PROSYD Deliverable D1.3/1
Extending PSL for Analog Circuits

Oded Maler
No Logo

January 12, 2005

1

Introduction

This document is a first proposal for an extension of PSL tdweal-time and analog
properties. It represents mainly the work of Verimag andAviginn with a partici-
pation of ST in giving insights about the the design and aiah of such circuits.
Additional useful information about analog design was pied by sources outside
PROSYD, including Dolphin SA, CEA/LETI, Intel, ProfessdRatenbar and Krogh
from CMU and Prof. Hedrich from Hannover.

The rest of the document is structured as follows:

Section 2: scientific and technological background of traskwvemphasizing the
sharp contrast in maturity levels between digital and anadgification.

Section 3: continuous-valued signals and the problemtecbta their processing
by computers.

Section 4: properties in the context of such signals andacharization the type
of properties that we focus on.

Section 5: the major part of this document where we introdheespecification
languagesTL (Signal Temporal Logic) that we develop. We start with am-int
itive explanation of the way it treats the particular feagiof signals, namely
infinite state-space and dense metric time and then procgbkdosmal defini-
tions of the syntax and semanticssafL.

Section 6: some examples &fL formulae and of signals that satisfy and violate
them.

Section 7: a sketch of some further possible extensionsedtiguage.

Section 8: some additional related work that has been caedwithin PROSYD

but is not part of the current deliverable, namely the dgumlent of property
monitors forsTL and the exhaustive verification of some analog circuits test
cases.

Section 9: Conclusions.

2 Background

We start by situating the role of this work-package withinB¥'D. Property based
system design means that a system is characterized by a pepp#rties it should
satisfy. These properties specify, in a formal languagéchvtraces of I/O behaviors
the system may exhibit while interacting with its externavieonment. There are ba-
sically two approaches for validating a system with respeet given property. Both
of them are based on transforming the property inpoagerty monitoy a mechanism
that checks whether a given behavior (sequence of I/O évsatisfies the property.
This monitor can be viewed either as an automaton acceptenglyg the set of satisfy-
ing behaviors [VW86] or as a procedure working recursivelthtim the length of the
sequence and on the syntactic structure of the property.

In simulation/testinga model of the system is used to generate simulation traces,
and each of those is checked by the monitor. If one of the sraicgates the property
the system is incorrect. However since the system is to besexpto a potentially
infinite (or prohibitively large) number of inputs, it is impsible to complete this pro-
cedure for all possible inputs. A large effort in this doma&rabout the systematic
generation of test-cases that somehow “cover” all clasEbest@viors.

The goal ofalgorithmic verificationis more ambitious. The transition graph of
the system is explored in order to show th#ltthe sequences it can generate are ac-
cepted by the monitor. A major problem here is that of stagdesion as the number
of states of the system is exponential in the number of siati@bles (memory holding
elements, in the case of digital circuits). Much of the caorresearch in verification is
about finding clever ways to cope with this situation and aleweloping the method-
ological aspects of property-based system design, as t&SFR project attempts to
do. This work-package is concerned with extending this patogy to analog and
mixed-signal systems. To assess the contrast betweengpectie situations in the
digital and analog domains it is worth recalling the evauotof (digital) formal verifi-
cation up to the present:

e Early work on program verification (1965-1977).

e Introduction of Temporal Logic as a formalism for specifyiproperties of reac-
tive systems (Pnueli 1977).

e Work on deductive (partly-manual) verification for TL (19present).

e First model-checking algorithms for fully automatic veg#tion (Queille and
Sifakis 1980, Emerson and Clarke 1981).

e First workshop on computer-aided verification (Grenob839).

e First symbolic model-checker that could treat systems wsiiite-space too large
to be enumerated (McMillan 1992).

e The development of industrial-strength verification tqdi893-present)

e The Intel bug and the proliferation of formal verificatiotiorthe semi-conductor
industry (1995).

e The development of Sugar (1994-1998).
e Accelera discussions that culminate in PSL (1998-2004).
e The PROSYD project starts (2004)

As we can see, it took almost 30 years to push theoreticakidea industrial-
strength tools and along the way, in addition to impressigeréghmic development,
cultural gaps between theoreticians and practitionersttidn bridged. Verification
is founded upon logic, automata and semantics which areop#ireoretical computer
science. To a certain extent some knowledge of these topari of the background
of digital designers via Boolean logic and sequential fisiite machines. In the other
direction, most theoretical computer scientists have @chasderstanding of digital
circuits, at least at the gate and flip-flop level of abstmactiConferences lik€AV:
Computer-Aided Verificatigras well as collaborations between researchers and indus-
try, contributed a lot to the creation of a common verificatiolture.

The situation in the analog domain is radically differentieTelectrical behavior
of transistors in digital circuits is just a means to realagical gates. This implies
that the functional correctness of a circuit can be validatng an abstract model that
corresponds to a sequential machine, without worrying tachmabout the physical re-
alization. Such physical details may influence “non-fupieil” properties of the circuit
such as timing or power consumption, but the logical abstnads robust with respect
to such variations. In contrast, the functionality of amgadircuits is defined directly
in terms of continuous electrical quantities. As such theyrauch more sensitive to
unavoidable (and sometimes random) perturbations froravtbeall operating environ-
ment such as voltage from the supply, temperature, noise frearby electronics or
noise from fundamental sources such as the physics of tleemef the basic transis-
tors. One unpleasant consequence of this situation isrtidrtant parameters of the
circuit dynamics are determined only after physical plagenor even fabrication.

The behavior of analog circuits is simulated and analyzétgusodels of contin-
uous dynamical systems specified by differential and aljetaquations. Systematic
mathematical support for these activities exists typjcallly for linear systems. The
culture of designers may include many non-digital partsle€teical engineering, in-
cluding signal processing and its mathematical basis (Eoanalysis, information the-
ory), linear algebra and linear systems theory, numerioalputations and of course,
intimate knowledge of the behavior of real transistors ahthe physics of the par-
ticular application domains in which the circuits are uskthst of these domains are
outside the background of computer scientists. The histbithe attempts to export
formal verification methodology toward models admittinglrealued variables and
dense time is much shorter and is outlined below:

e First attempts to define specification formalisms and coatpral models for
real-time systems (1985-1995).

e Positive results concerning the verification of timed awtan(Alur and Dill
1990 [AD94]).

o Afirst proposal to verify hybrid systems (Maler, Manna andi®ih1991).

o Development of the algorithmic approach for the analysisméd and “linear”
hybrid automata (Henzinger et al); First tools: Kronos @drautomata, Ver-
imag), Hytech (hybrid automata, Berkeley); Negative uidkguility results that
show that exact verification is impossible even for systeritis few continuous
variable and very simple dynamics (1992-1998).

e Development of the first tools for approximate verificatidhcontinuous and
hybrid systems having non-trivial continuous dynamicdwiéw state variables
(Checkmate, CMU 1999; d/dt, Verimag 2000; Hysdel, ETH 20@®ntrol sys-
tems analysis is the main application domain.

o First attempts to apply formal verification to analog cits2002-present).

As one can see, the verification of systems having continuariables is, provably,
much more difficult than that of finite-state systems, anti\tkéfication tools for such
systems are still in their infancy. Before trying to expoetification methodology to
analog circuits we should first clarify the motivation forinig so. Chips with analog
or RF function on them are notoriously difficult to get righmt the first try, so anything
we do that helps uncover more functional flaws or “bad behaVim subtle corners
of the performance space is regarded as worthwhile. Desigriesuch circuits do use
mathematical models for analytical and numerical computat but the treatment of
these models is more in the engineering and applied matieniedition, without the
careful semantic and methodological concepts developamdaleling digital concur-
rent systems. Since the importance of analog componentgssgs systems become
more integrated on a chip and more embedded in the physiatd vemy contribution
toward accelerating their development will have signiftcaconomic consequences.
It is believed that formal methods will occupy some complaetagy niche among the
currently-used design methods for analog systems, as treads do for digital sys-
tems.

The goal of the analog part of PROSYD is to lay the foundatimmsiuch future
progress by developing verification methods for analog an@anrsignal circuits and
by proposing extensions to the property specification lagguPSL) that will allow
designers to specify desired properties of such circuits tancheck whether given
behaviors of the system satisfy them.

3 Behaviors

A behavior of a system is a function from a time domain to itdestspace. In discrete
systems, such as automata, the time domain is typicallycaedéslinearly-ordered set
which is order-isomorphic to the natural numbers (we igriteeee partial orders used
sometimes for distributed systems). This time domain isemadra “logical” nature
rather than metric. This means that we are interested motteeimrder among the
events rather than the real-time temporal distance betwesn. In other words, if
we take a behavior of a system and “accelerate” parts if hout changing the order
of events, the behavior will be considered as practicallyivedent and will satisfy
the same set of properties. In digital synchronous circtiits time domain often
corresponds to the ticks of the main clock, and hence somecraspects of time are
represented. The state-space of a digital system congatpossible combinations of
values of memory holding elements. At the gate level thismeesssentially Boolean
vectors and, more generally, the possible values of registacoded as well in binary.
Hence a behavior of a digital system can be viewed as a segoéstatess : N — B".

In analog systems the state variables hold continuous itjearguch as voltage and
current which are perceived as real numbers. Unlike digitalems where such values
are observed only at certain time instants, in analog systeenare often interested in
the evolution of these quantities over the entire time aksithematically speaking,
such behaviors are viewed as signals of the ferniR . — R™. This much richer type
of objects raises some conceptual problems that do notiexdggital sequences.

The first problem is related to the effective representaifarignals, a pre-condition
for their treatment by computers. Digital sequences carirbplg represented by a list
s[0], s[1], . .. that specifies their value at each time instant. Analog $gcennot be
wholly specified in this way due to the density of real numbdrssome cases they
can be specified by a closed form expression, for exagple= sin(t), while for the
purpose of simulation they are represented via discraizaif both the time domain
and the state-space. For the latter, one typically usesaatirfy-point numbers, a finite
but rather dense subset of the rationals. Thus instead ofgsthats|t] = = for some
x € R™, we can only say that[t] = 2’ wherez’ is a floating point number in the
neighborhood of.. Much of the research in numerical analysis and simulatiofstis
concerned with the effect of such imprecision, accumutetiberrors, etc. We do not
consider this to be a major issue in the definition of temppraperties of signals.

The finite representation of the time domain and the valugbkefsignal on it is
much more problematic. There are two basic (non-analyt&g)sto give a finite repre-
sentation of a signal. The first approach is based on unifampging. A discretization
stepd is chosen, and the discretized time domain is set to be theegseqo, 24,

A signal is then specified a8 = s(¢),s(20).... This leads to an inherent loss of
information as we do not know the value of the signal betweengampling points.
This means that’ represents an infinitude of signals, all those that agreeshitn the
sampling points. This representation can be interpretetkfising a specific default
signal (piecewise-constant, piecewise-linear or otherpolation) which can be made
as close as we want to(using various metrics) by makingsmaller.

The complementary approach for representing signals issimgua non-uniform
subset of the time domain. For example, one may use largestication steps when

the signal value is in “less important” parts of the stataesp and then use more dense
sampling when the values are in the important range. In time Sgpirit, we can require
that the discretized time domain will include all instanteem important events do
happen, for example when the value of a variable crosses pmrgefined threshold.
It is clear that using this approach different signals wéll/é different discretized time
domains as they cross thresholds at different times. Thes®aches are sometimes
referred to as “time-triggered” and “event-triggered” sgimg.

These considerations will have practical consequenceakeline what it means
for a givensignal to satisfy a property. However, since these featafdhe signal
presentation may vary depending on the simulation methed asd other details, we
adopt the following strategy: we define the semantics of geeification language in
terms of the ideal mathematical objects, that is, signate@forms : R, — R"”, and
only when considering concrete algorithms for checkings&attion we refer to the
actual finite presentation of the signal.

It is also worth mentioning that the richness of the mathé&rahteals allows one
to define pathological signals such as those with infinitgfescy which should be
excluded from the discussion. However, one should be ddvetiause it is not always
clear what is to be assumed and what is to be proved. For eraifiple know the val-
ues ofs at two sampling point andt’, we may use some bound on the time derivative
of s to deduce bounds on its value during the whole intefial], but sometimes the
bound on the derivative can be exactly what we want to verify.

1For example, signals which ateon rationals and on irrationals.

4 Properties

In digital verification properties are used to distinguigiviieen good and bad behav-
iors. The simplest and most frequently used propertiesifypie absence of certain
“bad” states in the sequence in question. More sophisticateperties speak of the
occurrence of certain sequential patterns in the behadoexample, & is followed
by b”. The two most popular specification styles are basedeomporal logicand on
regular expressiongespectively. One difference between these formalistattta-
ditionally temporal logic is more adequate for multi-dinsemal signals while regular
expressions, at least classically, were oriented towandotithic alphabets. The main
distinguishing feature between the two is in the operateddsr sequencing. Tempo-
ral logic uses theintil operator (or its past analogue, thiaceoperator), while regular
expressions use concatenation (concatenation was ateduetd into temporal logic
via the “chop” operator). Both formalisms are very naturathe context of digital
sequential machines and are supported by the PSL languagthe®ther hand, they
are quite different from the way continuous signals arewatald by practitioners and
theoreticians in domains that are relevant for analog syste

Perhaps the most natural way to introduce properties tetemains is to start
from the more general notion glerformance measureA performance measure is a
function that maps a signal into one ore more numbers thasuneds quality, and can
serve as a basis for preferring one signal over the otheih Bisasures can be based
on integrating the value of the signal over time, on its bgiagodic, on the frequency
spectrum of the signal or on its distance from some refersigr®al that describes the
ideal behavior of the system. From this point of view, proigsrare just a special type
of performance measure which map signals into a two-valusddéain domain, that is,
good and bad.

Since the goal of this part of PROSYD is to extend propertyebasystem design
from digital to analog systems, the first proposal for lamgguaxtension is to adapt
the “sequential” formalisms used in the former to contimuand mixed signals. Such
formalisms are new to analog designers and the first propasgedsion will provide
them with a new language that can express phenomena thay moéxpress so far,
at least not in a systematic and explicit manner. In furthages of the project we
will also attempt to include in our language additional teats that formalize other
performance measures currently used by designers. In shef¢he document we
focus onsignal temporal logiqsTL), developed within this work-package, a natural
first-order extension of propositional linear temporalitoghich addresses the two
conceptual difficulties mentioned above: dense metric aimekinfinite state-space.

5 Signal Temporal Logic

5.1 |Intuition

We start with an informal description of the design decisifor the proposed language
extension.

5.1.1 Infinite State-Space

The building blocks of temporal logic for digital systeme dine atomic propositions,
symbols that refer to instantaneous values of Boolean staiables. From these
atomic propositions one constructs state formulae by meé&molean operations.
Each state formulae thus defines a subset of the state-sfaany time instant one
can check whether the Boolean vectpt satisfies a state formula.

For real-valued variables the state-space is infinite (aet @on-countable) and
enumeration of its elements is impossible. SubseiR"ofre defined using symbolic
expressions (formulae, constraints, inequalities) teatrto be satisfied by a state=
(z1,...,z,) in order to belong to the subset. Such constraints can vargritplexity,
starting with simple “rectangular” constraints of the farm< ¢, through more general
linear inequalities of the form

a1 + agxe + -, tapTy < C

to more complex algebraic and trigonometric ones. Sincesthge of possibilities here
is infinite, we will parameterize the definition of the logig the primitive constraints
used. Thatis, if = {u1,..., s} is @ set of constraints, each of which defining a
characteristic function of the form,; : R™ — B, then the set of temporal formulae that
can be constructed from these building blocks will be cafied(P).

5.1.2 Dense Time

As previously mentioned, the conceptual difficulties aggted with moving from dis-
crete to dense time are much more important. In fact, the heedense “asyn-
chronous” time formalisms is not restricted to analog dtecand can be very useful
for the functional analysis of digital systems which are clotked or for finer timing
analysis of digital circuits in general. If we look at the followed byb” specification,
we see that it says nothing about the time between these ewmiseuf we model digital
circuits in more detail at the level of gates plus delaysy fherformance and even their
correctness may depend critically on the timing paramefausing the last 15 years a
lot of effort has been invested in extending specificatioth arification methodology
from purely discrete systems to such “timed” systems. Tle$ensions include the
development of the timed automaton model, which is an autmmaugmented with
fictitious clock variables, and whose behaviors consistiséréte-valued continuous
signals or of events separated by non-uniform periods d.tiBome members of the
consortium are actively involved in modeling digital citsuwith bi-bounded delays
using timed automata. As a specification formalism, numeextensions of temporal
logic have been proposed in order to express the metric tapecas of such behaviors.

A timed extension of regular expressions has been propasszhily and has been
shown to be equivalent in expressive power to timed autofA&id02].

After having investigated the timed extensions of temptrgic we have chosen
to basesTL on the real-time logie1iTL [AFH96], obtained from classical “untimed”
temporal logic via the following modifications:

1. TheNextoperators is dropped. In untimed sequendésxtrefers to the next
logical time instant, which is, of course, meaningless sndiense order over the
reals.

2. The other temporal modalities are replaced by timed teatpoodalities which
have an intervall, m] (with [andm integers such thdt < m) as a parameter.
This interval restricts the time variables in the stand&mantics of these oper-
ators to be within this interval. For example, in the untinfieenulaeventually
p, we say that there exists some timi@ the future such that holds att. In the
timed version of this formula we add the constraint that[l, m] relative to the
present.

Much of the effort in this work-package was directed towdtalging the properties of
this logic and the development of monitoring proceduresfacking whether a signal
satisfies such a formula.

5.1.3 Combining Infinite State-Space with Dense Time

The semantics & TL(P) is defined in two phases. The initial formulds constructed
from the state constraints A and the Boolean and temporal operators. Then this for-
mula is transformed into amiTL formulay’ by replacing eacly; with a propositional
variablep;. In parallel, the signad to be checked is transformed into a Boolean signal
s’ in which p; is considered as true if at timet if p,; is satisfied bys[t]. Hences
satisfies the originaTL formula iff s’ satisfies theiTL formulay’.

5.2 Formal Definitions

In this section we formalize the proposed logic and its seéimaomain. While doing
so we take into account the major validation method that welde for this logic,

namely monitoring. In the presentation we use the mathealatbtation for the tem-
poral operators which can be easily transformed into thgshs/ntax of PSL.

5.2.1 Signals

Let the time domairT be the seR>, of non-negative real numbers. A finite length
signals over a domairD is a partial functions : T — D whose domain of definition
is the intervall = [0,7), r € Q>(. We say that the length of the signalisnd denote
this fact by|s| = r. We use the notatiog[t] = L for everyt > |s|.

Signals over different domains can be combined and seplwnatag the standard
pairing and projection operators as well as any pointwisgaton. Lets; : T — Dy,

10

$9: T — DDy, 819 : T — Dy xDsy and83 T —]D)g be Signals and |qt Dy xDy — Dg
be a function. The pairing function is defined as

S1 || S92 = S12 if Vit Slg[t] = (Sl[t],SQ[tD.
and its inverse operation, projection as:
51 = m(s12) s2 = ma(s12).

The lifting of f to signals is defined as

S3 = f(Sl, 32) |f Vt Sg[t] = f(sl[t], Sg[t]).

Note that ifs; ands. differ in length, the conventiorf(z, L) = f(L,z) = L guaran-
tees thatss| = min(|s1], |s2])-

In the rest of this document, unless otherwise stated, weaiesur attention to
Boolean signald) = B. In this case (and for discrete domains in general) all reaso
able signals are piecewise-constant and can be repredgnthdir values on a count-
able number of intervals. Aimterval coveringfor an intervall = [0, r) is a sequence
T = 1,1,...of left-closed right-open intervals such that/; = I andl; NI, = () for
everyi # j.

An interval coveringZ is said to beconsistentwith a signals if s[t] = s[t'] for
everyt,t' belonging to the same intervd). In that case we can abuse notation and
write s(I;). We say that a signal is of finite variability if it has a finite interval
covering. Itis not hard to see that such signals are closddryppintwise operations,
pairing and projection. We restrict ourselves to signaléirofe variability which are,
by definition, non-Zeno. An interval coveririgis said to refine’, denoted byZ < 7’
if VI € Z3I' € 7' such thatl C I'. Clearly, ifZ’ is consistent withs, so isZ.

We denote byZ, the minimal interval covering consistent with a finite véaildy
signals. The set of positive intervals afis Z;) = {I € Z, : s(I) = 1} and the set of
negative intervals i§; = Z, — Z,”. A Boolean signak : T — B can be represented
by the pair(|s|, Z;). Such a signal is said to henitaryif Z;} is a singleton. Clearly
any Boolean signal of finite variability can be written as = s; Vs3 V...V s, where
all s; are unitary and the boundaries of their corresponding ipesittervals do not
intersect.

5.2.2 Real-time Temporal Logic

We consider the logiaTL . ;) as a fragment of the real-time temporal logicrL,
introduced in [AFH96], such that all temporal modalities agstricted to intervals of
the form[a,b] with 0 < a < b anda,b € Q>(. More on various dialects of real-
time logic can be found in [AH92, Hen98]. The use of boundedteral properties is
justified by the nature of monitoring where the behavior ofstam is observed for a
finite time interval. Hence unbounded temporal propertiesa&oided since they may
have an ambiguous meaning when monitoring finite behavikdre.basic formulae of
MITL (4) are defined by the grammar

pi=pl@|e1V e | pilappe

11

wherep belongs to a seP = {pi,...,p,} of propositions. From basi®TL |,
operators one can derive other standard Boolean and tehgpanators, in particular
the time-constrainedventuallyandalwaysoperators:

Qlap)p =TUape and gy = 0nyy

We interpretMITL , ;) overn-dimensional Boolean signals. The satisfaction rela-
tion (s,t) &= ¢, indicating that signaé satisfiesp starting from positiort, is defined
inductively as follows:

(s;t) Ep o m(s)[t] =T

(5,t) F —p o (t) v

(s)Ep1Ve2 < (st)Fpr1or(s t)|:@2

(5,t) F erillja o2 < W e €[t+a,t+10] (s,t) F ¢2 and
vt e [t,t'], (s,t")): ©1

Note that our definition of the semantics of the time-boundeti! operator differs
slightly from its conventional definition since it requireéime instant’ € [t +a,t+b)
whereboth (s, ') | ¢2 and(s,t’) = ¢1. This definition does not have any repercus-
sion on the derivedventually andalways operators which retain their usual seman-

tics:
(5,8) EQappe < I €t+[a,b] (s,t') Fo
(S,t) ’: D[a,b]@ =Vt et + [(Lb} (S,t/) ’: ®

A signal s satisfies the formula iff (s,0) = .

According to the standard semantics for temporal logic,sttésfaction of a for-
mula with unbounded modalities can rarely be determinetl weispect to a finite sig-
nal or sequence. In fact, only the satisfaction(gf or the violation ofCJp can be
detected in finite time. By using bounded modalities we atb& problems related
to the ambiguity of= when applied to finite signals or sequences. Nevertheless, e
for MiTL, 4 certain signals are too short to determine satisfactioheformula, for
example the propertyl;, ;) 0c,qp Cannot be evaluated on signals shorter thand.
Hence we restrict ourselves to signals which are suffigidotlg. The necessary length
associated with a formula, denoted by|||, is defined inductively on the structure of
the formula:

||l =0

|-l = el

lpr Vol = max(|lea|l;[le2|l)
lprlhiapjpell = max({lea]l;[le2ll) +b

The reader can verify thatl= ¢ is well defined wheneveg| > ||¢]|.

5.2.3 Real-Valued Signals angTL

In this section we extend our semantic domain and logic teva&aed signals to obtain
a dense-time variant of first-order temporal logic. While Bam signals of finite vari-
ability admit a finite representation, this is typically niogé case for real-valued signals
which are often represented via sampling, that is a sequanioee stamped values of

12

the form(¢, s[t]). Although we define the semantics of the logic in terms of tlaghm
ematical objects, signals of the frosn T — R, we cannot ignore issues related to
their effective representation based on the output of saimeenical simulator.

Our logic, to be defined in the sequel, does not speak abotincons signals
directly but rather via a set ddtatic abstraction®f the fromy : R™ — B. Typically i
will partition the continuous state-space according tcstitesfaction of some inequality
constraints on the real variables. As longds[t]) remains constant we do not really
care about the exact value gt]. However, in order to evaluate formulae we need the
sampling to be sufficiently dense so that all such transiteam be detected when they
happen. The problem of “event detection” in numerical satioh is well-known and
can be resolved using variable step adaptive methods foencahintegration.

However this may raise problems related to finite variabiéihd Zenoness (in-
finitely many state transitions in a bounded interval of fim@onsider an abstraction
u: R — B defined asu(x) = 1iff 2 > 0 and consider a signal that oscillates
with an unbounded frequency around the origin. Such a sigilatross zero too of-
ten and its abstraction may lead to Boolean signals of iefindiriability. These are
eternal problems that need to be solved pragmatically dawpto the context. In any
case the dynamics of most reasonable systems have a bourededrfcy, and even
if we add white noise to a system, the frequency remains bedihg the size of the
integration step used by the simulator. From now on we asghatewe deal with
signals that are well-behaving with respect to everthat is,u.(s) has a bounded vari-
ability and every change in(s) is detected in the sense that every pagisuch that
w(s[t]) # limy ¢ p(s[t']) is included in the sampling.

Definition 1 (Signal Temporal Logic) LetP = {us,..., u,} be a collection of con-
straints, effective functions of the form : R™ — B. AnsTL(P) formula is an
MITL [4,5 formula over the atomic propositions (), . . . ji, (z).

Any signal which is well-behaving with respect ® can be transformed into a
Boolean signak’ : T — B"™ such thats’ = u1(s)||u2(s)]| ... ||un(s) is of bounded
variability. By construction, for every signalandsTL formulayp, s = ¢ iff s’ = ¢’
in the MITL, ;] Sense wherg’ is obtained fromy by replacing everyu;(z) by a
propositional variable;.

The process of checking satisfaction ofsamn formulay by a sighalk decomposes
into two parts. As a first step we construct a Boolean “filten” éveryu; € P which
transformss into a Boolean signal; = p;(s). The signal thus obtained can be checked
for satisfaction against the correspondgL , ;; formulay’.

To illustrate the Boolean filtering process, consider thealsin[t] wheret is given
in degrees ang(x) = x > 0. The signal is of lengtd00 and is sampled eve#p time
units plus two additional sampling points to detect zeresing atl80 and360. The
input to the Boolean filter is

(0,0.0), (50,0.766), (100, 0.984), (150, 0.5), (180, 0.0), (200, —0.342),
(250, —0.939), (300, —0.866), (350, —0.173), (360, 0), (400, 0.643)

and the output is a Boolean signasuch thatZ,f = {[0, 180), [360, 400)}.

13

6 Some Examples

In this section we demonstrate some typical propertiesdhatbe expressed #irL
and give examples of their satisfaction and violation byalg.

6.1 Following a Reference Signal

As a first example we show how the fact that a signal followdtarosignal with some
delay can be expressed &TL. We consider two periodic signals andz,, ranging
in [-1,+1] and want to express the property than whenever one of thessesahe
threshold of0.7, so does the other withit € [3,5] time units. The corresponding
property is:

D[ngo]((ml > 07) = <>[3,5] (CEQ > 07))

Let us fix the first signal to be the sinusoid
x1[t] = sin(wt),
and letx, be a signal generated by
xo[t] = sin(w(t + d)) + 6

whered is a random delay ranging 8, 5] degrees and is an additive random noise.
Figure 1 shows the two signals whergis generated with negligiblé and hence it's
form is close to that of;. The Boolean signals; andp, are the Boolean abstraction
of x; andx,, respectively, via the constraint > 0.7. In other words, they show
the points in time when the signals satisgy this constrdilie monitoring procedure
generates Boolean signals for all sub-formulae, for exartiy@ signa s 5 (2 > 0.7)

is high at all points in time for for whichxs > 0.7 at timet + ¢’ with ¢’ € [3,5]. The
last signal in Figure 1 shows the truth value of the main fdamwver time, and since
it is true at time zero, the signals satisfy the property.

In Figure 2) we have chosen to generatewith much larger additive noisé <
[—0.5,0.5]. The fluctuations in the value af, are reflected in the Boolean abstraction
po and lead to a violation of the property at some points wherg 0.7 is not followed
by x5 > 0.7 within the pre-specified time.

6.2 Stabilzability

The second example is a very typical stabilizability préypased extensively in control
and signal processing. The system in question is a “plarg”tbanaintain an output
signal around a fixed level despite disturbances from theideitworld. The actual
system used to generate this example is a water-level dlentfor a nuclear plant.
The disturbances come from changes in the system load thgetrchanges in the
operations of the reactor that change the water level. Tleeofdhe control system is
to stabilize the water level again around the desired value.

This property(Figure 4) we see that the output signalolates the property both
by over-shooting below-30 and by taking more tham50 time units to return to
[—0.5,0.5].

14

s = x1||$2

pr =11 > 0.7 ﬂ []]

p2 =x2 > 0.7 %J—‘] 1]
<>[3,5]p2 J—']]]

b1 — <>[3,5]p2 |
jo,3001 (P1 — Qp3,5P2) 7 ‘

Figure 1: A2-dimensional signal satisfying the propeff¥, 3o ((z1 > 0.7) =
O3,5/(r2 > 0.7)). Boolean signals correspond to the evolution of the trutes
of sub-formulae over time.

15

e
=l !

pr=11>07 ﬂ - - -

p2 =22 > 0.7 Jﬂjﬂﬂ gt 1 il
oo AT
1= Osip2 e —
Oio,3001(p1 — Qp3,5)2)

Figure 2: A2-dimensional signal violating the property soo((z1 > 0.7) =
0[375] (352 > 07))

16

Disturbance Signal

50

Anal

50

.
Sl_L L1
1

log Responsg (t)

T

y € (—0.5,0.5)

y € (—30,30)

— 0[0,150]J[0,201P
T

I

— ©[0,150]J[0,20?

-

00,2500 (@ A (=P = O[0,150]F[0,20]7))

1 ‘

L

0 500

1000

| |
1500 2000

2500

3000

Figure 3: A disturbance signal and an analog respgnsatisfying the stabilizability

propertyisoo,2500) (([y] < 30) A ((Jy| > 0.5) = O0,150/0,20) (|y] < 0.5))).

Disturbance Signal

50 ‘ I B
grglog Responsg (t)
T T
O /\ N
-50 Xf—lvm/ \/\ T
-100 ‘ ‘
p=y € (—-0.5,0.5)

2 T T

1 -

 H Y S L] L]]
-1 | | |
q2=y€ (—30, 30) ‘

1

L i 1] 1
-1 !

o ‘

1k :

1 0 s A L] L]]
-1 | | |
Oé0,150]D[0,20]p ‘

1 -

L L I L]
-1 !
ﬁg - <>[0,150]‘:'[0,20‘]P

1 -

L L] u L]
-1 !

B <>[0,150]5[0,20‘]2D

1 -

L) L] I I L]
-1 I
Dé300,2500](‘1 A (=P = ©[0,150)D[0,201P))

T

1 - -

0
-1 I I I I

0 500 1500 2000 2500 3000

Figure 4: A disturbance signal and an analog respgngelating the stabilizability

propertylisoo,2500) (([y] < 30) A ((Jy| > 0.5) = Oj0,150/0,20) (|y] < 0.5))).

18

7 Potential Extensions

In this section we mention several possible extensionseoptbposed logic, some of
which are subject to ongoing work to be reported in Deliverdil.3/2.

7.1 Simple Extensions

Here we mention extensions that may add some expressive potvare based on the
same principles asTL and express the same type of properties.

7.1.1 Events

MITL andsTL are state-based formalisms and as such they cannot distingyoint

in time wherep becomesrue from other points whengis simply true. Using primitive
such agp 1 andp | for the rising and falling of, one can express properties such as
bounded variability (the distance between any two suceesianges is at leagd) as:

Do, (0 T= Djo,qp) A (p 1= Opo,q17p))-

There is no problem in adding this feature to the logic exéepslightly complicating
the monitoring procedure due to the need to consider all auettibns of left/right
closed/open intervals.

7.1.2 Past

Past operators do not add expressive power to temporal bogisometimes facilitate
the expression of certain properties. One advantage they dner future operators
is that the construction of monitors for past formulae in @f@f deterministic timed
automata is much simpler (this is a new result obtained bygadium members and
will be discussed in Deliverable D3.2/6). The semantic diébim of past operators is
symmetric to those of future operators.

7.1.3 Regular Expressions

Adding timing constraints to regular expressions is dona ilifferent style than in
temporal logic. The timing restriction is realized by the ; operator which constrains
the metric length (duration) of the signals satisfyingo be in an integer-bounded
interval I. We sketch here the syntax and the semantics of timed regxaessions
as introduced in [ACMO02]. A variant of this formalism, adagtto real-valued and
multi-dimensional signals, will be presented in delivéeabl.3/2.

The sef (X) of timed regular expressions over an alphabgs defined recursively
as eithera, @1 - g2, P1 V 2, @1 A 2, 9™ O (p); Wherea € X, ¢, 1,92 € E(X)
and! is an integer-bounded interval. We use the notatidifor a signal whose value
is constantlye and its metric length (duration) is The semantics of timed regular ex-
pressions shares common features with standard regulegssipns in what concerns

19

Boolean operations, concatenation and Kleene star. Thepecific features are the
semantics of the atomic symbols, defined as

[o] = {a" :r € Ry},

that is, the set of alk-signals of arbitrary duration, and the semantics of theetim
restriction operator which is

[{0)1] = {s: s €[] Als| € I}.
Here are some examples of expressions and their semantics:

e Expressiona) o, 3 denotes the set af signals of length irf{0, 3].

e Expressiona - b) 9,3 denotes all signals composed of@part followed by &
part where the sum of duration of the two parts ig(n3].

e Expression((a - b)(o,3)* denotes all signals composed of zero or more repeti-
tions of elements of(a - b) g 3]

e Expression(a - b)*) 0,3 denotes all signals of total duration(if, 3], consisting
of zero or more repetitions ai signals.

e Expressiona - b)s-cAa-(b- c)3 denote all signals of the logical fronbc such
thatc starts3 time units after the beginning of the signal and eBdsne units
afterd starts.

7.2 Richer Temporal Properties

All properties discussed so far are based on static abisinactrom the continuous
state-space into Booleans. This means that values of a sigdi#ferent time instants
can “communicate” only through their Boolean abstractidfar example we can de-
fine constraints on the temporal distance between a pewherez[t] > ¢ and a point
t" wherex[t'] < d but we can say nothing ieTL about the difference[t] — z[t']. To be
able to speak of such properties we will need to extend thHe leigh non-Boolean “fil-
ters”, that is, operators that transform real-valued dgjimo other real-valued signals.
Such operators can be memoryless like point-wise aritltnogterations, or operators
with memory such as integrators. The construction of mesitor this type of proper-
ties will have to rely on blocks for such operators that exishe respective simulation
tools.

7.3 Infinitary Properties

Temporal logic is traditionally interpreted over infinitecgiences for which it can ex-
press infinitaryw-properties that specify repeatedly occurring patterre @eriodic
behaviors. Since our work is geared toward monitoring wkiohks, by definition, on
finite signals, we will not consider such extensions at thisp Life is difficult enough
with continuous signal of finite duration.

20

7.4 Non-Temporal Properties

From discussions with designers it turns out that frequatayain properties of sig-
nals are very useful for evaluating certain circuits. Sudpprties are quite different
from time-domain properties and we hope, toward the end eftject, to propose
some formal support for them. Monitoring for such propeartigll be based on running
the signal through time-to-frequency transforms, suchagiér’s, and checking the
properties of the obtained spectrum.

21

8 Additional Related Work

This section provides some additional information thabva#l the reviewers to situ-
ate the work on language extension in the general contextteofihalog activities of
PROSYD.

8.1 Monitoring

Monitoring is not part of the current deliverable and will peesented later in Deliv-
erable D3.2/6. However we find it useful to report the progmeade in this direction,
because this is the ultimate application of the proposeguage and hence its major
adequacy criterion. So far we have developed and implerdenteonitoring procedure
for sTL [MNO4]. This procedure reads a property and a real-valugadj transforms
it into a Boolean signal and, through backward propagatfdruth values, establishes
satisfaction. This procedure, due to its backward natwae,anly be applied offline,
that is after the simulation has terminated. A prototypelemgntation of such a mon-
itoring procedure has been interfaced with Matlab/Simuind used to generate the
monitoring examples in Section 6.

We are currently working on the development of an online pdoce that can some-
times detect violation or satisfaction of certain formuteesed on a prefix of the sim-
ulation trace. Such an extension requires some new theaketisults about the deter-
minization of timed automata.

8.2 Verification

In parallel with the work on monitoring, we continue with afforts to push the limits
of exhaustive verification of analog circuits. In the papigached to this deliverable
as an appendix [DDMO04] we apply verification techniques to amalog circuits. We
use reachability analysis techniques for hybrid systemetdy a Biquad low-pass
filter and another technique, based on bounded-horizomaptiontrol, to show that a
Sigma-Delta modulator (an important ingredient of anatmgigital converters) does
not reach a saturation point.

8.3 Workshop Organization

Members of the consortium, together with other academidraduktrial colleagues or-
ganize the first workshop on verification of analog circuitb¥é held in Edinburgh on
April 2005. It is hoped that such a forum will increase the eem@ss of analog design-
ers to the potential contribution of formal verification teetdesign process and will
also divert some of the energy of the verification commuradtyard these problems.

22

9 Conclusions

We have presented the major ingredient of the extension ot®&ard analog circuits,
the logic sTL that takes into account the particular features of analggads. This
logic is already covered by a monitoring procedure that detk satisfaction o§TL
formulae by simulation traces. The next steps for the segead of the project are:

1. More discussions with analog designers in order to getesi@®d-back on the
proposed logic and its suitability for describing propestiof certain circuits.
One difficulty is that analog designers tend to be very busgge and do not
have time to invest in ideas that come from an alien cultunea tecent meet-
ing between Verimag and ST in Agrate it was decided to lookasthfimemory
specifications as a possible test-case. Effort will be madeget more designers
from other ST sites.

2. Enriching the logic with some of the features mentione8éwtion 7 with prior-
ity to adding events, richer temporal properties and treatrof regular expres-
sions. Some of the decisions will be based on feedback frrigers.

3. Improving the monitoring procedure to work as online assflde and to treat
the extensions to the logic.

23

References

[AD94]

[AFH96]

[AH92]

[ACMO02]

[ADMO2]

[DDMO04]

[Hengsg]

[MNO4]

[MPO3]

[TO3]

[VW86]

R. Alur and D.L. Dill, A Theory of Timed Automatal heoretical Com-
puter Sciencd 26, 183—-235, 1994.

R. Alur, T. Feder, and T.A. Henzinger. The BenefitdRaflaxing Punctu-
ality. Journal of the ACM43(1):116-146, 1996.

R. Alur and T.A. Henzinger. Logics and Models of R&aine: A Survey.
In Proc. REX Workshop, Real-time: Theory in Practipages 74-106.
LNCS 600, Springer, 1992.

E. Asarin, P. Caspi and O. Maler, Timed Regular EggiensThe Jour-
nal of the ACMA49, 172-206, 2002.

E. Asarin, T. Dang, and O. Maler. The d/dt tool for iferation of hy-
brid systems. InComputer Aided VerificatignLNCS 2404, 365-370,
Springer, 2002.

T. Dang, A. Donze and O. Maler, Verification of Analagd Mixed Sig-
nal Circuits using Hybrid Systems TechniquBspc. FMCAD’04 2004.

T.A. Henzinger. It's about Time: Real-time Logiceiewed. InProc.
CONCUR'’98 pages 439-454. LNCS 1466, Springer, 1998.

O. Maler and D. Nickovic, Monitoring Temporal Propiess of Continu-
ous Signalsproc. FORMATS/FTRTFT'QANCS 3253, 2004.

O. Maler and A. Pnueli (ed)lybrid Systems: Computation and Control
LNCS 2623, Springer, 2003.

S. Tripakis, Folk Theorems on the Determinization dfidimization of
Timed AutomataProc. FORMATS’032003.

M.Y. Vardi and P. Wolper. An Automata-theoretic Apaich to Auto-
matic Program Verification. IfProc. LICS’86 pages 322-331. IEEE,
1986.

24

