignal that describes the
ideal behavior of the system. From this point of view, properties are just a special type
of performance measure which map signals into a two-valued Boolean domain, that is,
good and bad.

Since the goal of this part of PROSYD is to extend property-based system design
from digital to analog systems, the first proposal for language extension is to adapt
the “sequential” formalisms used in the former to continuous and mixed signals. Such
formalisms are new to analog designers and the first proposedextension will provide
them with a new language that can express phenomena they could not express so far,
at least not in a systematic and explicit manner. In further stages of the project we
will also attempt to include in our language additional features that formalize other
performance measures currently used by designers. In the rest of the document we
focus onsignal temporal logic(STL), developed within this work-package, a natural
first-order extension of propositional linear temporal logic which addresses the two
conceptual difficulties mentioned above: dense metric timeand infinite state-space.

8

5 Signal Temporal Logic

5.1 Intuition

We start with an informal description of the design decisions for the proposed language
extension.

5.1.1 Infinite State-Space

The building blocks of temporal logic for digital systems are the atomic propositions,
symbols that refer to instantaneous values of Boolean statevariables. From these
atomic propositions one constructs state formulae by meansof Boolean operations.
Each state formulae thus defines a subset of the state-space.At any time instantt one
can check whether the Boolean vectors[t] satisfies a state formula.

For real-valued variables the state-space is infinite (and even non-countable) and
enumeration of its elements is impossible. Subsets ofRn are defined using symbolic
expressions (formulae, constraints, inequalities) that need to be satisfied by a statex =
(x1, . . . , xn) in order to belong to the subset. Such constraints can vary incomplexity,
starting with simple “rectangular” constraints of the formxi < c, through more general
linear inequalities of the form

a1x1 + a2x2 + · · · ,+anxn < c

to more complex algebraic and trigonometric ones. Since therange of possibilities here
is infinite, we will parameterize the definition of the logic by the primitive constraints
used. That is, ifP = {µ1, . . . , µn} is a set of constraints, each of which defining a
characteristic function of the formµi : Rn → B, then the set of temporal formulae that
can be constructed from these building blocks will be calledSTL(P).

5.1.2 Dense Time

As previously mentioned, the conceptual difficulties associated with moving from dis-
crete to dense time are much more important. In fact, the needfor dense “asyn-
chronous” time formalisms is not restricted to analog circuits and can be very useful
for the functional analysis of digital systems which are notclocked or for finer timing
analysis of digital circuits in general. If we look at the “a followed byb” specification,
we see that it says nothing about the time between these two events. If we model digital
circuits in more detail at the level of gates plus delays, their performance and even their
correctness may depend critically on the timing parameters. During the last 15 years a
lot of effort has been invested in extending specification and verification methodology
from purely discrete systems to such “timed” systems. Theseextensions include the
development of the timed automaton model, which is an automaton augmented with
fictitious clock variables, and whose behaviors consist of discrete-valued continuous
signals or of events separated by non-uniform periods of time. Some members of the
consortium are actively involved in modeling digital circuits with bi-bounded delays
using timed automata. As a specification formalism, numerous extensions of temporal
logic have been proposed in order to express the metric time aspects of such behaviors.

9

A timed extension of regular expressions has been proposed recently and has been
shown to be equivalent in expressive power to timed automata[ACM02].

After having investigated the timed extensions of temporallogic we have chosen
to baseSTL on the real-time logicMITL [AFH96], obtained from classical “untimed”
temporal logic via the following modifications:

1. TheNextoperators is dropped. In untimed sequences,Next refers to the next
logical time instant, which is, of course, meaningless in the dense order over the
reals.

2. The other temporal modalities are replaced by timed temporal modalities which
have an interval[l,m] (with l andm integers such thatl < m) as a parameter.
This interval restricts the time variables in the standard semantics of these oper-
ators to be within this interval. For example, in the untimedformulaeventually
p, we say that there exists some timet in the future such thatp holds att. In the
timed version of this formula we add the constraint thatt ∈ [l,m] relative to the
present.

Much of the effort in this work-package was directed toward studying the properties of
this logic and the development of monitoring procedures forchecking whether a signal
satisfies such a formula.

5.1.3 Combining Infinite State-Space with Dense Time

The semantics ofSTL(P) is defined in two phases. The initial formulaϕ is constructed
from the state constraints inP and the Boolean and temporal operators. Then this for-
mula is transformed into anMITL formulaϕ′ by replacing eachµi with a propositional
variablepi. In parallel, the signals to be checked is transformed into a Boolean signal
s′ in which pi is considered as true ins′ at timet if µi is satisfied bys[t]. Hences

satisfies the originalSTL formulaϕ iff s′ satisfies theMITL formulaϕ′.

5.2 Formal Definitions

In this section we formalize the proposed logic and its semantic domain. While doing
so we take into account the major validation method that we develop for this logic,
namely monitoring. In the presentation we use the mathematical notation for the tem-
poral operators which can be easily transformed into the actual syntax of PSL.

5.2.1 Signals

Let the time domainT be the setR≥0 of non-negative real numbers. A finite length
signals over a domainD is a partial functions : T → D whose domain of definition
is the intervalI = [0, r), r ∈ Q≥0. We say that the length of the signal isr and denote
this fact by|s| = r. We use the notations[t] = ⊥ for everyt ≥ |s|.

Signals over different domains can be combined and separated using the standard
pairing and projection operators as well as any pointwise operation. Lets1 : T → D1,

10

s2 : T → D2, s12 : T → D1×D2 ands3 : T → D3 be signals and letf : D1×D2 → D3

be a function. The pairing function is defined as

s1 ‖ s2 = s12 if ∀t s12[t] = (s1[t], s2[t]).

and its inverse operation, projection as:

s1 = π1(s12) s2 = π2(s12).

The lifting of f to signals is defined as

s3 = f(s1, s2) if ∀t s3[t] = f(s1[t], s2[t]).

Note that ifs1 ands2 differ in length, the conventionf(x,⊥) = f(⊥, x) = ⊥ guaran-
tees that|s3| = min(|s1|, |s2|).

In the rest of this document, unless otherwise stated, we restrict our attention to
Boolean signals,D = B. In this case (and for discrete domains in general) all reason-
able signals are piecewise-constant and can be representedby their values on a count-
able number of intervals. Aninterval coveringfor an intervalI = [0, r) is a sequence
I = I1, I2 . . . of left-closed right-open intervals such that

⋃
Ii = I andIi ∩ Ij = ∅ for

everyi 6= j.
An interval coveringI is said to beconsistentwith a signals if s[t] = s[t′] for

everyt, t′ belonging to the same intervalIi. In that case we can abuse notation and
write s(Ii). We say that a signals is of finite variability if it has a finite interval
covering. It is not hard to see that such signals are closed under pointwise operations,
pairing and projection. We restrict ourselves to signals offinite variability which are,
by definition, non-Zeno. An interval coveringI is said to refineI ′, denoted byI ≺ I ′

if ∀I ∈ I ∃I ′ ∈ I ′ such thatI ⊆ I ′. Clearly, ifI ′ is consistent withs, so isI.
We denote byIs the minimal interval covering consistent with a finite variability

signals. The set of positive intervals ofs is I+
s = {I ∈ Is : s(I) = 1} and the set of

negative intervals isI−
s = Is − I+

s . A Boolean signals : T → B can be represented
by the pair(|s|, I+

s). Such a signal is said to beunitary if I+
s is a singleton. Clearly

any Boolean signals of finite variability can be written ass = s1 ∨ s2 ∨ . . .∨ sk where
all si are unitary and the boundaries of their corresponding positive intervals do not
intersect.

5.2.2 Real-time Temporal Logic

We consider the logicMITL [a,b] as a fragment of the real-time temporal logicMITL ,
introduced in [AFH96], such that all temporal modalities are restricted to intervals of
the form [a, b] with 0 ≤ a < b anda, b ∈ Q≥0. More on various dialects of real-
time logic can be found in [AH92, Hen98]. The use of bounded temporal properties is
justified by the nature of monitoring where the behavior of a system is observed for a
finite time interval. Hence unbounded temporal properties are avoided since they may
have an ambiguous meaning when monitoring finite behaviors.The basic formulae of
MITL [a,b] are defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2

11

wherep belongs to a setP = {p1, . . . , pn} of propositions. From basicMITL [a,b]

operators one can derive other standard Boolean and temporal operators, in particular
the time-constrainedeventuallyandalwaysoperators:

♦[a,b]ϕ = T U[a,b]ϕ and ¤[a,b]ϕ = ¬♦[a,b]¬ϕ

We interpret,MITL [a,b] overn-dimensional Boolean signals. The satisfaction rela-
tion (s, t) |= ϕ, indicating that signals satisfiesϕ starting from positiont, is defined
inductively as follows:

(s, t) |= p ↔ πp(s)[t] = T

(s, t) |= ¬ϕ ↔ (s, t) 6|= ϕ

(s, t) |= ϕ1 ∨ ϕ2 ↔ (s, t) |= ϕ1 or (s, t) |= ϕ2

(s, t) |= ϕ1U[a,b]ϕ2 ↔ ∃t′ ∈ [t + a, t + b] (s, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (s, t′′) |= ϕ1

Note that our definition of the semantics of the time-boundeduntil operator differs
slightly from its conventional definition since it requiresa time instantt′ ∈ [t+a, t+b]
whereboth(s, t′) |= ϕ2 and(s, t′) |= ϕ1. This definition does not have any repercus-
sion on the derivedeventually andalways operators which retain their usual seman-
tics:

(s, t) |= ♦[a,b]ϕ ↔ ∃t′ ∈ t + [a, b] (s, t′) |= ϕ

(s, t) |= ¤[a,b]ϕ ↔ ∀t′ ∈ t + [a, b] (s, t′) |= ϕ

A signals satisfies the formulaϕ iff (s, 0) |= ϕ.
According to the standard semantics for temporal logic, thesatisfaction of a for-

mula with unbounded modalities can rarely be determined with respect to a finite sig-
nal or sequence. In fact, only the satisfaction of♦p or the violation of¤p can be
detected in finite time. By using bounded modalities we avoidthe problems related
to the ambiguity of|= when applied to finite signals or sequences. Nevertheless, even
for M ITL [a,b] certain signals are too short to determine satisfaction of the formula, for
example the property¤[a,b]♦[c,d]p cannot be evaluated on signals shorter thanb + d.
Hence we restrict ourselves to signals which are sufficiently long. The necessary length
associated with a formulaϕ, denoted by||ϕ||, is defined inductively on the structure of
the formula:

||p|| = 0
||¬ϕ|| = ||ϕ||
||ϕ1 ∨ ϕ2|| = max(||ϕ1||, ||ϕ2||)
||ϕ1U[a,b]ϕ2|| = max(||ϕ1||, ||ϕ2||) + b

The reader can verify thats |= ϕ is well defined whenever|s| > ||ϕ||.

5.2.3 Real-Valued Signals andSTL

In this section we extend our semantic domain and logic to real-valued signals to obtain
a dense-time variant of first-order temporal logic. While Boolean signals of finite vari-
ability admit a finite representation, this is typically notthe case for real-valued signals
which are often represented via sampling, that is a sequenceof time stamped values of

12

the form(t, s[t]). Although we define the semantics of the logic in terms of the math-
ematical objects, signals of the froms : T → Rm, we cannot ignore issues related to
their effective representation based on the output of some numerical simulator.

Our logic, to be defined in the sequel, does not speak about continuous signals
directlybut rather via a set ofstatic abstractionsof the fromµ : Rm → B. Typically µ

will partition the continuous state-space according to thesatisfaction of some inequality
constraints on the real variables. As long asµ(s[t]) remains constant we do not really
care about the exact value ofs[t]. However, in order to evaluate formulae we need the
sampling to be sufficiently dense so that all such transitions can be detected when they
happen. The problem of “event detection” in numerical simulation is well-known and
can be resolved using variable step adaptive methods for numerical integration.

However this may raise problems related to finite variability and Zenoness (in-
finitely many state transitions in a bounded interval of time). Consider an abstraction
µ : R → B defined asµ(x) = 1 iff x > 0 and consider a signals that oscillates
with an unbounded frequency around the origin. Such a signalwill cross zero too of-
ten and its abstraction may lead to Boolean signals of infinite variability. These are
eternal problems that need to be solved pragmatically according to the context. In any
case the dynamics of most reasonable systems have a bounded frequency, and even
if we add white noise to a system, the frequency remains bounded by the size of the
integration step used by the simulator. From now on we assumethat we deal with
signals that are well-behaving with respect to everyµ, that is,µ(s) has a bounded vari-
ability and every change inµ(s) is detected in the sense that every pointt such that
µ(s[t]) 6= limt′→t µ(s[t′]) is included in the sampling.

Definition 1 (Signal Temporal Logic) LetP = {µ1, . . . , µn} be a collection of con-
straints, effective functions of the formµi : Rm → B. An STL(P) formula is an
MITL [a,b] formula over the atomic propositionsµ1(x), . . . µn(x).

Any signal which is well-behaving with respect toP can be transformed into a
Boolean signals′ : T → Bn such thats′ = µ1(s)||µ2(s)|| . . . ||µn(s) is of bounded
variability. By construction, for every signals andSTL formulaϕ, s |= ϕ iff s′ |= ϕ′

in the MITL [a,b] sense whereϕ′ is obtained fromϕ by replacing everyµi(x) by a
propositional variablepi.

The process of checking satisfaction of anSTL formulaϕ by a signals decomposes
into two parts. As a first step we construct a Boolean “filter” for everyµi ∈ P which
transformss into a Boolean signalpi = µi(s). The signal thus obtained can be checked
for satisfaction against the correspondingMITL [a,b] formulaϕ′.

To illustrate the Boolean filtering process, consider the signalsin[t] wheret is given
in degrees andµ(x) = x > 0. The signal is of length400 and is sampled every50 time
units plus two additional sampling points to detect zero crossing at180 and360. The
input to the Boolean filter is

(0, 0.0), (50, 0.766), (100, 0.984), (150, 0.5), (180, 0.0), (200,−0.342),
(250,−0.939), (300,−0.866), (350,−0.173), (360, 0), (400, 0.643)

and the output is a Boolean signalp such thatI+
p = {[0, 180), [360, 400)}.

13

6 Some Examples

In this section we demonstrate some typical properties thatcan be expressed inSTL

and give examples of their satisfaction and violation by signals.

6.1 Following a Reference Signal

As a first example we show how the fact that a signal follows another signal with some
delay can be expressed inSTL. We consider two periodic signalsx1 andx2, ranging
in [−1,+1] and want to express the property than whenever one of them crosses the
threshold of0.7, so does the other withint ∈ [3, 5] time units. The corresponding
property is:

¤[0,300]((x1 > 0.7) ⇒ ♦[3,5](x2 > 0.7)).

Let us fix the first signal to be the sinusoid

x1[t] = sin(ωt),

and letx2 be a signal generated by

x2[t] = sin(ω(t + d)) + θ

whered is a random delay ranging in[3, 5] degrees andθ is an additive random noise.
Figure 1 shows the two signals wherex2 is generated with negligibleθ and hence it’s
form is close to that ofx1. The Boolean signalsp1 andp2 are the Boolean abstraction
of x1 and x2, respectively, via the constraintx > 0.7. In other words, they show
the points in time when the signals satisgy this constraint.The monitoring procedure
generates Boolean signals for all sub-formulae, for example the signal♦[3,5](x2 > 0.7)
is high at all points in timet for for whichx2 > 0.7 at timet + t′ with t′ ∈ [3, 5]. The
last signal in Figure 1 shows the truth value of the main formulae over time, and since
it is true at time zero, the signals satisfy the property.

In Figure 2) we have chosen to generatex2 with much larger additive noiseθ ∈
[−0.5, 0.5]. The fluctuations in the value ofx2 are reflected in the Boolean abstraction
p2 and lead to a violation of the property at some points wherex1 > 0.7 is not followed
by x2 > 0.7 within the pre-specified time.

6.2 Stabilzability

The second example is a very typical stabilizability property used extensively in control
and signal processing. The system in question is a “plant” has to maintain an output
signal around a fixed level despite disturbances from the outside world. The actual
system used to generate this example is a water-level controller for a nuclear plant.
The disturbances come from changes in the system load that trigger changes in the
operations of the reactor that change the water level. The role of the control system is
to stabilize the water level again around the desired value.

This property(Figure 4) we see that the output signaly violates the property both
by over-shooting below−30 and by taking more than150 time units to return to
[−0.5, 0.5].

14

0 50 100 150 200 250 300

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input and Delayed Signals

Time offset: 0

−1

0

1

2

−1

0

1

2

−1

0

1

2

−1

0

1

2

0 50 100 150 200 250 300
−1

0

1

2

Time offset: 0

¤[0,300](p1 → ♦[3,5]p2)

s = x1||x2

p1 = x1 > 0.7

p2 = x2 > 0.7

♦[3,5]p2

p1 → ♦[3,5]p2

Figure 1: A 2-dimensional signal satisfying the property¤[0,300]((x1 > 0.7) ⇒
♦[3,5](x2 > 0.7)). Boolean signals correspond to the evolution of the truth values
of sub-formulae over time.

15

0 50 100 150 200 250 300

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input and Delayed Signals

Time offset: 0

−1

0

1

2

−1

0

1

2

−1

0

1

2

−1

0

1

2

0 50 100 150 200 250 300
−1

0

1

2

Time offset: 0

¤[0,300](p1 → ♦[3,5]p2)

s = x1||x2

p1 = x1 > 0.7

p2 = x2 > 0.7

♦[3,5]p2

p1 → ♦[3,5]p2

Figure 2: A 2-dimensional signal violating the property¤[0,300]((x1 > 0.7) ⇒
♦[3,5](x2 > 0.7)).

16

50

100

−100
−50

0
50

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

0 500 1000 1500 2000 2500 3000
−1

0
1
2

Analog Responsey(t)

p = y ∈ (−0.5, 0.5)

q = y ∈ (−30, 30)

♦[0,150]¤[0,20]p

¤[0,20]p

¬p → ♦[0,150]¤[0,20]p

¬p → ♦[0,150]¤[0,20]p

Disturbance Signal

¤[300,2500](q ∧ (¬p → ♦[0,150]¤[0,20]p))

Figure 3: A disturbance signal and an analog responsey satisfying the stabilizability
property¤[300,2500]((|y| ≤ 30) ∧ ((|y| > 0.5) ⇒ ♦[0,150]¤[0,20](|y| ≤ 0.5))).

17

50

100

−100
−50

0
50

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

−1
0
1
2

0 500 1000 1500 2000 2500 3000
−1

0
1
2

Analog Responsey(t)

p = y ∈ (−0.5, 0.5)

q = y ∈ (−30, 30)

♦[0,150]¤[0,20]p

¤[0,20]p

¬p → ♦[0,150]¤[0,20]p

¬p → ♦[0,150]¤[0,20]p

Disturbance Signal

¤[300,2500](q ∧ (¬p → ♦[0,150]¤[0,20]p))

Figure 4: A disturbance signal and an analog responsey violating the stabilizability
property¤[300,2500]((|y| ≤ 30) ∧ ((|y| > 0.5) ⇒ ♦[0,150]¤[0,20](|y| ≤ 0.5))).

18

7 Potential Extensions

In this section we mention several possible extensions of the proposed logic, some of
which are subject to ongoing work to be reported in Deliverable D1.3/2.

7.1 Simple Extensions

Here we mention extensions that may add some expressive power but are based on the
same principles asSTL and express the same type of properties.

7.1.1 Events

MITL andSTL are state-based formalisms and as such they cannot distinguish a point
in time wherep becomestrue from other points wherep is simply true. Using primitive
such asp ↑ andp ↓ for the rising and falling ofp, one can express properties such as
bounded variability (the distance between any two successive changes is at leastd) as:

¤[0,r]((p ↑⇒ ¤[0,d]p) ∧ (p ↓⇒ ¤[0,d]¬p)).

There is no problem in adding this feature to the logic exceptfor slightly complicating
the monitoring procedure due to the need to consider all combinations of left/right
closed/open intervals.

7.1.2 Past

Past operators do not add expressive power to temporal logicbut sometimes facilitate
the expression of certain properties. One advantage they have over future operators
is that the construction of monitors for past formulae in a form of deterministic timed
automata is much simpler (this is a new result obtained by consortium members and
will be discussed in Deliverable D3.2/6). The semantic definition of past operators is
symmetric to those of future operators.

7.1.3 Regular Expressions

Adding timing constraints to regular expressions is done ina different style than in
temporal logic. The timing restriction is realized by the〈ϕ〉I operator which constrains
the metric length (duration) of the signals satisfyingϕ to be in an integer-bounded
interval I. We sketch here the syntax and the semantics of timed regularexpressions
as introduced in [ACM02]. A variant of this formalism, adapted to real-valued and
multi-dimensional signals, will be presented in deliverable D1.3/2.

The setE(Σ) of timed regular expressions over an alphabetΣ, is defined recursively
as eithera, ϕ1 · ϕ2, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, ϕ∗ or 〈ϕ〉I wherea ∈ Σ, ϕ,ϕ1, ϕ2 ∈ E(Σ)
andI is an integer-bounded interval. We use the notationar for a signal whose value
is constantlya and its metric length (duration) isr. The semantics of timed regular ex-
pressions shares common features with standard regular expressions in what concerns

19

Boolean operations, concatenation and Kleene star. The twospecific features are the
semantics of the atomic symbols, defined as

[[a]] = {ar : r ∈ R+},

that is, the set of alla-signals of arbitrary duration, and the semantics of the time
restriction operator which is

[[〈ϕ〉I]] = ∩{s : s ∈ [[ϕ]] ∧ |s| ∈ I}.

Here are some examples of expressions and their semantics:

• Expression〈a〉(0,3] denotes the set ofa signals of length in(0, 3].

• Expression〈a · b〉(0,3] denotes all signals composed of ana part followed by ab
part where the sum of duration of the two parts is in(0, 3].

• Expression(〈a · b〉(0,3])
∗ denotes all signals composed of zero or more repeti-

tions of elements of[[〈a · b〉(0,3]]].

• Expression〈(a · b)∗〉(0,3] denotes all signals of total duration in(0, 3], consisting
of zero or more repetitions ofab signals.

• Expression〈a · b〉3 · c∧a · 〈b · c〉3 denote all signals of the logical fromabc such
thatc starts3 time units after the beginning of the signal and ends3 time units
afterb starts.

7.2 Richer Temporal Properties

All properties discussed so far are based on static abstractions from the continuous
state-space into Booleans. This means that values of a signal at different time instants
can “communicate” only through their Boolean abstractions. For example we can de-
fine constraints on the temporal distance between a pointt wherex[t] > c and a point
t′ wherex[t′] < d but we can say nothing inSTL about the differencex[t]−x[t′]. To be
able to speak of such properties we will need to extend the logic with non-Boolean “fil-
ters”, that is, operators that transform real-valued signals into other real-valued signals.
Such operators can be memoryless like point-wise arithmetic operations, or operators
with memory such as integrators. The construction of monitors for this type of proper-
ties will have to rely on blocks for such operators that existin the respective simulation
tools.

7.3 Infinitary Properties

Temporal logic is traditionally interpreted over infinite sequences for which it can ex-
press infinitaryω-properties that specify repeatedly occurring patterns and periodic
behaviors. Since our work is geared toward monitoring whichworks, by definition, on
finite signals, we will not consider such extensions at this point. Life is difficult enough
with continuous signal of finite duration.

20

7.4 Non-Temporal Properties

From discussions with designers it turns out that frequency-domain properties of sig-
nals are very useful for evaluating certain circuits. Such properties are quite different
from time-domain properties and we hope, toward the end of the project, to propose
some formal support for them. Monitoring for such properties will be based on running
the signal through time-to-frequency transforms, such as Fourier’s, and checking the
properties of the obtained spectrum.

21

8 Additional Related Work

This section provides some additional information that allows the reviewers to situ-
ate the work on language extension in the general context of the analog activities of
PROSYD.

8.1 Monitoring

Monitoring is not part of the current deliverable and will bepresented later in Deliv-
erable D3.2/6. However we find it useful to report the progress made in this direction,
because this is the ultimate application of the proposed language and hence its major
adequacy criterion. So far we have developed and implemented a monitoring procedure
for STL [MN04]. This procedure reads a property and a real-valued signal, transforms
it into a Boolean signal and, through backward propagation of truth values, establishes
satisfaction. This procedure, due to its backward nature, can only be applied offline,
that is after the simulation has terminated. A prototype implementation of such a mon-
itoring procedure has been interfaced with Matlab/Simulink and used to generate the
monitoring examples in Section 6.

We are currently working on the development of an online procedure that can some-
times detect violation or satisfaction of certain formulaebased on a prefix of the sim-
ulation trace. Such an extension requires some new theoretical results about the deter-
minization of timed automata.

8.2 Verification

In parallel with the work on monitoring, we continue with ourefforts to push the limits
of exhaustive verification of analog circuits. In the paper attached to this deliverable
as an appendix [DDM04] we apply verification techniques to two analog circuits. We
use reachability analysis techniques for hybrid systems toverify a Biquad low-pass
filter and another technique, based on bounded-horizon optimal control, to show that a
Sigma-Delta modulator (an important ingredient of analog to digital converters) does
not reach a saturation point.

8.3 Workshop Organization

Members of the consortium, together with other academic andindustrial colleagues or-
ganize the first workshop on verification of analog circuits to be held in Edinburgh on
April 2005. It is hoped that such a forum will increase the awareness of analog design-
ers to the potential contribution of formal verification to the design process and will
also divert some of the energy of the verification community toward these problems.

22

9 Conclusions

We have presented the major ingredient of the extension of PSL toward analog circuits,
the logic STL that takes into account the particular features of analog signals. This
logic is already covered by a monitoring procedure that can check satisfaction ofSTL

formulae by simulation traces. The next steps for the secondyear of the project are:

1. More discussions with analog designers in order to get some feed-back on the
proposed logic and its suitability for describing properties of certain circuits.
One difficulty is that analog designers tend to be very busy persons and do not
have time to invest in ideas that come from an alien culture. In a recent meet-
ing between Verimag and ST in Agrate it was decided to look at flash memory
specifications as a possible test-case. Effort will be made to meet more designers
from other ST sites.

2. Enriching the logic with some of the features mentioned inSection 7 with prior-
ity to adding events, richer temporal properties and treatment of regular expres-
sions. Some of the decisions will be based on feedback from designers.

3. Improving the monitoring procedure to work as online as possible and to treat
the extensions to the logic.

23

References

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata,Theoretical Com-
puter Science126, 183–235, 1994.

[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The Benefits ofRelaxing Punctu-
ality. Journal of the ACM, 43(1):116–146, 1996.

[AH92] R. Alur and T.A. Henzinger. Logics and Models of Real-Time: A Survey.
In Proc. REX Workshop, Real-time: Theory in Practice, pages 74–106.
LNCS 600, Springer, 1992.

[ACM02] E. Asarin, P. Caspi and O. Maler, Timed Regular ExpressionsThe Jour-
nal of the ACM49, 172-206, 2002.

[ADM02] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hy-
brid systems. InComputer Aided Verification, LNCS 2404, 365–370,
Springer, 2002.

[DDM04] T. Dang, A. Donze and O. Maler, Verification of Analogand Mixed Sig-
nal Circuits using Hybrid Systems Techniques,Proc. FMCAD’04, 2004.

[Hen98] T.A. Henzinger. It’s about Time: Real-time Logics Reviewed. InProc.
CONCUR’98, pages 439–454. LNCS 1466, Springer, 1998.

[MN04] O. Maler and D. Nickovic, Monitoring Temporal Properties of Continu-
ous Signals,proc. FORMATS/FTRTFT’04, LNCS 3253, 2004.

[MP03] O. Maler and A. Pnueli (eds).Hybrid Systems: Computation and Control.
LNCS 2623, Springer, 2003.

[T03] S. Tripakis, Folk Theorems on the Determinization andMinimization of
Timed Automata,Proc. FORMATS’03, 2003.

[VW86] M.Y. Vardi and P. Wolper. An Automata-theoretic Approach to Auto-
matic Program Verification. InProc. LICS’86, pages 322–331. IEEE,
1986.

24

