
Approximate reachability computation for
polynomial systems

Thao Dang1

VERIMAG,
Centre Equation,

2 avenue de Vignate,
38610 Gières, France
Thao.Dang@imag.fr

Abstract. In this paper we propose an algorithm for approximating the
reachable sets of systems defined by polynomial differential equations.
Such systems can be used to model a variety of physical phenomena. We
first derive an integration scheme that approximates the state reachable
in one time step by applying some polynomial map to the current state.
In order to use this scheme to compute all the states reachable by the
system starting from some initial set, we then consider the problem of
computing the image of a set by a multivariate polynomial. We propose
a method to do so using the Bézier control net of the polynomial map
and the blossoming technique to compute this control net. We also prove
that our overall method is of order 2. In addition, we have successfully
applied our reachability algorithm to two models of a biological system.

1 Introduction

Reachability analysis is an important problem in formal verification of hybrid
systems. A major ingredient in designing a reachability analysis algorithm for
hybrid systems is an efficient method to handle their continuous dynamics de-
scribed by differential equations (since their discrete dynamics can be handled
using existing discrete verification methods). Reachability computation methods
for a special class of systems with constant derivatives are also well-developed.
On the other hand, while many well-known properties of linear differential equa-
tions can be exploited to design relatively efficient methods, non-linear systems
are much more difficult to analyze. Numerical integration is a common method
to solve non-linear differential equations. Its goal is to derive a scheme to ap-
proximate the solution at each time step based on the solution at one or several
previous steps. In general, a typical numerical integration scheme can be written
as: xk+1 = Yk(f, h,x0,x1, . . . ,xk) where f is the derivative and h is the step size.
Nevertheless, while this approach is concerned with computing a single solution
at a time and each xk here is a point, in reachability analysis one has to deal
with sets of all possible solutions (due to non-determinism in initial conditions
and in the dynamics of the system). Therefore, wishing to exploit the numerical
integration idea for reachable set computation purposes, a question that arises is

how to perform such schemes with sets, that is, when each xk is a set of points.
The essence behind the approach we propose in this paper can be described
as extending traditional numerical integration to set integration. In particular,
we are interested in systems defined by polynomial differential equations. Such
systems can be used to model a variety of physical phenomena, in particular,
the dynamics of many analog components can be modeled or approximated by
polynomial equations.

We first derive an integration scheme that approximates the reachable state
xk+1 by applying some polynomial map to xk. In order to use this scheme to
approximate the reachable set, we then consider the problem of computing the
image of a set by a multivariate polynomial. To do so, we employ the techniques
from computer aided geometric design, in particular the Bézier techniques and
the blossoming principle. We also prove that our overall method is of order
2. Although this paper only focuses on continuous systems, but the proposed
method can be extended to hybrid systems, since reachable sets are represented
by convex polyhedra, and Boolean operations (required to deal with discrete
transitions) over such polyhedra can be computed using a variety of existing
algorithms.

Before continuing, we present a brief review of related work. The reachability
problem for continuous systems described by differential equations has motivated
much research both for theoretical problems, such as computability (see for ex-
ample [2]), and for the development of computation methods and tools. If the
goal is to compute exactly the reachable set or approximate it as accurately
as possible, one can use a variety of methods for tracking the evolution of the
reachable set under the continuous flows using some set represention (such as
polyhedra, ellipsoids, level sets) [20, 10, 8, 21, 3, 30, 23, 19]. Since high quality ap-
proximations are hard to compute, other methods seek approximations that are
sufficiently good to prove the property of interest1 (such as barrier certificates
[24], polynomial invariants [29]). Abstraction methods for hybrid systems are
also close in spirit to these methods. Indeed, their main idea is to approximate
the original system with a simpler system (that one can handle more efficiently)
and refine it if the analysis result obtained for the approximate system is too
conservative (see for example [28, 1, 9, 5, 4]).

The paper is organized as follows. In Section 2, after stating our problem,
we describe an integration scheme for polynomial differential equations. This
scheme requires computing the image of a set by a polynomial map, the prob-
lem we discuss in Section 3. We then present our reachability algorithm and
some experimental results obtained using the algorithm on a hybrid systems
benchmark.

1 It should be noted that reachable set computations can also be used for controller
synthesis where the accuracy criterion is important.

2 Reachability analysis of polynomial systems

Throughout the paper, vectors are often written using bold letters. Given a
vector x, x[i] denotes its ith component.

We consider a polynomial system:

ẋ(t) = g(x(t)). (1)

We first rewrite the dynamics of the system as the sum of a linear part Ax(t)
and a non-linear part f(x(t)), that is,

ẋ(t) = g(x(t)) = Ax(t) + f(x(t)). (2)

We then consider the non-linear term as independent input. In other words,
the system is treated as a linear system with input f(x(t)). This trick is to
separate the linear part for which we can derive the exact closed-form solution.
The interest in doing so will become clearer when we discuss the approximation
error. We now develop a numerical solution for (2). Let h > 0 be a time step
and tk = kh where k = 0, 1, 2, Then, we have

x(tk+1) = eAhx(tk) +
∫ h

0

eA(h−τ)f(x(tk + τ)) dτ. (3)

The idea is to approximate x(tk+τ) in the above equation by its Taylor expansion
around tk to the first order, that is α(tk + τ) = x(tk) + g(x(tk))τ . Denoting
x(tk) = xk, g(x(tk)) = gk, and f(x(tk)) = fk, we have α(tk + τ) = xk + gkτ =
xk+(Axk+fk)τ . Replacing x(tk+τ) with α(tk+τ), we obtain an approximation
x̄k+1 of the exact solution xk+1:

x̄k+1 = eAhxk +
∫ h

0

eA(h−τ)f(α(tk + τ)) dτ. (4)

The integral in the above equation is a function of xk, and we denote it by
Q(xk) =

∫ h

0
eA(h−τ)f(α(tk + τ)) dτ.

Proposition 1. The map Q(xk) in the equation (4) can be written as a poly-
nomial in xk.

Proof. The proof of the proposition is straightforward, however we present it here
for the clarity of the presentation that follows. It is easy to see that if the total
degree of f(xk) is d, then α(tk + τ) is a multivariate polynomial of total degree
d in xk and therefore f(α(tk + τ)) is a polynomial of degree d in τ . We denote
Γl =

∫ h

0
eA(h−τ)τ l dτ , which can be written in a closed form. Thus, we have∫ h

0
eA(h−τ)f(α(tk + τ)) dτ =

∑d
l=0 Γlψl(xk), where for every l ∈ {0, 1, . . . , d}, ψl

is a polynomial in xk. ut

The resulting integration scheme to approximate the solution of (1) is:{
x̄k+1 = eAhx̄k +Q(x̄k) = P (x̄k),
x̄0 = x(0).

We call P (xk) the integration map.

Example of multi-affine systems. Let us illustrate the proof with a simple
case where g(x) is a multi-affine function of degree 2. This is the case of a
biological model we study in Section 6. The function f(x) can be written as:
f(x) =

∑
i,j∈{1,...,n},i 6=j x[i]x[j]cij with cij ∈ Rn. Then, replacing x(tk + τ) with

α(tk + τ) = xk + gkτ , we have

f(α(tk + τ)) =
∑

i 6=j∈{1,...,n}

(gk[i]gk[j]τ2 + (xk[i]gk[j] + gk[i]xk[j])τ + xk[i]xk[j])cij

Therefore, the equation (4) becomes:

x̄k+1 = P (xk) = Φxk +
∑

i 6=j∈{1,...,n}

(γ2Γ2 + γ1Γ1 + γ0Γ0)cij . (5)

where Φ = eAh and γ2 = gk[i]gk[j], γ1 = gk[i]xk[j] + xk[i]gk[j], γ0 = xk[i]xk[j].
After straightforward calculations, we obtain:

Γl = l!
∞∑

i=0

Aihi+l+1

(i+ l + 1)!
(6)

It is thus easy to see that, due to the term γ2, P (xk) in (5) is a polynomial
of degree 4 in xk. The equation (5) can be readily used as a scheme specialized
for multi-affine systems of degree 2.

Convergence. A bound on the error in our approximation is given in the
following theorem.

Theorem 1. Let x̄(tk+1) be the approximate solution at time tk+1 (computed
by (4)) and x(tk+1) be the corresponding exact solution such that x̄(tk) = x(tk).
Then, a bound on the local error is given by:

||x̄(tk+1)− x(tk+1)|| = O(h3).

The proof of this result is presented in Appendix. This theorem shows that the
equation (4) is a second order scheme. In addition. we can show that the global
error is also convergent. As one can see from the proof, the error bound depends
on the Lipschitz constant of the non-linear function f . So now we can see the
interest in separating the linear part since the Lipschitz constant of f is smaller
than that of g.

Higher order integration schemes. Note that we have used an approxi-
mation of the exact solution x(tk + τ) by the its first order Taylor expansion
around tk. To obtain better convergence orders, we can use higher order ex-
pansions which results in integration schemes involving high order derivatives of
f(x). The derivation of such schemes is similar to the above development, but
the degree of the resulting integration map P (xk) can be higher. In the other

direction, if we use a simpler approximation α(tk + τ) = xk for all τ ∈ [tk, tk+1),
then Q(xk) = Γ0f(xk) and we obtain the classic Euler scheme for the non-linear
part. The advantage of this scheme is that the resulting polynomial Q(xk) has
the same degree as f(x). As we shall see later, the degree of the integration map
is one of the factors determining the complexity of the reachability algorithm.
It remains to compute the polynomial map Q(xk), the problem we tackle in the
next section.

3 Computing polynomial maps

The problem we are interested in can be formally stated as follows. Given a
polynomial map π : Rn → Rn of total degree d and a bounded set X ⊂ Rn, we
want to compute the image π(X) defined as: π(X) = {π(x) | x ∈ X}. We shall
focus on the case where X is a simplex in Rn.

3.1 Bézier simplices

To determine the image of a simplex by a polynomial map, we use the results
on Bézier simplices [16]. We need to introduce first some notation.

A multi-index i = (i[1], . . . , i[n + 1]) is a vector of (n + 1) non-negative
integers. We define the norm of i by ||i|| =

∑n+1
j=1 i[j] and let Id

n denote the set
of all multi-indices i = (i[1], . . . , i[n + 1]) with ||i|| = d. We define two special
multi-indices: ek is a multi-index that has all the components equal to 0 except
for the kth component which is equal to 1, and o is a multi-index that has all
the components equal to 0. We call o the zero multi-index.

Let∆ be a full-dimensional simplex in Rn with vertices {v1, . . . ,vn+1}. Given
a point x ∈ ∆, let λ(x) = (λ1(x), . . . , λn+1(x)) be the function that gives the
barycentric coordinates of x with respect to the vertices of ∆, that is, x =∑n+1

k=1 λk(x)vk and
∑n+1

k=1 λk(x) = 1. A Bézier simplex of degree d of the form
π : Rn → Rn is defined as2:

π(x) =
∑
||i||=d

biB
d
i (λ1(x), . . . , λn+1(x)) (7)

where for a given multi-index i, bi is a vector in Rn and Bd
i : Rn → R is a

Bernstein polynomial of degree d defined as:

Bd
i (y1, . . . , yn+1) =

(
d

i

)
y
i[1]
1 y

i[2]
2 . . . y

i[n+1]
n+1 (8)

with the multimonial coefficient(
d

i

)
=

d!
i[1]!i[2]! . . . i[n+ 1]!

.

2 The definition holds for more general polynomials of the form π : Rn → Rm.

In the above formula (7), each vector bi is called a Bézier control point and the
set of all such bi form the Bézier control net of π with respect to ∆.

Any polynomial can be written in form of a Bézier simplex, as in formula (7).
This form is a popular way to write polynomials in computer aided geomet-
ric design (see [16] and references therein). The following properties of Bern-
stein polynomials are well-known. The Bernstein polynomials form a partition
of unity, that is,

∑
||i||=dB

d
i (y1, . . . , yn+1) = 1, and they are non-negative, that

is, Bd
i (y1, . . . , yn+1) ≥ 0 for all 0 ≤ y1, . . . , yn+1 ≤ 1.

These properties of Bernstein polynomials imply the following shape proper-
ties of Bézier simplices, which we shall use for reachability computation purposes.

Lemma 1. Given an arbitrary point x ∈ ∆,

1. [Convex hull property] the point π(x) lies inside the convex hull of the
control net, that is π(x) ∈ conv{bi | i ∈ Id

n}.
2. [End-point interpolation property] π interpolates the control net at the

corner control points specified by bdek
for all k ∈ {1, . . . , n+ 1}.

Note that the number of multi-indices in Id
k is

(
d+n

n

)
; therefore, the number of

points bi is exactly
(
d+n

n

)
= (d+n)!

d! n! . We denote this number by β(n, d).
These shape properties can be used to approximate polynomial maps. In-

deed, the convex hull property in Lemma 1 shows that one can over-approximate
π(∆) by taking the convex hull of the Bézier control net of π with respect to
∆. In addition, this approximation is tight due to the above end-point interpo-
lation property. In the rest of this section we focus on the problem of computing
the Bézier control net of the polynomial π. To avoid confusion, it is worthy to
emphasize that for reachability computation purposes, we are dealing with the
systems whose vector fields are given in monomial form (i.e. sums of monomials),
hence the integration map is also defined in this form. To compute the control
points of a polynomial given in monomial forms, we shall exploit the techniques
for approximating and designing polynomial curves and surfaces. However, it is
important to mention that most of such existing tools deal with univariate or
bivariate polynomials (often expressed in terms of control points), their applica-
tion to solve our problem requires an adaptation to multivariate polynomials as
well as geometric manipulation in general dimension.

3.2 Computing the Bézier control net

Our goal is to obtain the Bézier control net of a polynomial π given in monomial
form. By the definition (7), the most natural approach is to solve the following
interpolation problem. Let S be a set of β(n, d) points in ∆. For each x ∈ S,
we evaluate π(x) and use (7) to obtain a system of linear equations with the
coordinates of the Bézier control points bi as unknown variables. One can choose
the set S such that the unique solution to these linear equations exists [11].
Although this method is conceptually simple, it may require solving a large linear

system3 (which is of size n∗β(n, d)). We shall use a more efficient approach based
on the blossoming principle, which is summarized in the following theorem. A
thorough description of this principle and its various applications can be found
in [25, 27].

Theorem 2 (Blossoming principle). For any polynomial π : Rn → Rn of
degree d, there is a unique symmetric d-affine map p : (Rn)d → Rn such that
for all x ∈ Rn p(x, . . . ,x) = π(x). The map p is called the blossom or the polar
form of π.

We recall that a map q(x1, . . . ,xd) is called d-affine if it is affine when all but one
of its arguments are kept fixed; it is said to be symmetric if its value does not de-
pend on the ordering of the arguments, that is, for any permutation (y1, . . . ,yd)
of (x1, . . . ,xd) we have q(y1, . . . ,yd) = q(x1, . . . ,xd). Given a polynomial π, the
connection between its Bézier control net relative to a simplex ∆ and its blossom
p is described by the following lemma.

Lemma 2. For all i ∈ Id
n, bi = p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, v2, . . . ,v2︸ ︷︷ ︸
i[2]

, . . . , vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

where {v1, . . . ,vn+1} are the vertices of ∆.

This fact is also well-known [25], and we present its proof in Appendix, which
can facilitate understanding subsequent development.

Computing the blossom. We have seen that the Bézier control points can
be computed by evaluating the blossom values at some particular points shown
in Lemma 2. To compute them, we first derive an analytic expression of the
polar form and then show how to compute this expression efficiently. We do so
by extending the results for bivariate polynomial surfaces [18] to multivariate
polynomials.

Before proceeding, we mention that the problem of computing the Bézier
control net can be formulated as a problem of changing from the monomial ba-
sis to the Bézier basis, which can be solved using the algorithms proposed in [15,
22]. These algorithms also make use of the blossoming principle. The idea is to
express the coordinates of the new basis vectors in the old basis, and then apply
the transformation matrix to the old coefficients. However, when the polynomial
representation is “sparse”, that is it contains many zero coefficients, this spar-
sity is not exploited. The method discussed in the following deals better with
such sparsity since it considers only the monomials with non-null coefficients.
More precisely, by “sparse polynomial representations” we mean those where
the number of monomials (with non-null coefficients) is much smaller than the
number of all combinations of coordinate variables up to degree d. The sparse
case happens in many practical applications we have encountered.

3 The Gaussian elimination algorithm to solve a linear system of size m×m has the
time complexity O(m3).

We now show how to compute the blossom of monomials which are products
of only two variables, such as x[i]hx[j]k. Similar treatment can be used for mono-
mials involving more variables, but due to the length of the involved formulas
we do not detail it here. On the other hand, using linearity, we can obtain the
blossom of any polynomial expressed as a sum of monomials.

The blossom of degree d of the monomial (x[i])h(x[j])k is given by:

pd
h,k(u1,u2, . . . ,ud) =

1(
d
h

)(
d−h

k

) ∑
I ∪ J ⊂ {1, . . . , d},

|I| = h, |J | = k, I ∩ J = ∅

∏
r∈I

ur[i]
∏
s∈J

us[j].

To prove this, it suffices to check that the right hand side is a symmetric multi-
affine function, and moreover pd

h,k(u,u, . . . ,u) = (u[i])h(u[j])k. ut
To compute the blossom values using the above expression, we make use of

a recurrence equation on p, as proposed in [18]. We first denote

σd
h,k =

1(
d
h

)(
d−h

k

)pd
h,k(u1,u2, . . . ,ud).

The function σ is symmetric and has the following interpretation: this function
is computed by choosing h ith coordinates of the argument points and k ith

coordinates and forming their product, then summing these products over all
possible choices. We can thus derive the following recurrence formula:{

σd
h,k = σd−1

h,k + ud[i]σd−1
h−1,k + ud[j]σd−1

h,k−1 if h, k ≥ 0 and h+ k ≥ 1,
σd

0,0 = 0
(9)

This means that to compute the required blossom value pd
h,k(u1,u2, . . . ,ud) we

compute all the intermediate values pd′

h′,k′(u1, . . . ,ud′) with d′ ≤ d, h′ + k′ ≤ d′.
This computation can be done in time O(d3).

3.3 Approximation error and subdivision

We now estimate an error bound for the approximation of the polynomial map
π by its the Bézier control points.

Theorem 3. For each Bézier control point bi there exists a point y ∈ π(∆)
such that ||bi − y|| ≤ Kρ2 where ρ be the maximal side length of ∆ and K is
some constant not depending on ∆.

The proof of this theorem can be found in Appendix.
Consequently, when the simplicial domain ∆ is large, to achieve the desired

accuracy we may need to subdivide it into smaller simplices. This subdivision
creates new Bézier bases and therefore new control points. However, due to
the properties of multi-affine maps, one can compute the new control nets in a
clever way which reuses the computations performed for the original simplex.

The essence behind this idea is as follows. Suppose that we want to partition the
simplex ∆ by adding a point x ∈ ∆ and forming (n+ 1) new smaller simplices.
Then, we can use de Catesljau algorithm [13, 16] to compute the value of the
polynomial π at x. It turns out that this computation also produces the control
net for the new simplices. Note that this algorithm can only be applied when
the Bézier control points of the polynomial are known.

Fig. 1. Subdividing a Bézier control net

We denote bl
i = p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

,x1, . . . ,xl︸ ︷︷ ︸
l

) with i[1]+ . . .+

i[n+ 1] + l = d. Since p is symmetric and multi-affine, we have:

bl
i = λ1(xl)bl−1

i+e1
+ . . .+ λn(xl)bl−1

i+en
(10)

Note that bn
o = p(x1, . . . ,xn) where o is the zero multi-index. In addition, with

l = 0, b0
i are exactly the Bézier control points of the polynomial. Therefore,

by running the above recursion starting from l = 0 until l = n we obtain the
blossom value at (x1, . . . ,xn). If all the argument points of the blossom are equal
to x, the result of the algorithm is π(x). The de Catesljau algorithm is illustrated
with a 2-dimensional example in Figure 1 where each node is annotated with
the arguments of the blossom to evaluate. The nodes on the outermost layer
correspond to the control points for the original triangle uzw. The incoming
arrows of uux show that the blossom value at this point is computed from
the blossom values at uuu and uuw. As mentioned earlier, we can see that
the computation of π(x) indeed produces the Bézier control points for the sub-
simplices. Figure 1 shows the values p(u, . . . ,u︸ ︷︷ ︸

i[1]

,x, . . . ,x︸ ︷︷ ︸
i[2]

,w, . . . ,w︸ ︷︷ ︸
i[3]

) which are the

Bézier control points for the triangle uxw.
One important remark is that the subdivision at the center of the simplex

does not reduce the maximal side length of the simplices. By Theorem 3 this

means that the convergence of the Bézier control net towards the polynomial is
not guaranteed. However, one can repeat the bisection at the mid-point of the
logest edge, as shown in Figure 1 to achieve the desired accuracy. More generally,
the subdivision of a simplex can be defined as follows. For each barycentric
coordinate λi(x) > 0 of a point x ∈ ∆ we define a simplex ∆i obtained from ∆
by replacing the vertex vi with x. Hence, when the point x is the mid-point of
an edge we obtain a bisection. It was proved in [26] that using the bisection at
the mid-point of the longest edge, after n steps (where n is the dimension of the
simplex) the simplex diameter is reduced at least by

√
3/2 times.

In two dimensions, another method of subdivision via all the mid-points of the
edges was discussed in [18]. This method is however more complex to implement
for dimensions higher than 2.

4 Reachability algorithm

Let us summarize our development so far. In Section 2, we presented a scheme
to approximate the successor in one time step by applying a polynomial, called
the integration map, to the current state. We then showed in Section 3 how to
over-approximate the image of a simplex by a polynomial map using the Bézier
control net. The result of this approximation is in general a polyhedron.

We are now ready to describe our reachability algorithm for polynomial sys-
tems. In Algorithm 1, X0 is the initial set which is assumed to be a convex
polyhedron in Rn, each Rk is a set of convex polyhedra. The function Bez over-
approximates the image of a simplex ∆ by the integration map P , using the
method presented in Section 3. The goal of the function triangulation trian-
gulates a set of convex polyhedra and returns the set of all simplices of the
triangulation. To do so, we collect all the vertices of the polyhedra and compute
a triangulation of this set. We then exclude all the simplices in the triagulation
whose interior does not intersect with Rk. Let us briefly discuss the precision of

Algorithm 1 Reachable set computation
R0 = X0, k = 0
repeat

S∆ = triangulation(Rk)
C = ∅
for all ∆ ∈ S∆ do

C = C ∪Bez(∆)
end for
Rk+1 = C
k = k + 1

until Rk+1 = Rk

the algorithm. We suppose that ρ is the maximal size of the simplices that are
produced by the function triangulation and h is the integration time step. If the

integration map P can be exactly computed, using Theorem 1, we know that the
integration error is O(h3). In addition, Theorem 3 shows that our approxima-
tion of the integration map P induces an error O(ρ2). By the triangle inequality,
the total error in each iteration of Algorithm 1 is bounded by (O(h3) +O(ρ2)).
Therefore, by choosing appropriate value ρ in function of h, we can guarantee
that Algorithm 1 is a second order method.

We now discuss some computation issues. The first remark is that the total
number of the Bézier control points is β(n, d), but the actual number of vertices of
their convex hull is often much smaller, depending on the geometric structure of
the polynomial map P . On the other hand, in order to speed up the computation
(at the price of less precise results), one can approximate C by its convex hull
or even by a simplex. Algorithms for doing so have been developed and some
algorithms can compute a minimal volume enclosing simplex (such as, [31, 17]).

Let us now briefly discuss the relation between our new algorithm and the
reachability algorithm based on hybridization, proposed in [5]. The latter first
approximates the (general) non-linear dynamics by a piecewise linear dynamics,
using a simplicial decomposition of the state space. Hence, for the approximate
system, one can indeed compute the reachable set of each linear dynamics more
accurately. However, the treatement of discrete transitions (i.e. the dynamics
changes) makes the overall computation very expensive due to the geometric
complexity of the intersection between the reachable set and the switching hy-
perplanes. In the algorithm of this paper, the one-step computation for polyno-
mial systems is in general more costly than that for linear systems, but discrete
transitions are avoided. Nevertheless, more experimentation is needed to draw
conclusions about the advantages and inconvenients of these two approaches.

5 Approximation using box splines

We now describe another method for approximating the image of a polynomial
map. This method is similar with the above method using the Bezier techniques
in the expression of the polynomial of interest in another basis, which is a box
spline basis. For clarity, let us briefly recall our problem and summa.

Given a multivariate polynomial π, and a set X ⊂ Rn, we want to compute
Y = π(X). To this end, we represent the polynomial in question using a box
spline basis. As in the case of Bézier basis, the coefficients of this representation
allow to approximate the image Y = π(X) when the set X is a zonotope. The
approximation of π(X) thus consists of 2 steps:

1. The set X is first over-approximated by a zonotope. The generators of this
zonotope determine the box spline basis functions.

2. We then establish the corresponding box-spline representation of the poly-
nomial π. As we will see later, the convex hull of its coefficients provide an
over-approximation of the image of the zonotope.

In the following, we first present a brief introduction of box splines and some
of their properties. This summary is necessary for the development that follows.

Then, we show how to approximate the convex hull of a set of points by a
zonotope, which is the operation of the step 1. This is particularly necessary if
we need to perform the image computation iteratively.

5.1 Box splines: background

We present two definitions of box splines: inductive one and another which is
more geometric. Other definitions (such as inductive definition, or by recursion)
can be found in [12].

Inductive definition Let n be the dimension (or the number of variables).
Given an integer k ≥ n, let V = {v1, . . . , vk} be a set of k vectors in Rn where
v1, v2, . . . , vn are linearly independent. Each such vector is called direction. We
denote by M = [v1 v2 . . . , vk] the n × k matrix the columns of which are the
vectors in Vk. It could be assumed that the first n columns of M form the
n-dimensional identity matrix I. The inductive definition of a box spline BM

associated with V is as follows.
We start with the base case where the degree is s = 0, then Ms = I and

BMs(x) = 1 if x ∈ [0, 1)s and 0 otherwise. Note that this function is piecewise
constant and has degree s = 0. If we add a column in M denoted by M ∪v, then
the box spline associated with the new matrix Ms = Ms−1 ∪ v is defined as:

BMs∪v =
∫ 1

0

BMs−1(x− tv)dt. (11)

Thus, each convolution in another direction v increases the degree by 1, and
when s = k − n, BM is a piecewise polynomial of degree k − n.

Geometric definition Given a vector u = (u1, . . . , un, . . . , uk) ∈ Rk, we define
an orthogonal projection π : Rk → Rn as: π(u) = (u1, . . . , un).

For each 1 ≤ i ≤ k, let {u1, u2, . . . , uk} where each uj ∈ Rk such that
vj = π(uj) and {u1, u2, . . . , uk} are linearly independent. We denote by M ′ =
[u1 u2 . . . uk], the matrix the columns of which are the vectors ui. Then, the
parallelpiped β = [u1u2 . . . uk][0, 1)k is the image of the k-dimensional box [0, 1)k

by the linear function associated with M ′.
We define a map C : Rn → Rk, called cylindrification, as follows: given

x ∈ Rn, Cβ(x) = {y ∈ β | x = π(y)}. Intuitively, C(x) is the set of points inside
the parallelpiped β ⊂ Rk that have x the projection on Rn.

The box spline function BM (x) associated with the vectors V = {v1, . . . , vk}
is defined as:

BM (x) =
volk−s(C(x))
volk(β)

(12)

Basic properties The box splines have the following properties which follow
directly from their definition.

1. For all x ∈ [v1 v2 . . . vk][0, 1)k, BM (x) > 0.
2. The support of BM (x) is

Z = [v1v2 . . . vk][0, 1]k. (13)

that is the sum of the columns in V , or the zonotope with V as the set of its
generators.

3. The box spline BM is symmetric with respect to the center of its support.
4. The box spline BM is piecewise polynomial. Indeed, it is a polynomial of

degree at most (k−n) within each element of the simplicial mesh defined by
V over the support of BM .

5. The box spline BM is (ρ − 2) times continuously differentiable, where ρ is
the minimal number of vectors that need to be removed from V so that they
do not span Rn.

6. The function BM reproduces all polynomials of degree (ρ− 1) with ρ defined
as above.

7. The integer shifts of BM sum to 1, that is,∑
i∈Zn

BM (x− i) = 1.

Again, we assume that the vectors in V = {v1, . . . , vk} span Rn. We define
an integer shift of the box spline BM (x − i) with j ∈ Zn. Since BM (x) is non-
negative and the sum of all the integer shifts of BM (x) is 1, the integer shifts of
any box spline BM (x) form a partition of unity.

We are now interested in the space of polynomials Π spanned by all shifts of
BM . We define the index set for each x ∈ Rn as follows:

I(x) = {i ∈ Zn | BM (x− i) 6= 0}.

Note that this set is finite for any x; therefore, for convenience of notation we
write infinite linear combinations of the integer shifts while keeping in mind that
the combinations are only over the associated index set.

Lemma 3. If the box spline BM is r times continuously differentiable. Then,
for any polynomial c of degree (r + 1), the function

s(x) =
∑
i∈Zn

c(i)BM (x− i). (14)

is a polynomial of degree (r+1), and any polynomial can be represented as in (14)
by choosing M appropriately. The coefficients c(i) are called the control points.

Convex-hull property. It is not hard to see that, given a point x, s(x) lies in the
convex hull of the control points corresponding to the index set I(x):

s(x) = conv{c(i) | i ∈ I(x)}.

This property, called the convex-hull property, will be used for our problem of
approximating the image of a set by a polynomial map.

5.2 Computing the box spline representation

In this section, we focus on the problem of the Step 2, that is computing the
control points c(i) in the representation (14), provided that the box spline BM

must be of appropriate degree. To this end, we derive a symbolic expression
of the ‘weight’ function c, and then determine the index set, that is the set of
integer points at which the integer shifts in the box spline representation (14) is
non-null.

Control points Any polynomial can be decomposed to a linear combina-
tion of monomials, it is possible to compute the control points for each mono-
mial and then combine them. More concretely, if the polynomial π is a lin-
ear combination of two monomials m1 and m2, i.e. π = km + k′m′. Then, if
m(x) =

∑
i∈Zn c(i)BM (x − i) and m′(x) =

∑
i∈Zn c′(i)BM (x − i), then π(x) =∑

i∈Zn(c(i) + c′(i)BM (x− i).
We use the extension of the Marsden identity to derive an analytic expression

of c. We consider a monomial of the form xr1
1 . . . xrn

n where each ri are non-
negative integers, and we denote it as mr(x) = xr where r = (r1, . . . , rn) is
called the multi-index. We define r′ ≺ r iff r 6= r′ and ∀i ∈ {1, . . . , n} : r′i ≤ ri.
Similarly, the difference r − r′ can be defined componentwise, that is r − r′ =
(r1− r′1, . . . , rn− r′n). Given a monomial mr, the goal is to determine the weight
function cr such that the monomial can be represented using the box spline BM ,
that is, xr =

∑
i c(i)BM (x− i). We define the operator

µ : f →
∑
i

BM (i)f(−i). (15)

The (symbolic) computation of the function c can be done using the follow-
ing recurrence (see Chapter Quasi-interpolants and approximation power of the
book [12]): {

cr = mr −
∑

r′≺r µ(mr−r′) cr′
c(0,...,0) = 1. (16)

For a fixed r, we need to compute the expresions of cr′ for all r′ ≺ r, and
this requires computing the application of the operator µ on them. To do so, as
shown in (15) we need to determine the values of the box spline BM at all the
integer points inside its support.

The generation of µ(mr′) for all r′ ≺ r can be done before starting the
recursion (16). The following recursive method for evaluating BM [?] can be
used. For a point x which can be represented as x = Mt and let tv denote the
component of t corresponding to the column v of the matrix M . Then,

(n− s)BM (x) =
∑
v∈V

tvBM\{v}(x) + (1− tv)BM\{v}(x− v) (17)

where M \ {v} is the matrix resulting from removing the column v from M .
The base case for the above recurrence corresponds to the square matrix M =

(v1, . . . , vn), and in this case

BM (x) =
1

|detM |
χM [0,1]k(x)

where χ is the characteristic function of the set M [0, 1]k. Since we only need
to evaluate BM at integer points, and if we additionally choose the matrix M
to have integer elements, then the computation of the characteristic function
is accurate, and so is the evaluation of the box spline. In other words, for our
purposes, the above scheme does not suffer from the numerical instability as if
x is a real-valued vector.

Index set As mentioned earlier, when writing the infinite sum, it indeed suffices
to consider the integer points in the index set. Given x, the index set I(x)
associated with the box spline BM is I(x) = {i ∈ Zn | BM (x − i) 6= 0}. It can
be proven that [12]

I(x) = Zn ∩ (x−M [0, 1]k). (18)

The index set for all x inside some set X ⊂ Rn, denoted by I(X), is defined as
follows:

I(X) = {i ∈ Zn | ∃x ∈ X : BM (x− i) 6= 0}
= Zn ∩ (X ⊕ (−M [0, 1]k)).

where ⊕ denotes the Minkowski sum. It is not hard to see that if X is a zono-
tope, then the set X ⊕ (−M [0, 1]k) is a zonotope. Since the Minkowski sum of
zonotopes, unlike that of polytopes, can be efficiently, it is convenient to over-
approximate X by a zonotope, and then the computation of the index set I(X)
amounts to enumerating all the points with integer coordinates inside a zono-
tope.

5.3 Image Computation Algorithm

We are now ready to apply the above image computation method to compute
the following iteration:

Y i = π(Xi)

where π is a polynomial map and x0 ∈ X0. We assume that we have chosen
an appropriate matrix M , that is the condition on M so that the associated
box spline is of appropriate degree is satisfied. In the following algorithm, the
initial set X0 is assumed to be a polytope. In each iteration, we compute a set of
points, the convex hull of which is an over-approximation of the reachable set.
It is important to emphasize that in this algorithm we do not need to compute
this convex hull, which is computationally expensive.

The algorithm consists of three main steps:

– We first compute a zonotope ZP over-approximating the current point set
P i using Algorithm 3 which we shall describe in the next section.

Algorithm 2 Reachable set computation
P 0 = vertices(X0)
i = 0
repeat

ZP = zonotopeBound(P i) /* using Algorithm 3 */
Z = ZP ⊕ (−M [0, 1]k)
I = I(Z) /* computing the index set */
P i+1 = ∅
forall(i ∈ I)

p = c(i) /* computing the control points */
P i+1 = P i ∪ {p}

endforall
i = i + 1

until i > Kmax

– To determine the index set associated with ZP , we first compute the Minkowski
sum of ZP and M [0, 1]k (the latter is the support of BM). Then, the index
set is the set of all the integer points in the resulting sum. We recall that
the zonotopic over-approximation in the first step is used to facilitate the
computattion of the Minkowski sum.

– To each integer point in the index set, we apply the weight function c to
obtain the corresponding control point. By the convex-hull property of the
box spline representation, the convex hull of all such control points is thus an
over-approximation of the reachable set at the current iteration. Note that
the weight function c for the given box spline BM can be precomputed in a
symbolic form, as shown in (16).

Approximation by zonotopes. We now show how to compute the operator zono-
topeBound in Algorithm 3, that is over-approximating the convex hull of a point
set by a zonotope. Let P be a set of a points in Rn. First of all, using the PCA
we can find an oriented hyper-rectangle R that contains P . We denote this by
R = boundPCA(P) and defer a description of this procedure to Appendix. Let
l1, . . . , ln be the side length of R and fix η1, . . . , ηn to be the axes of R. We define
Rλ the rectangle resulting from scaling R by λ ∈ (0, 1)n around its center (or
centroid) c.

Given a point x, we next define an special translation operator with respect
to Rλ, denoted by τ(x,Rλ). Let Hi denote the hyper-plane which has ηi as its
normal and goes through c. Let proji(x) is the projection of x on Hi. We define

∆i =
δi

||proji(x)− x||
(proji(x)− x)

where δi ∈ [0, li/2]. Then, the translation operator is defined as follows. If x ∈
Rλ, then τ(x,Rλ) = c ; otherwise, τ(x,Rλ) = x+

∑n
i=1∆i.

We extend this operator to a set of points: τ(P,Rλ) = {τ(pi, Rλ) | pi ∈ P}.
Let (δ1, . . . δn) and λ be user-defined parameters, then the zonotope that over-
approximates conv{P} is computed by the following iterative algorithm.

Algorithm 3 zonotopeBound(P): approximation a point set P by a zonotope
Q0 = P , i = 0
repeat

Ri = boundPCA(Qi);
Qi+1 = τ(Qi, Ri

λ);
i = i + 1

until size(Ri) ≤ ε

The algorithm stops when the size of Ri is sufficiently small, and all the
generators associated with each rectangles Ri computed in each iteration will be
used to define the over-approximating zonotope. Its center can be the center of
R0.

6 Illustrative example

We have implemented the Bézier spline based algorithm 1 and applied it to two
models of a well-known hybrid system benchmark [7, 6]. These models have been
developed to study the luminescence mechanism in the Vibrio Fisheri bacteria
and methods to control it.

The first model corresponds to one mode of a simplified hybrid system where
the continuous dynamics is described by the following multi-affine system: ẋ1 = k2x2 − k1x1x3 + u1

ẋ2 = k1x1x3 − k2x2

ẋ3 = k2x2 − k1x1x3 − nx3 + nu2

(19)

The state variables x = (x1, x2, x3) represent the cellular concentrations of dif-
ferent species, and the parameters k1, k2, n are the binding, dissociation and
diffusion constants. The variables u1 and u2 are control variables, which respec-
tively represent the plasmid and external source of autoinducer. In [6] the fol-
lowing control law for steering all the states in the rectangle [1, 2]× [1, 2]× [1, 2]
to the face x2 = 2 was proposed: u1(x) = −10(x2 + x1(−1 + 3) − 4x3) and
u2(x) = x1(3 + x2(−1 + x3))− (−2 + x2)x3. This control objective corresponds
to the activation of some genes in the system. We consider two cases: with no
control (i.e. u1 = u2 = 0) and with the above control law. Figure 2 shows the
projection on x2 and x3 of the reachable sets obtained using our algorithm for
polynomial systems. In [4] we have already treated this model using an abstrac-
tion method based on projection. This method approximates the multi-affine
system by a lower dimensional bilinear system. Comparing with the result pre-
sented in [4], one can see that our new algorithm for polynomial systems is more
accurate, and in addition we have observed that it is also more time-efficient.

The second model is taken from [7]. It is a hybrid model4 with two modes
and one additional continuous variable x4. The continuous dynamics is ẋ =
4 The numbering of variables is different from that in [7].

Fig. 2. Reachable sets: with u1 = u2 = 0 (left) and with the specified control law
(right). The control law indeed drives the system to the face x2 = 2.

Ax+g(x)+bij where b01 and b10 correspond respectively to the non-luminescent
and luminescent modes, and

A =


−1
Hsp

0 0 rCo

0 0 0 −1
Hsp

− rCo

0 x0rAII
−1

HAI
x0rCo

0 −1
Hsp

0 0

 ; g(x) =


−1
1
−x0

0

 rAIRx1x3

We are interested in the question of how to determine the sets of states from
which the system can reach the luminescent equilibrium. The condition for
switching between the two modes is x2 = x2sw. This problem was also previ-
ously studied in [7] using the tool d/dt. However, in [7] the multi-affine dynamics
was approximated by a 3-dimensional linear system, assuming that x1 remains
constant. Using our algorithm for polynomial systems, we can now handle the
non-linearity in the dynamics. In terms of qualitative behavior, the result ob-
tained for the 4-dimensional multi-affine model is compatible with the result for
the linear approximate model in [7], that is, from the non-luminescent mode the
system can reach the guard to switch to the luminescent mode and then con-
verge to the equilibrium. However, the new result obtained for the 4-dimensional
model shows a larger set of states that can reach the equilibrium. This can be
explained by the fact that in this model the variable x1 is not kept constant and
can evolve in time.

7 Concluding remarks

In this paper, we presented a new approach to approximate reachability analysis
of polynomial systems by combining the ideas from numerical integration and
techniques from computer aided geometric design. The reachability algorithm

we proposed is of order 2, and these results can be straightforwardly applied to
safety verification of hybrid systems. This work opens interesting directions to
explore. Indeed, different tools from geometric modeling (such as, splines) could
be exploited to approximate polynomial maps more efficiently. In addition, we
plan to apply these techniques to verify analog circuit benchmarks proposed
in [14].

References

1. R. Alur, T. Dang, and F. Ivancic. Reachability analysis via predicate abstrac-
tion. In M. Greenstreet and C. Tomlin, editors, Hybrid Systems: Computation and
Control, LNCS 2289. Springer-Verlag, 2002.

2. R. Alur, T.A. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of
hybrid systems. Proc. of the IEEE, 2000.

3. E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability analysis
of piecewise-linear dynamical systems. In B. Krogh and N. Lynch, editors, Hybrid
Systems: Computation and Control, LNCS 1790, pages 20–31. Springer-Verlag,
2000.

4. E. Asarin and T. Dang. Abstraction by projection. In R. Alur and G. Pap-
pas, editors, Hybrid Systems: Computation and Control, LNCS 2993, pages 32–47.
Springer-Verlag, 2004.

5. E. Asarin, T. Dang, and A. Girard. Reachability analysis of nonlinear systems
using conservative approximation. In Oded Maler and Amir Pnueli, editors, Hybrid
Systems: Computation and Control, LNCS 2623, pages 20–35. Springer-Verlag,
2003.

6. C. Belta, L. C. G. J. M. Habets, and V. Kumar. Control of multi-affine systems
on rectangles with an application to gene transcription control. In Proceedings of
CDC, 2003.

7. C. Belta, J. Schug, T. Dang, V. Kumar, G.J. Pappas, H. Rubin, and P. Dunlap.
Stability and reachability analysis of a hybrid model of luminescence in the marine
bacterium vibrio fisheri. In Proceedings of CDC, 2001.

8. A. Chutinan and B.H. Krogh. Verification of polyhedral invariant hybrid automata
using polygonal flow pipe approximations. In F. Vaandrager and J. van Schup-
pen, editors, Hybrid Systems: Computation and Control, LNCS 1569, pages 76–90.
Springer-Verlag, 1999.

9. Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh, Joël Ouaknine,
Olaf Stursberg, and Michael Theobald. Abstraction and counterexample-guided
refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci.,
14(4):583–604, 2003.

10. T. Dang and O. Maler. Reachability analysis via face lifting. In T.A. Henzinger
and S. Sastry, editors, Hybrid Systems: Computation and Control, LNCS 1386,
pages 96–109. Springer-Verlag, 1998.

11. O. Davyrov, M.Sommer, and H.Strauss. On almost interpolation by multivariate
splines. In J.W.Schmidt G.Nürnberger and G.Walz, editors, Multivariate Approx-
imation and Splines, pages 45–58. ISNM, Birkhäuser, 1997.

12. C. de Boor and K. Höllig and S. Riemenschneider. Box Splines. Applied Mathe-
matical Sciences 98, Springer-Verlag, 1993.

13. P. de Casteljau. Formes à pôles. Hermes, Paris, 1985.

14. B. Kaminska, K. Arabi, I. Bell, P. Goteti, J.L. Huertas, B. Kim, A. Rueda, and
M. Soma. Analog and Mixed-Signal Benchmark Circuits - First Release. In IEEE
International Test Conference, Washington DC, November 1997.

15. Tony DeRose, Ronald Goldman, Hans Hagen, and Stephen Mann. Functional
composition via blossoming. ACM Transactions on Graphics, 12(2), April 1993.

16. G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, 1990.

17. D. R. Fuhrmann. A simplex shrink-wrap algorithm. In Proceedings of SPIE.
AeroSense, 1999.

18. Jean Gallier. Curves and surfaces in geometric modeling: theory and algorithms.
Series In Computer Graphics and Geometric Modeling. Morgan Kaufmann, 1999.

19. A. Girard. Reachability of uncertain linear systems using zonotopes. In Hybrid
Systems : Computation and Control, LNCS 3414, pages 291–305. Springer, 2005.

20. M.R. Greenstreet and I. Mitchell. Integrating projections. In T.A. Henzinger and
S. Sastry, editors, Hybrid Systems: Computation and Control, LNCS 1386, pages
159–1740. Springer-Verlag, 1998.

21. A. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In
B. Krogh and N. Lynch, editors, Hybrid Systems: Computation and Control, LNCS
1790, pages 202–214. Springer-Verlag, 2000.

22. S.K. Lodha and R. Goldman. Change of basis algorithms for surfaces in cagd.
Computer Aided Geometric Design, 12:801–824, 1995.

23. Ian M. Mitchell and Jeremy A. Templeton. A toolbox of Hamilton-Jacobi solvers
for analysis of nondeterministic continuous and hybrid systems. In Hybrid Systems:
Computation and Control, LNCS. Springer-Verlag, 2005, to appear.

24. Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using
barrier certificates. In Rajeev Alur and George J. Pappas, editors, Hybrid Systems:
Computation and Control, volume 2993 of Lecture Notes in Computer Science,
pages 477–492. Springer, 2004.

25. Lyle Ramshaw. Blossoms are polar forms. Computer Aided Geometric Design,
6:323–358, 1989.

26. M.-C. Rivara. Mesh refinement process based on the generalized bisection of sim-
plices. SIAM Journal on Numerical Analysis, 21:604–613, 1984.

27. H.-P. Seidel. Polar forms and triangular B-spline surfaces. In Blossoming: The
New Polar-Form Approach to Spline Curves and Surfaces, SIGGRAPH ’91 Course
Notes 26, ACM SIGGRAPH, pages 8.1–8.52, 1991.

28. A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In C. Tomlin
and M.R. Greenstreet, editors, Hybrid Systems: Computation and Control, LNCS
2289, pages 465–478. Springer-Verlag, March 2002.

29. Ashish Tiwari and Gaurav Khanna. Nonlinear systems: Approximating reach sets.
In Hybrid Systems: Computation and Control, volume 2993 of Lecture Notes in
Computer Science, pages 600–614. Springer, 2004.

30. C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi. Computational techniques for the
verification of hybrid systems. Proceedings of the IEEE, 91(7):986–1001, 2003.

31. G. Vegter and C. Yap. Minimal circumscribing simplices. In Proceedings of the
3rd Canadian Conference on Computational Geometry, Vancouver, Canada, pages
58–61, 1991.

Proof of Theorem 1. From (3) and (4), the local error can be written as:

x(tk + τ)− x̄(tk + τ) =
∫ h

0

eA(h−τ)[f(x(tk + τ))− f(α(tk + τ))] dτ.

On the other hand, due to the Taylor expansion, we have ||x(tk+τ)−α(tk+τ)|| ≤
Mτ2 where M is some constant. We then have || f(x(tk + τ))−f(α(tk + τ)) || ≤
LMτ2 where L is the Lipschitz constant of f . Using the expression (6), we have
Γ2 =

∫ h

0
eA(h−τ)τ2 dτ = A3

3! h
3 +O(h4), it then follows that

||x(tk + τ)− x̄(tk + τ)|| = O(h3).

This completes the proof of the theorem. ut

Proof of Lemma 2. We consider p(x1,x2, . . . ,xd) where each argument xj

can be expressed using the barycentric coordinates as: xj = λ1(xj)v1 + . . . +
λn+1(xj)vn+1. Due to the property of multi-affine maps, replacing the first ar-
gument x1 with its barycentric coordinates, we have:

p(x1,x2, . . . ,xd) = λ1(x1)p(v1,x2, . . . ,xn+1)+. . .+λn+1(x1)p(vn+1,x2, . . . ,xn+1).

We then do the same with other arguments to obtain:

p(x1, . . . ,xd) =
∑
I∈Ξ

∏
k∈I1

λ1(xk) . . .
∏

k∈In+1

λn+1(xk)p(v1, . . . ,v1︸ ︷︷ ︸
i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

(20)
where Ξ is the set of all partitions of {1, 2, . . . , d} defined as follows. We say that
I = {Ik}k=1,2...,n+1 is a partition of {1, 2, . . . , d} iff all Ik are pairwise disjoint
and ∪k∈{1,...,n+1}Ik = {1, 2, . . . , d}. We write |Ik| to denote the cardinality of
Ik. Then, by letting the arguments xi to be equal, it is not hard to see that the
equation (20) becomes:

p(x, . . . ,x) =
∑
||i||=d

(
d

i

)
λ
i[0]
1 (x)λi[1]

2 (x) . . . λi[n]
n (x)p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

Comparing the above with the definition of Bézier simplices (7), it is easy to see
that all the points p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, . . . , vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

) form the control net of a π

whose polar form is p. ut

Proof of Theorem 3. Given a multi-index i with ||i|| = d, we consider a point
y ∈ ∆ which is written as y =

∑
i∈{1,...,n}

i[i]
d vi. We first observe that due to

symmetry, p(x,y, . . . ,y) = p(y,x, . . . ,y) = . . . = p(y,y, . . . ,x). Let D denote
the partial derivative of these functions at x = y. Using the Taylor expansion of
p(x1,x2, . . . ,xd) around (y,y, . . . ,y), we have:

bi = p(v1, . . . ,v1︸ ︷︷ ︸
i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

= p(y,y, . . . ,y) + i[1]D(v1 − y) + . . .+ i[n+ 1]D(vn+1 − y) +O(ρ2)

Note that i[0](v0 − y) + . . . + i[n + 1](vn+1 − y) = 0. It then follows that
bi = π(y) +O(ρ2). This means that ||bi − π(y)|| is indeed of order O(ρ2). ut

Computing the oriented bounding box PCA In this section we recall the
method for computing an oriented bounding box of a set of points using Principal
Component Analysis (PCA). For a thorough description of the PCA, the reader
is referred to [?].

Let P = {p1, p2, . . . , pk} be a set of k points in Rn. We can assume that
k ≥ n. The axes of the oriented bounding box are determined as the directions
along which the points are mostly distributed. More concretely, we use p̄ to be
the mean of P , that is p̄ =

∑k
i=1 p

i and we denote p̃i, j = pj
i − p̄i. For two points

pi and pj in P , the covariance of their translated points is:

cov(p̃i, p̃j) =
1

k − 1

k∑
m=1

p̃m
i p̃

m
j .

Then, we define the co-variance matrix as follows:

C =


cov(p1, p1) cov(p1, p2) . . . cov(p1, pk)
cov(p2, p1) cov(p2, p2) . . . cov(p2, pk)

. . .
cov(pk, p1) cov(pk, p2) . . . cov(pk, pk)

 .

The n largest singular values of C provide the orientation of the bounding box.
More concretely, since C is symetric, by singular value decomposition, we have

C = UΛUT

where Λ is the matrix of singular values. The axes of the bounding box are hence
determined by the first n columns of the matrix U , and the centroid of the box
is p̄.

