
FP6-IST-507219

PROSYD:

Property-Based System Design

Instrument: Specific Targeted Research Project

Thematic Priority: Information Society Technologies

Analog Case Study
(Deliverable 3.4/2)

Due date of deliverable: January 1, 2007
Actual submission date: January 1, 2007

Start date of project: January 1, 2004 Duration: Three years

Organisation name of lead contractor for this deliverable: Verimag

Revision 1.0

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level

PU Public £

PP Restricted to other programme participants (including theCommission Services) ¤

RE Restricted to a group specified by the consortium (includingthe Commission Services) ¤

CO Confidential, only for members of the consortium (includingthe Commission Services) ¤

Notices

For information, contact Oded Maler maler@imag.fr.

This document is intended to fulfil the contractual obligations of the PROSYD project con-
cerning deliverable 3.4/2 described in contract number 507219.

The information in this document is provided ”as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability.

c© Copyright PROSYD 2006. All rights reserved.

ii • Analog Case Study

Table of Revisions

Version Date Description and reason By Affected sec-

tions

0.5 December 26, 2006 Complete Draft Nickovic All

0.8 December 28, 2006 Nickovic Evaluation

1.0 December 31, 2006 Final Version Nickovic

Authors
Dejan Nickovic
Oded Maler
Andrea Fedeli
Pierluigi Daglio
Davide Lena

Executive Summary

This document describes the analog case study on a Flash memory simulation pro-
vided by ST Microelectronics Italy. The case study explores in practice thebene-
fits of extending formal specification to analog designs, by expressing thedesired
continuous behavior of the Flesh memory cell with the STL/PSL specification lan-
guage developed during the project and described in Deliverables 1.3/1[M05] and
1.3/2 [NM+06], and by checking its correctness with the STL/PSL Monitor tool
presented in Deliverable 3.2/13 [NM06].

Purpose

The purpose of this document is to describe the efforts in the case study onproperty-
based specification and checking of analog circuits using STL/PSL. It assesses the
benefits of the analog extensions of PSL and of the lightweight verification tool
developed during the project.

Intended Audience

This document is intended for formal methods researchers who are interested in
the analysis of timed and analog systems and who want to apply property-based
lightweight verification to the analog and mixed-signal designs.

Analog Case Study • iii

Background

The background of the analog case study is based mainly on results achieved in
the PROSYD project on the extension of property-based formal methods toanalog
systems. The case study is mainly an evaluation and a proof of concept of the
STL/PSL language presented in Deliverable 1.3/2 [NM+06] and of the STL/PSL
Monitor tool (Deliverable 3.2/13 [NM06]). The other Deliverables related to this
document are 1.3/1 [M05] and 3.2/6 [MNP06].

iv • Analog Case Study

Contents
Table of Revisions ... iii

Authors .. iii

Executive Summary ... iii

Purpose .. iii

Intended Audience... iii

Background ..iii

Contents ... v

Table of Figures .. vi

List of Tables .. vii

Glossary ... viii

1 Introduction ... 1

2 Flash Memory Case Study... 3

2.1 Programming Properties... 4

STL/PSL Specification ... 4

Informal Description .. 5

Results.. 6

Notes .. 6

2.2 Admissible Bitline Voltage Decay Property 7

STL/PSL Specification ... 8

Informal Description .. 9

Results.. 9

Notes .. 9

2.3 P-Well Driving During Programming Property.............................. 9

STL/PSL Specification ... 10

Informal Description .. 11

Results.. 11

2.4 Erasing Property ... 11

STL/PSL Specification ... 12

Informal Description .. 12

Results.. 12

Notes .. 12

3 Evaluation ... 15

3.1 Expressiveness of STL/PSL Specifications 15

3.2 Writing STL/PSL Properties... 16

3.3 Time and Memory Requirements .. 17

4 Conclusion .. 19

5 References... 21

Analog Case Study Contents • v

Table of Figures

Figure 1 - Tricky Flash Memory Cell .. 3

Figure 2 - programming1 Property Result .. 7

Figure 3 - programming2 Property Result: pgm1................................ 7

Figure 4 - programming2 Property Result: pgm2................................ 8

Figure 5 - decay Decay Property Result ... 10

Figure 6 - pwell Property Result ... 11

Figure 7 - erase Property Result.. 13

vi • Table of Figures Analog Case Study

List of Tables

Table 1 - Input Size ... 17

Table 2 - Offline Algorithm Evaluation.. 18

Table 3 - Offline/Incremental Space Requirement Comparison 18

Analog Case Study List of Tables • vii

Glossary

Assertion

A property that has to be fulfilled by the system under verification.

Exhaustive verification

The process of proving the correctness of a system with respect to a formal speci-
fication by exhaustively exploring its mathematical model.

Flash memory

Non-volatile computer memory that can be electrically erased and reprogrammed,
primarily used in memory cards.

Lightweight verification

The procedure for proving the correctness of a single finite execution of a system
with respect to a formal specification.

LTL

Linear-time Temporal Logic. A formal language commonly used to specify the
properties that a system has to satisfy.

MITL

Metric Interval Temporal Logic. The dense-time extension of the LTL logic,al-
lowing modalities ranging over a non-punctual interval.

Monitoring

Seelightweight verification .

PSL

Property Specification Language. The formal language based on LTL and regular
expressions upon which PROSYD is based.

STL/PSL

Signal Temporal Logic/Property Specification Language. The analog extension of
PSL.

viii • List of Tables Analog Case Study

1 Introduction
The property-based verification of digital designs is a mature domain that has been
used in practice for many years. Specification formalisms based on temporallog-
ics [MP95], such as LTL, CTL and PSL are commonly accepted and used indis-
crete verification tools. When consideringtimedmodels, the situation is less sat-
isfactory, although a number of variants of real-time logics have been proposed,
such as MTL [Koy90], MITL [AFH96], TCTL [Y97] or timed regular expres-
sions[ACM02] (see [AH92, Hen98] for an extensive survey). The timed verifica-
tion tool KRONOS [Y97] has integrated TCTL logic as a specification formalism.

The property-based verification of continuous systems is at its beginning and is
restrained to small systems and very limited fragments of logics [FGP06]. Hence
the preferred validation method for analog systems remains simulation and testing.
The approach taken in the PROSYD project was to export the formal specification
element to the analog simulation through property monitors. This procedure is
calledlightweight verification. In this framework, the property monitor is built au-
tomatically from the specification and it checks whether a single trace (or a finite
set of traces) satisfies the property specification. Temporal logic has been used
as the specification language in a number of monitoring tools, including Tempo-
ral Rover (TR) [Dru00], FoCs [ABG+00], Java PathExplorer (JPaX) [HR01] and
MaCS [KLS+02].

The logic STL/PSL that allows to reason about properties on continuous signals
was developed and presented in Deliverable [NM+06] (and based on results from
[MN04, M05]). The STL/PSL Monitor tool [NM06] was implemented as a light-
weight verification application that automatically builds observers of STL/PSL
specifications and monitors their correctness with respect to continuous inputs.

The case study was done on a set of simulations of a Flash memory test cell pro-
vided by ST Microelectronics Italy. Its goal is to serve as a proof of concept of
the property-based analog monitoring approach relying on the STL/PSL language.
The main objectives of the case study is to evaluate the overall approach and tools
and respond to the following questions:

• Which classes of properties can be written in STL/PSL?

• How difficult is to write correct STL/PSL specifications?

• How efficient is the automatic evaluation of STL/PSL specifications?

The rest of the document is organized as follows:

Analog Case Study Introduction • 1

• Section 2 presents the Flash memory case study. It describes the properties
specified in STL/PSL giving details about the results achieved.

• Section 3 evaluates the results achieved in the case study. It assesses theex-
pressiveness of the STL/PSL language and common errors during the spec-
ification process. The evaluation also takes into account the computational
efficiency of the STL/PSL Monitor tool, by analyzing the application’s time
and memory requirements.

• Finally, Section 4 gives the concluding remarks on the results achieved by
the case study.

2 • Introduction Analog Case Study

2 Flash Memory Case Study
The subject of the analog case study is the “Tricky” technology flash memory
test chip in 0.13um process developed in ST Microelectronics Italy and shown in
Figure 1. The flash memory presents an advantage for the analog case study, in that
it is a digital system whose discrete behavior is implemented at the analog level.
Hence, it is a good link between the analog and the digital world. The “Tricky”
main blocks are:

• 16Mbit memory flash array

• Partial flash array used in simulation

• Full row and column decoders

• LV sense amplifiers (1.2 volt)

• Simple synthesized control logic for testing purposes

• Analog/digital transistor level pads

• No charge pumps and oscillators

Figure 1: Tricky Flash Memory Cell

Analog Case Study Flash Memory Case Study • 3

The analog case study is based on lightweight verification of the test chip. In the
lightweight verification, the system under test is viewed as a black box, andwe
don’t need to know further details about the underneath chip architecture. The
correct functioning of the chip at the analog level is determined by the behavior of
a number of signals, which are extracted during the simulation:

bl: matrix bit line terminal (flash cell drain)

pw: flash matrix p-well terminal (flash cell bulk)

wl: matrix word line (flash cell gate)

s: flash matrix source terminal (flash cell source)

vt: threshold voltage of flash cell

id: drain current of flash cell

The flash memory cell can be in one of theprogramming, reading or erasing
modes. In each mode, the above mentioned signals should have a particular be-
havior. The flash cell was simulated in theprogrammingand theerasingmode for
the case study. The length of theprogrammingmode simulation was 5000us, and
30000us for theerasingmode.

There are four STL/PSL properties written to describe the correct behavior of the
programmingmode and one property for theerasingmode. The specification of
the properties is a joint effort of analog designers of ST Microelectronics Italy and
Verimag. The ST Microelectonics provided the specification in plain English and
pseudo-STL/PSL code. The specifications were adapted at Verimag to theactual
syntax of STL/PSL. Some properties required several feedback-loops in order to
get corrected. For each property, we note the changes, if any, that were brought
with respect to the initial specification.

2.1 Programming Properties

STL/PSL Specification

vprop programming1 {
define b:vt_raise :=
a:vt <= 5.0 and eventually![<=0.1] a:vt > 5.0;

define b:id_fall :=

4 • Flash Memory Case Study Analog Case Study

abs(a:id) > 5e-6 and
(eventually![<=0.1] abs(a:id) <= 5e-6);

pgm assert:
always (b:vt_raise ->

(((abs(a:id) > 5e-6) and (a:vt > 4.5))
until! b:id_fall));

}

vprop programming2
{
define b:raise_wl_and_not_pgm :=

a:wl<=0.1 and
eventually![<=15.0]

(a:wl>3.8 and a:id > 30e-6);

define b:start_prog :=
abs(a:bl) <= 0.1 and
(eventually![<=10.0] a:bl > 3.8);

define b:fall_bl :=
a:bl>3.8 and eventually![<=10.0] abs(a:bl)<=0.1;

pgm1 assert:
always (b:raise_wl_and_not_pgm ->
eventually! (b:start_prog and eventually![<=15.0]

((a:bl>3.8) until! [3e2:1.5e3] (a:wl>6.0))));

pgm2 assert:
always (b:start_prog ->
(not b:fall_bl until

(eventually![<=10.0]
(a:vt > 5.0 and abs(a:id) <= 5e-6))));

}

Informal Description

programming1: When the signalvt overcomes the threshold of5V, vt has to
remain above4.5V andid has to remain above5e-6A until id falls below
5e-6A.

Analog Case Study Flash Memory Case Study • 5

programming2: When the wordlinewl jumps from a value near0V above the
threshold3.8V and the cell has not been programmed yet, ie. the current
id is above30e-6A (raise wl and not pgm), the programming procedure
(start prog), characterized by a ramp of the bitlinebl signal from a value
near0V to the threshold of3.8V in less than10ms, has to eventually start and
the bitlinebl has to remain above3.8V for at least300ms and until the word-
line wl overcomes6V, which has to happen within1500ms. This property is
expressed by the assertionpgm1. Moreover, once the programming proce-
dure starts, the bitlinebl is not allowed to fall from above3.8V to 0V either
until the end of simulation or until the signalvt becomes higher than5V and
the absolute value ofid smaller than5e-6. This requirement is described by
the assertionpgm2.

Results

The two programming properties are correct with respect to the simulation trace.
Figures 2 (a) and (b) show the signalsvt andid used by the assertionpgm. We
can see in Figure 2 (d) thatabs(id) is greater than5e-6V andvt greater than
4.5V from the moment thatvt crosses the5V threshold (Figure 2 (c)) and until the
currentid falls near0A (Figure 2 (e)). Hence the assertionpgm holds.

In Figures 3 (a), (b) and (c), we can see thewl, id andbl signals respectively,
used in thepgm1 assertion. The Figures 3 (d) and (e) show that the raise ofwl is
followed by thestart prog condition, and from that momentbl remains above
3.8V (Figure 3 (f)) until the wordlinewl crosses the6V threshold as we can see in
Figure 3 (g). Hence the assertionpgm1 holds too.

Figures 4 (a), (b) and (c) showwl, id andbl signals used by thepgm2 assertion.
After the programming modestart prog is triggered (Figure 4 (d)), the bitline
bl does not fall down beforevt gets above5V andabs(id) below5e-6A, as we
can see in Figures 4 (e) and (f). Hence the assertionpgm2 holds.

Notes

1. The original specification of theprogramming1 property did not correspond
to the intended meaning. Hence, it was rewritten by the ST designers using
the suffix implication PSL-like syntax as

{vt>5} |-> {{{vt>4.5} && {|id|<5e-6[->];|id|<5e-6[+]}}}

The final version of the property is an STL/PSL interpretation of the PSL-
like property.

6 • Flash Memory Case Study Analog Case Study

2. programming2 property was split in two assertions in order to enhance the
readability of the specification.

3. Approximations ofraiseandfall of signals were introduced where needed.

(a)

(b)

(c)

(d)

(e)

Figure 2: programming1 Property Result: (a)vt (b) id (c) raise vt (d) abs(id)>5e-6)
and (vt>4.5 (e)fall id

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3: programming2 Property Result: pgm1 (a)vt (b) id (c) raise vt (d)
abs(id)>5e-6) and (vt>4.5 (e)fall id

Analog Case Study Flash Memory Case Study • 7

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: programming2 Property Result: pgm2 (a)vt (b) id (c) raise vt (d)
abs(id)>5e-6) and (vt>4.5 (e)fall id

2.2 Admissible Bitline Voltage Decay Property
In the programming mode, the bitline has to remain above a certain percentage of
its initial value.

STL/PSL Specification

vprop decay {
define b:start_prog :=
((a:bl <= 0.1) and eventually! [<=10.0] (a:bl > 3.8));

define b:freeze_cond :=
b:start_prog and a:pw <= -0.8;

define b:derivative_saturates_wl :=
distance (shift(a:wl, 50.0), a:wl, 0.05);

define a:diff_bl_frozen_bl :=
a:bl - (freeze (a:bl, b:freeze_cond, 50.0) * 0.85);

adm_volt_decay assert:

8 • Flash Memory Case Study Analog Case Study

always (b:freeze_cond ->
eventually![<=10.0](((a:diff_bl_frozen_bl > 0.0)
until! b:derivative_saturates_wl)));

}

Informal Description

The condition to take a “snapshot” of the value of the bitlinefreeze cond is de-
termined by the beginning of the programming mode (start prog) and the p-well
voltage being below-0.8V. When this condition is met, the value of the bitlinebl
is frozen in the next50ms and has to remain at least over85% of that value until
the wordlinewl stabilizes (derivative saturates wl). The stabilization of the
wordline is met whenwl does not change more than0.05V in 50ms.

Results

This property is shown to be correct with respect to the simulation trace. Thefreeze
conditionfreeze cond that we can see in Figure 5 (g) is triggered at∼700ms by
a ramp in the bitlinebl (Figure 5 (a)) and a requirement on the value of the p-well
voltagepw (Figure 5 (b)). The frozen value ofbl (mutiplied by85%) is shown
in Figure 5 (d) and the difference betweenbl and frozenbl diff bl frozen bl
in Figure 5 (e). From Figure 5 (h) we can see thatdiff bl frozen bl remains
higher than0 between700 and3200ms. Since the wordlinewl (Figure 5 (c)) stabi-
lizes its value at∼2200ms (Figure 5 (f) and (i)), which is beforediff bl frozen bl
goes below0, we can conlude that the property holds.

Notes

1. The original property required thefreezeoperator to be applied tobl as soon
as it crossed3.8V threshold. However, this trivially implies that the frozen
value ofbl would be equal to3.8V. The intended meaning was to freeze the
value ofbl with some small delay, in order to havebl stabilized. That is the
reason that we added50ms delay for the freeze operator to be applied.

Analog Case Study Flash Memory Case Study • 9

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 5: decay Property Result: (a)bl (b) pw (c) wl (d)
freeze(bl,freeze cond,50)*0.85 (e) diff bl frozen bl (f)
distance(shift(wl,50),wl,0.05) (g) freeze cond (h) diff bl frozen bl>0 (i)
derivative saturates wl

2.3 P-Well Driving During Programming Property
In the programming mode, p-well must always be negative.

STL/PSL Specification

vprop pwell {
pw_during_prog assert:
always ((a:bl > 2.5 and a:wl > 2.5) ->

10 • Flash Memory Case Study Analog Case Study

a:pw <= -0.5);
}

Informal Description

Whenever the programming mode, characterized by the bitlinebl and the wordline
wl being both above2.5V, is enabled, the p-wellpw has to be below-0.5V.

Results

This property is shown to be correct with respect to the simulation trace. From
the Figures 6 (a) and (b) showing thebl andwl respectively, we can see that the
left-hand side of the implicationbl > 2.5 and wl > 2.5 is true roughly in the
interval [1050,3200) (Figure 6 (c)). Since the signalpw shown in Figure 6 (d)
is below-0.5 from 550 until the end of the simulation (Figure 6 (e)), we can
conclude that the property holds.

(a)

(b)

(c)

(d)

(e)

Figure 6: pwell Property Result: (a)bl (b) wl (c) bl>2.5 and wl>2.5 (d) pw (e)pw<=-0.5

Analog Case Study Flash Memory Case Study • 11

2.4 Erasing Property
In the erasing mode, the bitline must follow the p-well signal.

STL/PSL Specification

vprop erasing_mode {
define b:erasing_cond :=
a:wl <= -6.0 and a:pw > 5.0;

erasing assert:
always (b:erasing_cond ->

(distance(a:s,a:pw,0.1) and (a:bl-a:pw)>-0.83));
}

Informal Description

The erasing modeerasing cond is characterized by the wordline signal being
lower than-6V and p-wellpw above5V. Whenever the erasing condition is en-
abled the pointwise distance between the sources and p-wellpw voltages has to be
smaller than0.1V and the value of p-wellpw cannot be greater than0.83V from
the value of the bitlinebl.

Results

This property is shown to be correct with respect to the simulation trace. Theeras-
ing modeerasing cond depending from values of the signalswl andbl (Figure 7
(c) and (d) respectively) holds between5000 and14000ms roughly. Figures 7 (f)
and (g) show that the difference betweenbl andpw becomes greater than-0.83
from 5000ms onward. Finally, we can see in Figure 7 (h) that the pointwise dis-
tance betweens andpw is smaller than0.1V from ∼3000ms until the end of the
simulation. Hence, the property holds on these simulation traces.

12 • Flash Memory Case Study Analog Case Study

Notes

1. The requirement that the bitlinebl must follow the p-wellpw signal (with
some tolerance allowed) was identified to correspond exactly to the point-
wise threshold distance betweenbl andpw, and the corresponding STL/PSL
distance operator replaced the original specification.

2. The original property specification had the requirement(bl-pw)>-0.7. The
property was found to be incorrect with the-0.7 constant, as it represented
a too strong constraint. The final specification was relaxed and the original
requirement was replaced with(bl-pw)>-0.83.

(a)

(c)

(b)

(d)

(e)

(f)

(g)

(h)

Figure 7: erase Property Result: (a)pw (b) s (c) wl (d) bl (e) erasing cond (f) bl-pw (g)
bl-pw>-0.83 (h) distance(s,pw,0.1)

Analog Case Study Flash Memory Case Study • 13

14 • Flash Memory Case Study Analog Case Study

3 Evaluation
This case study evaluates both the STL/PSL specification language [NM+06] and
the performance of the STL/PSL Monitor tool [NM06]. The STL/PSL language
evaluation is mainly qualitative, and analysis the expressiveness of the formalism
as well as certain aspects observed about the writing of STL/PSL specifications.
The evaluation of the STL/PSL Monitor tool is more quantitative and provides the
time and memory requirements recorded during the case study.

3.1 Expressiveness of STL/PSL Specifications
In this Section we discuss the expressiveness of the STL/PSL language.We mainly
describe the classes of properties that can and cannot be specified in STL/PSL.

Threshold cross detection: This is the basic property of the analog extension of
PSL. It allows abstracting the values of a continuous signal to the Boolean
domain, thus making the monitoring procedure efficient. The threshold cross
detection is used in all the properties of the case study.

Ramp Detection: The signal jumping from one value to another in a short time
can be expressed in STL/PSL and efficiently observed by the monitoring
tool. For example,x<=0.1 and eventually![<=10](x>5) is a property
that detects the signalx going from below0.1 to more than5 in less then10
time units. The detection of signal ramping is used in propertiesdecay and
programming2.

Distance-based comparisons:Two continuous signals can be compared with re-
spect to some distance metrics. This is especially useful for comparing sim-
ulation traces to a perfect reference signal with some degree of tolerance al-
lowed. The pointwise threshold distance-based operator is used in thedecay
anderasing properties.

Signal stabilization: STL/PSL can express the stabilization of a continuous sig-
nal around an arbitrary value. This can be done by comparing the signal’s
current value to the value of the same signal shifted by a certain amount of
time. The signal stabilization detection is used in thedecay property.

Analog Case Study Evaluation • 15

Raise and fall of Boolean signals:The dense semantics of STL/PSL do not al-
low pointwise intervals, and hence we cannot detect directly theraise and
fall of a Boolean signal. However, theraiseandfall operators can be approx-
imated to any precision by a combination of existing Boolean and temporal
operators. As an example, consider the formulanot p and eventually!
[<=m] p, which is true fromm time units beforep raises until its raise. By
choosingm sufficiently small, we can approach the exact point ofp raising.

The main class of properties that cannot be expressed in STL/PSL are theones
reasoning about the frequency spectrum of the signals. A typical english specifi-
cation of such a property would be “At least 60% of the energy power spectrum
of a signal is within its frequency band between 300 and 1500Hz”. The quantita-
tive measures are not directly available to the user either, as an STL/PSL property
either holds or does not hold on a set of traces. However, a smart usage of theana-
log layer of STL/PSL can reveal many interesting quantitative properties of the
continuous signals. This fact has been used in designing distance-based temporal
operators, which we were able to reduce to a combination of analog and temporal
basic operators.

3.2 Writing STL/PSL Properties
STL/PSL language is a novel but new extension of PSL, and as such it stilllacks
maturity, making it difficult to evaluate the easiness of specifying properties of
continuous signals, as well for the analog designers as for the people from digital
verification world that do have a knowledge of PSL. With the current techniques,
the evaluation of the properties would require a visual observation of the signals,
with manual tracking of interesting events. This process can be automated using
STL/PSL specifications. However, we have observed that expressingsuch prop-
erties in STL/PSL is still error prone, mainly due to the inexperience of analog
designers with formal languages and logics. Hence, the specification of such prop-
erties requires multiple iterations, in order to be sure that they describe exactly
the desired behavior of the continuous signals. It is therefore early to quantify the
effort that can be saved by using STL/PSL specifications.

We have identified two types of common specification errors that we have encoun-
tered during the work on the case study:

Parameter based errors: The threshold value or the time bounds of the temporal
operators are not chosen properly. We suggest the property to be first spec-
ified with a larger tolerance on time and threshold bounds, in order to get

16 • Evaluation Analog Case Study

an idea whether the general temporal pattern of the property holds. After-
wards, the parameters can be made tighter, so that the particular thresholds
are respected.

Raise and falls of signals:A common pattern in the specification of temporal
properties is that enabling a certain conditionp should trigger an obliga-
tion phi (wherephi is a temporal subformula). We have observed that the
usual way to specify such a requirement is to use the formulap->phi. This
is not the correct way to do it, since in this example wheneverp is true, an
obligationphi is triggered. We should rather write such a requirement using
rose(p)->phi, where the obligationphi is triggered only at the moment
thatp becomes true. STL/PSL does not allow precise detection of raise and
fall of signals, however they can be approximated at any precision.

3.3 Time and Memory Requirements
In this Section we present the time and memory requirement of the STL/PSL Mon-
itor tool that was required for this case study. The tool was tested with the two
lightweight-verification algorithms,offline and incremental. The complexity of
the algorithm used in STL/PSL Monitor tool is shown to beO(k∗m) in [MN04]
wherek is the number of sub-formulae andm is the number of intervals.

Table 1 shows the size of the input signals (the number of intervals that they have).
We can see that the signals generated by the simulation of the erasing mode are
about 10 times larger than those generated during the programming mode simula-
tion.

pgm sim erase sim
name # intervals # intervals
wl 34829 283624
pw 25478 283037
s 33433 282507
bl 32471 139511
id 375 n/a

Table 1: Input Size

Table 2 shows the evaluation results for theoffline procedure of the tool. The
properties monitored over the programming mode simulation required less than
half a second. Only theerasing property took more than 2 seconds, which is
an expected result, given that it is the only property evaluated over a muchlonger
erasing mode simulation. We can also see that the evaluation time is linear in the

Analog Case Study Evaluation • 17

property time (s) # intervals
programming1 0.14 99715
programming2 0.42 405907
p-well 0.12 89071
decay 0.50 594709
erasing 2.35 2968578

Table 2: Offline Algorithm Evaluation

number of intervals generated by the procedure. We can deduce that theprocedure
evaluates about 1.000.000 intervals per second.

The time complexity of theincrementalalgorithm is not interesting per se, as the
procedure is applied in parallel with the simulation, and hence includes many over-
heads, such as the processing time of the simulator and the communication costs.
On the other hand, the attractiveness of theincrementalprocedure lies mainly in
the fact that it does not need to store in memory the entire simulation and moni-
toring result, ie. the parts of the simulation that have already been evaluated can
be discarded. Table 3 compares the memory requirements of theofflineandincre-
mentalprocedure. For theofflineprocedure we take the total number of intervals
generated by the tool after the evaluation of the property. The memory require-
ments of theincrementalprocedure change dynamically during the evaluation of
the property. Hence, we take the maximum number of intervals that was needed
to keep in memory by the procedure during the evaluation. As we can see from
the fourth column of the Table 3, the memory required by theincrementalpro-
cedure with respect to what is needed in theoffline mode, varies a lot from one
property to another. When the property compares signals in the pointwise fash-
ion, theincrementalprocedure is very efficient, as it can immediately update new
values and discard the rest. Hence, the evaluation of thep-well property using
theincrementalprocedure needs only 0.01% of the memory required by theoffline
algorithm. On the other hand, specifications with nesting of temporal properties
require much more memory in theincrementalmode. For example, the evaluation
of the programming1 property in theincrementalmode requires almost 70% of
the memory needed by theofflineprocedure. This can be explained by the fact that
temporal subproperties cannot be updated very often with the available informa-
tion, so input data cannot be descarded before receiving more information.

offline online
property t = total # intervals m = max # active intervals m/t * 100
programming1 99715 65700 65.9
programming2 594709 242528 40.8
p-well 89071 8 0.01
decay 594709 279782 47.1

Table 3: Offline/Incremental Space Requirement Comparison

18 • Evaluation Analog Case Study

4 Conclusion
The main objective of the analog case study was to validate the concept developed
in the PROSYD project of exporting the property-based verification framework
to the analog world. The STL/PSL specification and monitoring methods were
applied to an industrial Flash memory simulation in order to evaluate certain qual-
itative and quantitative criteria. We have identified a number of useful classes of
analog properties that can be expressed by combining simpleanalogandtemporal
STL/PSL operators. We believe that the STL/PSL language can be extended fur-
ther in the future to richer analog operations on continuous signals. Writing analog
properties in STL/PSL can be error prone for the beginners, and we have identi-
fied some common specification mistakes. Finally, the STL/PSL Monitor tool is
shown to be an efficient application for automated checking of STL/PSL property
correctness with respect to simulation traces.

Analog Case Study Conclusion • 19

20 • Conclusion Analog Case Study

5 References

[ABG+00] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal.
FoCs: Automatic Generation of Simulation Checkers from For-
mal Specifications. InProc. CAV’00, pages 538–542. LNCS 1855,
Springer, 2000.

[ACM02] E. Asarin, P. Caspi and O. Maler, Timed Regular Expressions, The
Journal of the ACM49, 172–206, 2002.

[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The Benefits of Relaxing
Punctuality.Journal of the ACM, 43(1):116–146, 1996.

[AH92] R. Alur and T.A. Henzinger. Logics and Models of Real-Time: A
Survey. InProc. REX Workshop, Real-time: Theory in Practice,
pages 74–106. LNCS 600, Springer, 1992.

[Dru00] D. Drusinsky. The Temporal Rover and the ATG Rover. InProc.
SPIN’00, pages 323–330. LNCS 1885, Springer, 2000.

[FGP06] G. Fainekos, A. Girard and G. Pappas Temporal Logic Verification
Using Simulation InProc. FORMATS’06, pages 171–186. LNCS
4202, Springer, 2006.

[Hen98] T.A. Henzinger. It’s about Time: Real-time Logics Reviewed. In
Proc. CONCUR’98, pages 439–454. LNCS 1466, Springer, 1998.

[HR01] K. Havelund and G. Rosu. Java PathExplorer - a Runtime Verifica-
tion Tool. InProc. ISAIRAS’01, 2001.

[KLS+02] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky. Monitor-
ing, Checking, and Steering of Real-time Systems. InProc. RV’02.
ENTCS 70(4), 2002.

[Koy90] R. Koymans, Specifying Real-time Properties with Metric Temporal
Logic, Real-time Systems2, 255–299, 1990.

[M05] O. Maler,Extending PSL for Analog Circuits, PROSYD Deliverable
D1.3/1, 2005.

[M05] O. Maler,Extending PSL for Analog Circuits, PROSYD Deliverable
D1.3/1, 2005.

[MN04] O. Maler and D. Nickovic, Monitoring Temporal Properties of
Continuous Signals,FORMATS/FTRTFT’04, 152-166, LNCS 3253,
2004.

[MNP06] O. Maler, D. Nickovic and A. Pnueli,Checking Digital, Timed and
Analog PSL Properties, PROSYD Deliverable D3.2/6, 2006.

[MP95] Z. Manna and A. Pnueli.Temporal Verification of Reactive Systems:
Safety. Springer, 1995.

[NM06] D. Nickovic, O. Maler,Manual for Property-based automatic gener-
ation of simulation monitors for digital, timed, and analog designs,
PROSYD Deliverable D3.2/13, 2006.

Analog Case Study References • 21

[NM+06] D. Nickovic, O. Maler, A. Pnueli, P. Caspi and A. Girard,Final Pro-
posal for PSL Extensions, PROSYD Deliverable D1.3/2, 2006.

[Y97] S. Yovine, Kronos: A Verification Tool for Real-time Systems,Inter-
national Journal of Software Tools for Technology Transfer1, 123–
133, 1997.

22 • References Analog Case Study

