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Executive Summary

This document describes the analog case study on a Flash memory simulation pr
vided by ST Microelectronics Italy. The case study explores in practicbehe-

fits of extending formal specification to analog designs, by expressindgetieed
continuous behavior of the Flesh memory cell with the STL/PSL specificatien lan
guage developed during the project and described in Deliverabled35] and
1.3/2 [NM*06], and by checking its correctness with the STL/PSL Monitor tool
presented in Deliverable 3.2/13 [NMO06].

Purpose

The purpose of this document is to describe the efforts in the case stydgmarty-
based specification and checking of analog circuits using STL/PSLsdtsass the
benefits of the analog extensions of PSL and of the lightweight verificatidn too
developed during the project.

Intended Audience

This document is intended for formal methods researchers who are tettias
the analysis of timed and analog systems and who want to apply property-base
lightweight verification to the analog and mixed-signal designs.
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Background

ive

The background of the analog case study is based mainly on resultsextimev
the PROSYD project on the extension of property-based formal metheastog
systems. The case study is mainly an evaluation and a proof of concep of th
STL/PSL language presented in Deliverable 1.3/2 [NM] and of the STL/PSL
Monitor tool (Deliverable 3.2/13 [NMO06]). The other Deliverables reiete this
document are 1.3/1 [M05] and 3.2/6 [MNPO06].
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Glossary

Assertion
A property that has to be fulfilled by the system under verification.
Exhaustive verification

The process of proving the correctness of a system with respect toalfspeci-
fication by exhaustively exploring its mathematical model.

Flash memory

Non-volatile computer memory that can be electrically erased and reprogdgmme
primarily used in memory cards.

Lightweight verification

The procedure for proving the correctness of a single finite executiarsystem
with respect to a formal specification.

LTL

Linear-time Temporal Logic. A formal language commonly used to specify the
properties that a system has to satisfy.

MITL

Metric Interval Temporal Logic. The dense-time extension of the LTL logie,
lowing modalities ranging over a hon-punctual interval.

Monitoring
Seelightweight verification.
PSL

Property Specification Language. The formal language based onnd kegular
expressions upon which PROSYD is based.

STL/PSL

Signal Temporal Logic/Property Specification Language. The analegsion of
PSL.
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1 Introduction

The property-based verification of digital designs is a mature domain thigen
used in practice for many years. Specification formalisms based on tertgupral
ics [MP95], such as LTL, CTL and PSL are commonly accepted and ussid-in
crete verification tools. When consideritimedmodels, the situation is less sat-
isfactory, although a number of variants of real-time logics have beerogedp
such as MTL [Koy90], MITL [AFH96], TCTL [Y97] ortimed regular expres-
sions[ACMO02] (see [AH92, Hen98] for an extensive survey). The timedfica-

tion tool KRONOS [Y97] has integrated TCTL logic as a specification formalism.

The property-based verification of continuous systems is at its beginnohgsa
restrained to small systems and very limited fragments of logics [FGP06].eHenc
the preferred validation method for analog systems remains simulation and.testing
The approach taken in the PROSYD project was to export the formafispéon
element to the analog simulation through property monitors. This procedure is
calledlightweight verification In this framework, the property monitor is built au-
tomatically from the specification and it checks whether a single trace (oite fin
set of traces) satisfies the property specification. Temporal logic res used

as the specification language in a number of monitoring tools, including Tempo-
ral Rover (TR) [Dru00], FoCs [ABGO00], Java PathExplorer (JPaX) [HRO1] and
MaCS [KLS"02].

The logic STL/PSL that allows to reason about properties on continuonalsig
was developed and presented in Deliverable [N0d] (and based on results from
[MNO4, MO05]). The STL/PSL Monitor tool [NM06] was implemented as a light-
weight verification application that automatically builds observers of STL/PSL
specifications and monitors their correctness with respect to continuauts.inp

The case study was done on a set of simulations of a Flash memory tesieell pr
vided by ST Microelectronics lItaly. Its goal is to serve as a proof of ephof
the property-based analog monitoring approach relying on the STL/P§udage.
The main objectives of the case study is to evaluate the overall approdt¢has
and respond to the following questions:

e Which classes of properties can be written in STL/PSL?

o How difficult is to write correct STL/PSL specifications?

e How efficient is the automatic evaluation of STL/PSL specifications?

The rest of the document is organized as follows:

Analog Case Study Introduction e 1



2 e Introduction

Section 2 presents the Flash memory case study. It describes the psopertie
specified in STL/PSL giving details about the results achieved.

Section 3 evaluates the results achieved in the case study. It assesses the
pressiveness of the STL/PSL language and common errors duringeite sp
ification process. The evaluation also takes into account the computational
efficiency of the STL/PSL Monitor tool, by analyzing the application’s time
and memory requirements.

Finally, Section 4 gives the concluding remarks on the results achieved by
the case study.

Analog Case Study



2 Flash Memory Case Study

The subject of the analog case study is the “Tricky” technology flash memor
test chip in 0.13um process developed in ST Microelectronics Italy angrshmn
Figure 1. The flash memory presents an advantage for the analog chsérstiiat

it is a digital system whose discrete behavior is implemented at the analog level.
Hence, it is a good link between the analog and the digital world. The “Tricky
main blocks are:

16Mbit memory flash array

Partial flash array used in simulation

Full row and column decoders

LV sense amplifiers (1.2 volt)

Simple synthesized control logic for testing purposes

Analog/digital transistor level pads

No charge pumps and oscillators

‘
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Figure 1: Tricky Flash Memory Cell
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The analog case study is based on lightweight verification of the test chtpel
lightweight verification, the system under test is viewed as a black boxyand
don’t need to know further details about the underneath chip archiéectline
correct functioning of the chip at the analog level is determined by thevimatet

a number of signals, which are extracted during the simulation:

bl: matrix bit line terminal (flash cell drain)

pw: flash matrix p-well terminal (flash cell bulk)
wl: matrix word line (flash cell gate)

s: flash matrix source terminal (flash cell source)
vt: threshold voltage of flash cell

id: drain current of flash cell

The flash memory cell can be in one of theopgramming reading or erasing
modes. In each mode, the above mentioned signals should have a partesular b
havior. The flash cell was simulated in thegrammingand theerasingmode for

the case study. The length of theopgrammingmode simulation was 5000us, and
30000us for theerasingmode.

There are four STL/PSL properties written to describe the correcvimtaf the
programmingmode and one property for tlegasingmode. The specification of
the properties is a joint effort of analog designers of ST Microelectsdiéty and
Verimag. The ST Microelectonics provided the specification in plain English an
pseudo-STL/PSL code. The specifications were adapted at Verimag aottred
syntax of STL/PSL. Some properties required several feedbacls-inoprder to
get corrected. For each property, we note the changes, if any, gratlwought
with respect to the initial specification.

2.1 Programming Properties

STL/PSL Specification

vprop programingl {
define b:vt_raise :=
a:vt <= 5.0 and eventual | y![<=0.1] a:vt > 5.0;
define b:id_fall :=

4 e Flash Memory Case Study Analog Case Study



abs(a:id) > 5e-6 and
(eventual I y!'[<=0.1] abs(a:id) <= 5e-6);

pgm assert:
al ways (b:vt_raise ->
(((abs(a:id) > 5e-6) and (a:vt > 4.5))
until! b:id_fall));

vprop progranm ng2
{
define b:raise_w _and_not_pgm: =
a:w <=0.1 and
eventual | y!'[<=15. 0]
(a:w>3.8 and a:id > 30e-6);

define b:start_prog : =
abs(a:bl) <= 0.1 and
(eventual | y!'[<=10.0] a:bl > 3.8);

define b:fall_bl :=
a: bl >3.8 and eventual | y![<=10.0] abs(a:bl)<=0.1,;

pgnl assert:
al ways (b:raise_ w _and _not _pgm ->
eventual ly! (b:start_prog and eventually![<=15.0]
((a:bl>3.8) until! [3e2:1.5e3] (a:w>6.0))));

pgnR assert:
al ways (bh:start_prog ->
(not b:fall _bl until
(eventual I y!'[<=10. 0]
(a:vt > 5.0 and abs(a:id) <= 5e-6))));

Informal Description

programmingl: When the signalt overcomes the threshold ¥, vt has to
remain abovel. 5V andi d has to remain abovee- 6A until i d falls below
5e- 6A.

Analog Case Study Flash Memory Case Study e5



programming2: When the wordlineM jumps from a value ne&V above the
threshold3. 8V and the cell has not been programmed yet, ie. the current
i d is above30e- 6A (rai se_w _and_not _pgm), the programming procedure
(start _prog), characterized by a ramp of the bitlibe signal from a value
near0V to the threshold o8. 8V in less tharl0ns, has to eventually start and
the bitlinebl has to remain abow& 8V for at leasB800ns and until the word-
linew overcomes$V, which has to happen withit600nms. This property is
expressed by the assertipgnl. Moreover, once the programming proce-
dure starts, the bitlinkl is not allowed to fall from abov&. 8V to 0V either
until the end of simulation or until the signa becomes higher th&V and
the absolute value ofd smaller tharbe- 6. This requirement is described by
the assertiopgn?.

Results

The two programming properties are correct with respect to the simulatian trac
Figures 2 (a) and (b) show the signatsandi d used by the assertigggm We
can see in Figure 2 (d) thabs(i d) is greater tharbe- 6V andvt greater than

4. 5V from the moment thatt crosses théV threshold (Figure 2 (c)) and until the
currenti d falls near0A (Figure 2 (e)). Hence the assertipgmholds.

In Figures 3 (a), (b) and (c), we can see the i d andbl signals respectively,
used in thepgnl assertion. The Figures 3 (d) and (e) show that the rais¢ @
followed by thest art _pr og condition, and from that momeht remains above
3. 8V (Figure 3 (f)) until the wordlineM crosses théV threshold as we can see in
Figure 3 (g). Hence the assertipgml holds too.

Figures 4 (a), (b) and (c) show , i d andbl signals used by thegn? assertion.
After the programming modst art _pr og is triggered (Figure 4 (d)), the bitline
bl does not fall down beforet gets abovéV andabs(i d) below5e- 6A, as we
can see in Figures 4 (e) and (f). Hence the asseptjog holds.

Notes

1. The original specification of thr ogr anmi ngl property did not correspond
to the intended meaning. Hence, it was rewritten by the ST designers using
the suffix implication PSL-like syntax as

{vt>5} |-> {{{vt>4.5} && {|id|<5e-6[->];|id|<5e-6[+]}}}
The final version of the property is an STL/PSL interpretation of the PSL-
like property.

6 e Flash Memory Case Study Analog Case Study



2. programm ng2 property was split in two assertions in order to enhance the
readability of the specification.

3. Approximations ofaiseandfall of signals were introduced where needed.

(c)
@

- (d)
(e)

Figure 2: programmingl Property Result: (&) (b)id (c) rai sevt (d) abs(i d)>5e-6)
and (vt>4.5(e)fall_id

Figure 3: programming2 Property Result: pgml (&) (b) id (c) raisevt (d)
abs(id)>5e-6) and (vt>4.5(e)fall.id

Analog Case Study Flash Memory Case Study e 7
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Figure 4. programming2 Property Result: pgm2 (&) (b) id (c) raisewvt (d)
abs(id)>5e-6) and (vt>4.5(e)fall.d

2.2 Admissible Bitline Voltage Decay Property

In the programming mode, the bitline has to remain above a certain percentage of
its initial value.

STL/PSL Specification
vprop decay {
define b:start_prog : =

((a:bl <= 0.1) and eventually! [<=10.0] (a:bl > 3.8));

define b:freeze_cond : =
b:start_prog and a: pw <= -0.8;

define b:derivative saturates W :=
distance (shift(a:wl, 50.0), a:w, 0.05);

define a:diff_bl _frozen_ bl :=
a:bl - (freeze (a:bl, b:freeze_cond, 50.0) * 0.85);

admvolt _decay assert:

8 e Flash Memory Case Study Analog Case Study



al ways (b:freeze_cond ->
eventual | y!'[<=10.0](((a:di ff_bl _frozen_bl > 0.0)
until! b:derivative saturates w)));

Informal Description

The condition to take a “snapshot” of the value of the bitlineeze_cond is de-

termined by the beginning of the programming mostea( t _pr og) and the p-well
voltage being below0. 8V. When this condition is met, the value of the bitlise

is frozen in the nex60ns and has to remain at least o\&5%of that value until

the wordlinew stabilizes {eri vati ve_sat urat es_w ). The stabilization of the
wordline is met whemd does not change more th&n05V in 50ms.

Results

This property is shown to be correct with respect to the simulation tracefrdédwee
conditionf r eeze_cond that we can see in Figure 5 (g) is triggerecd&t00ns by

a ramp in the bitlined! (Figure 5 (a)) and a requirement on the value of the p-well
voltagepw (Figure 5 (b)). The frozen value & (mutiplied by85% is shown

in Figure 5 (d) and the difference betweld@nand frozerbl diff _bl _frozen_bl

in Figure 5 (e). From Figure 5 (h) we can see ttatf _bl _frozen_bl remains
higher thard betweerv00 and3200ns. Since the wordlingl (Figure 5 (c)) stabi-
lizes its value at-2200ns (Figure 5 (f) and (i)), which is beford f f _bl _f r ozen_bl
goes below), we can conlude that the property holds.

Notes

1. The original property required tHieeezeoperator to be applied td as soon
as it crosse@d. 8V threshold. However, this trivially implies that the frozen
value ofbl would be equal t8. 8V. The intended meaning was to freeze the
value ofbl with some small delay, in order to halk stabilized. That is the
reason that we addédns delay for the freeze operator to be applied.

Analog Case Study Flash Memory Case Study e 9
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Figure 5: decay Property Result: @bl (b) pw () w (d)
freeze(bl, freeze_cond, 50)*0. 85 (e) diff_bl frozen_bl ®
di stance(shift(w,b50),w,0.05) (g) freezecond (h) diff_bl frozen_bl>0 (i)
derivative_saturates w

2.3 P-Well Driving During Programming Property

In the programming mode, p-well must always be negative.

STL/PSL Specification
vprop pwel I {
pw_during_prog assert:
always ((a:bl > 2.5 and a:w > 2.5) ->

10 e Flash Memory Case Study Analog Case Study



a:pw <= -0.5);

Informal Description

Whenever the programming mode, characterized by the bilirzend the wordline
w being both abové. 5V, is enabled, the p-weflw has to be below0. 5V.

Results

This property is shown to be correct with respect to the simulation tracan Fro
the Figures 6 (a) and (b) showing thie andw respectively, we can see that the
left-hand side of the implicationl > 2.5 and W > 2. 5istrue roughly in the
interval [ 1050, 3200) (Figure 6 (c)). Since the signalv shown in Figure 6 (d)

is below- 0.5 from 550 until the end of the simulation (Figure 6 (e)), we can
conclude that the property holds.

}ﬁ— T

T T T T 1 T T T T 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

(@) (d)
wi
10
] W//////—__WJL
0
r T T T T 1
0 1000 2000 3000 4000 5000
(bl>2.5) and (Wl >2.5) W <= 05
1 1
0 0
e e e e e e e e e B e LA B s | e e e e e e e e e B e LA B s |
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
(© (e)

Figure 6: pwell Property Result: (&) (b)w (c)bl >2.5 and w >2. 5 (d) pw(e) pw<=-0. 5
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2.4 Erasing Property

In the erasing mode, the bitline must follow the p-well signal.

STL/PSL Specification

vprop erasing_node {
define b:erasing_cond :=
aw <= -6.0 and a:pw > 5.0;

erasing assert:
al ways (b:erasing_cond ->
(distance(a:s,a:pw,0.1) and (a:bl-a:pw) >-0.83));

Informal Description

The erasing moder asi ng_cond is characterized by the wordline signal being
lower than- 6V and p-wellpw above5V. Whenever the erasing condition is en-
abled the pointwise distance between the sosii@ed p-wellpwvoltages has to be
smaller tharD. 1V and the value of p-welbw cannot be greater thah 83V from
the value of the bitlin®! .

Results

This property is shown to be correct with respect to the simulation traceertise

ing modeer asi ng_cond depending from values of the signalsandbl (Figure 7

(c) and (d) respectively) holds betweg®00 and14000ns roughly. Figures 7 (f)
and (g) show that the difference betwa#nandpw becomes greater thar. 83
from 5000ns onward. Finally, we can see in Figure 7 (h) that the pointwise dis-
tance betweern andpw is smaller thar0. 1V from ~3000ms until the end of the
simulation. Hence, the property holds on these simulation traces.
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Notes

1. The requirement that the bitlird must follow the p-wellpw signal (with
some tolerance allowed) was identified to correspond exactly to the point-
wise threshold distance betwel@nandpw, and the corresponding STL/PSL
distance operator replaced the original specification.

2. The original property specification had the requirenféht pw) >- 0. 7. The
property was found to be incorrect with th@. 7 constant, as it represented
a too strong constraint. The final specification was relaxed and the drigina
requirement was replaced wigh! - pw) >- 0. 83.

T T T T T
0 5000 10000 15000 20000 25000

@)

1
30000

T T T T
0 5000 10000 15000 20000 25000

(b)

1
20000

T T T T T
0 5000 10000 15000 20000 25000

(©

1
30000

T T T T T
0 5000 10000 15000 20000 25000

(d)

Figure 7. erase Property Result: @y (b)s (c)w (d) bl

bl - pw>- 0. 83 (h) di st ance(s, pw, 0. 1)

Analog Case Study

1
20000

erasing_cond

=

v — T T T =
0 5000 10000 15000 20000 25000 30000

bi-pw

10
5
0
-5

T T T T T T 1

o 5000 10000 15000 20000 25000 30000

bl-pw>-0.83

T T T T T 1
0 5000 10000 15000 20000 25000 30000

s pw
10 -
57‘/\—_—‘\
0
5
r T T T T T 1
0 5000 10000 15000 20000 25000 30000

abs(s - pw), threshold = 0.1

threshold

T T T T T 1
5000 10000 15000 20000 25000 30000

distance (s, pw, 0.1)

T T T T T 1
5000 10000 15000 20000 25000 30000

(h)

(e) erasi ng_cond (f) bl - pw (g)
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3 Evaluation

This case study evaluates both the STL/PSL specification languagé(@Band
the performance of the STL/PSL Monitor tool [NM06]. The STL/PSL largpia
evaluation is mainly qualitative, and analysis the expressiveness of thalfsm

as well as certain aspects observed about the writing of STL/PSL sp#icifis.
The evaluation of the STL/PSL Monitor tool is more quantitative and provides th
time and memory requirements recorded during the case study.

3.1 Expressiveness of STL/PSL Specifications

In this Section we discuss the expressiveness of the STL/PSL langtfageainly
describe the classes of properties that can and cannot be specifid RSE.

Threshold cross detection: This is the basic property of the analog extension of
PSL. It allows abstracting the values of a continuous signal to the Boolean
domain, thus making the monitoring procedure efficient. The threshold cross
detection is used in all the properties of the case study.

Ramp Detection: The signal jumping from one value to another in a short time
can be expressed in STL/PSL and efficiently observed by the monitoring
tool. For examplex<=0.1 and eventual | y! [ <=10] (x>5) is a property
that detects the signalgoing from below0. 1 to more tharb in less therl0
time units. The detection of signal ramping is used in propediéesy and
programi ng2.

Distance-based comparisons:Two continuous signals can be compared with re-
spect to some distance metrics. This is especially useful for comparing sim-
ulation traces to a perfect reference signal with some degree of toéeahnc
lowed. The pointwise threshold distance-based operator is useddadhg
ander asi ng properties.

Signal stabilization: STL/PSL can express the stabilization of a continuous sig-
nal around an arbitrary value. This can be done by comparing the signal’
current value to the value of the same signal shifted by a certain amount of
time. The signal stabilization detection is used indbeay property.

Analog Case Study Evaluation e 15



Raise and fall of Boolean signals:The dense semantics of STL/PSL do not al-
low pointwise intervals, and hence we cannot detect directlyrdis and
fall of a Boolean signal. However, thaiseandfall operators can be approx-
imated to any precision by a combination of existing Boolean and temporal
operators. As an example, consider the forrngda p and eventual | y!
[<=m p, which is true frommtime units before raises until its raise. By
choosingmsufficiently small, we can approach the exact point cdising.

The main class of properties that cannot be expressed in STL/PSL aoadke
reasoning about the frequency spectrum of the signals. A typical bregecifi-
cation of such a property would be “At least 60% of the energy powectspm

of a signal is within its frequency band between 300 and 1500Hz". Thetda-

tive measures are not directly available to the user either, as an STL/B&riyr
either holds or does not hold on a set of traces. However, a smagd astHweana-

log layer of STL/PSL can reveal many interesting quantitative properties of the
continuous signals. This fact has been used in designing distanceteaggoral
operators, which we were able to reduce to a combination of analog andredmpo
basic operators.

3.2 Writing STL/PSL Properties

STL/PSL language is a novel but new extension of PSL, and as such iacki#
maturity, making it difficult to evaluate the easiness of specifying properfies o
continuous signals, as well for the analog designers as for the peopiaiigital
verification world that do have a knowledge of PSL. With the current tiecies,

the evaluation of the properties would require a visual observation ofdhals,
with manual tracking of interesting events. This process can be automaed us
STL/PSL specifications. However, we have observed that expressaigprop-
erties in STL/PSL is still error prone, mainly due to the inexperience of analog
designers with formal languages and logics. Hence, the specificatioclofsop-
erties requires multiple iterations, in order to be sure that they describdyexac
the desired behavior of the continuous signals. It is therefore earlyaatifyithe
effort that can be saved by using STL/PSL specifications.

We have identified two types of common specification errors that we haeeienc
tered during the work on the case study:

Parameter based errors: The threshold value or the time bounds of the temporal
operators are not chosen properly. We suggest the property tesbegiac-
ified with a larger tolerance on time and threshold bounds, in order to get
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an idea whether the general temporal pattern of the property holds.- After
wards, the parameters can be made tighter, so that the particular thresholds
are respected.

Raise and falls of signals: A common pattern in the specification of temporal
properties is that enabling a certain conditiprshould trigger an obliga-
tion phi (wherephi is a temporal subformula). We have observed that the
usual way to specify such a requirement is to use the formutahi . This
is not the correct way to do it, since in this example whengviertrue, an
obligationphi is triggered. We should rather write such a requirement using
rose(p) - >phi , where the obligatiomphi is triggered only at the moment
thatp becomes true. STL/PSL does not allow precise detection of raise and
fall of signals, however they can be approximated at any precision.

3.3 Time and Memory Requirements

In this Section we present the time and memory requirement of the STL/PSL Mon-
itor tool that was required for this case study. The tool was tested with the two
lightweight-verification algorithmsoffline andincremental The complexity of

the algorithm used in STL/PSL Monitor tool is shown to®& m) in [MNO4]
wherek is the number of sub-formulae andis the number of intervals.

Table 1 shows the size of the input signals (the number of intervals thatalvey. h
We can see that the signals generated by the simulation of the erasing mode are
about 10 times larger than those generated during the programming mode simula-

tion.

pgm sim| erase sim
name| # intervals| # intervals
wi 34829 283624
pw 25478 283037
S 33433 282507
bl 32471 139511
id 375 n/a

Table 1: Input Size

Table 2 shows the evaluation results for thffline procedure of the tool. The
properties monitored over the programming mode simulation required less than
half a second. Only ther asi ng property took more than 2 seconds, which is
an expected result, given that it is the only property evaluated over a lonigér
erasing mode simulation. We can also see that the evaluation time is linear in the
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| property | time (s) | # intervals|

programmingl 0.14 99715
programming?2 0.42 405907

p-well 0.12 89071
decay 0.50 594709
erasing 2.35| 2968578

Table 2: Offline Algorithm Evaluation

number of intervals generated by the procedure. We can deduce tipadptesiure
evaluates about 1.000.000 intervals per second.

The time complexity of théncrementalalgorithm is not interesting per se, as the
procedure is applied in parallel with the simulation, and hence includes many ov
heads, such as the processing time of the simulator and the communication costs.
On the other hand, the attractiveness of itt@ementalprocedure lies mainly in

the fact that it does not need to store in memory the entire simulation and moni-
toring result, ie. the parts of the simulation that have already been evalwated c
be discarded. Table 3 compares the memory requirements offtime andincre-
mentalprocedure. For theffline procedure we take the total number of intervals
generated by the tool after the evaluation of the property. The memoryreequ
ments of thancrementalprocedure change dynamically during the evaluation of
the property. Hence, we take the maximum number of intervals that wasdcheede
to keep in memory by the procedure during the evaluation. As we can see fro
the fourth column of the Table 3, the memory required byitteementalpro-
cedure with respect to what is needed in difine mode, varies a lot from one
property to another. When the property compares signals in the pointvgise fa
ion, theincrementalprocedure is very efficient, as it can immediately update new
values and discard the rest. Hence, the evaluation op-ttvel | property using
theincrementabrocedure needs only 0.01% of the memory required bytfiae
algorithm. On the other hand, specifications with nesting of temporal propertie
require much more memory in tfxecrementaimode. For example, the evaluation

of the programmi ngl property in theincrementalmode requires almost 70% of
the memory needed by tludflineprocedure. This can be explained by the fact that
temporal subproperties cannot be updated very often with the availablenigf

tion, so input data cannot be descarded before receiving more irtforma

offline online
property t = total # intervals| m = max # active intervals m/t * 100
programmingl 99715 65700 65.9
programming?2 594709 242528 40.8
p-well 89071 8 0.01
decay 594709 279782 47.1

Table 3: Offline/Incremental Space Requirement Comparison
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4 Conclusion

The main objective of the analog case study was to validate the concefupkxie

in the PROSYD project of exporting the property-based verification freone

to the analog world. The STL/PSL specification and monitoring methods were
applied to an industrial Flash memory simulation in order to evaluate certain qual-
itative and quantitative criteria. We have identified a number of usefulesasis
analog properties that can be expressed by combining semplegandtemporal
STL/PSL operators. We believe that the STL/PSL language can be edténde
ther in the future to richer analog operations on continuous signals. Writelg@
properties in STL/PSL can be error prone for the beginners, and weitanti-

fied some common specification mistakes. Finally, the STL/PSL Monitor tool is
shown to be an efficient application for automated checking of STL/PShepty
correctness with respect to simulation traces.
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