InVeSt : A Tool for the Verification of
Invariants*

S. Bensalem?, Y. Lakhnech? and S. Owre?

! VERIMAG, Centre Equation — 2, avenue de Vignate,
F-38610 Giéres, France. Email: Bensalem@imag.fr
2 TInstitut fir Informatik und Praktische Mathematik,
Christian- Albrechts-Universitat zu Kiel,
PreuBlerstr. 1-9, D-24105 Kiel, Germany.
Email: yl@informatik.uni-kiel.de
% Computer Science Laboratory, SRI International,
Menlo Park, CA 94025, USA. Email : owre@csl.sri.com

1 Introduction

A very important class of properties of reactive systems consists of tnvariance
properties which state that all reachable states of the considered system satisfy
some given property. Indeed, every safety property can be reduced to an invari-
ance property and to prove progress properties one needs to establish invariance
properties [15]. Proving invariance properties is especially crucial for infinite and
large finite state systems which escape algorithmic methods. In this paper we
present the tool InVeSt which supports the verification of invariance properties
of infinite state systems. InVeSt integrates deductive and algorithmic verifica-
tion principles for the verification of invariance properties as well as abstraction
techniques.

2 Methodology

There are basically two approaches to the verification of reactive systems, the
algorithmic approach on one hand and the deductive approach on the other
hand. The algorithmic approach is based on the computation of fix-points, on
effective representations of sets of states, and on decision procedures to solve
the inclusion problem of sets of states. For example the backward procedure is
an instance of this approach. To prove that a set of states P is an invariant of a
system S, the backward procedure computes the largest set @) of states satisfying
@ C P and Q C wp(r,Q), for every transition 7 € 7 of S. Here wp(r, Q) is
the weakest pre-condition of 7 with respect to ). Then, P is an invariant of
S if and only if every initial state of S satisfies Q). In general, the algorithmic
approach is based on an effective representation R for sets of states, effective
boolean operations, a procedure for deciding inclusion in R, effective predicate

* This work has been partly performed while the first two authors were visiting the
Computer Science Laboratory, SRI International. Their visits were funded by NSF
Grants No. CCR-~9712383 and CCR-9509931.



transformers to guarantee recursiveness of the method, and convergence of fix-
points to guarantee completeness.

In general, in case of infinite state systems, first-order logic with Peano arith-
metic is considered as representation R. In fact, it can be proved that any weaker
logic is not expressive enough (e.g. [8]), when the considered system contains
variables that range over infinite domains. Thus, one has effective boolean oper-
ations and can define predicate transformers, but inclusion is undecidable. More-
over, convergence of fix-points is not guaranteed. Consequently, the algorithmic
approach cannot be applied in general to infinite state systems. On the other
hand, the deductive approach is very powerful and gives a complete method even
for infinite state systems. It relies upon finding auziliary invariants and proving
validity of first-order formulas, called verification conditions. The deductive ap-
proach is, however, in contrast to the algorithmic approach, difficult to apply.
Indeed, it is in general a hard task to find suitable auxiliary invariants and time
consuming to discharge all generated verification conditions. Therefore,; there
is a strong need for tools that support both tasks. InVeSt is such a tool as it
supports the verification of invariance properties of infinite state systems.

The salient feature of InVeSt is that it combines the algorithmic with the
deductive approaches to program verification in two different ways:

1) Tt integrates the principles underlying the algorithmic (e.g. [4, 20]) and the
deductive methods (e.g. [16]) in the sense that it uses fix-point calculation as
in the algorithmic approach but also the reduction of the invariance problem
to a set of first-order formulas as in the deductive approach.

2) Tt integrates the theorem prover PVS [19] with the model-checker SMV [17]
through the automatic computation of finite abstractions. That 1s, it pro-
vides the ability to automatically compute finite abstractions of infinite state
systems which are then analyzed by SMV or, alternatively, by the model-
checker of PVS.

InVeSt supports the proof of invariance properties using the method based on
induction and auxiliary invariants (e.g. [16]) as well as the method based on
abstraction techniques [5, 13, 7, 11, 12, 6].

InVeSt’s approach to finding auriliary invariants. We use calculation of pre-fix-
points by applying the body of the backward procedure a finite number of times
and use techniques for the automatic generation of invariants (cf. [16, 14, 1]) to
support the search for auxiliary invariants. The tool provides strategies which
allow to derive local invariants, that is, predicates attached to control locations
and which are satisfied whenever the computation reaches the corresponding
control point. InVeSt includes strategies for deriving local invariants for sequen-
tial systems as well as a composition principle that allows to combine invariants
generated for sequential systems to obtain invariants of a composed system.

InVeSt’s approach to computing abstractions. InVeSt provides also a module
that allows to compute an abstract system from a given concrete system and an
abstraction function. The method underlying this module is presented in [2]. The



main features of this method 1s that it is automatic and compositional. Moreover,
it generates an abstract system which has the same structure as the concrete one.
This gives the ability to apply further abstractions and techniques to reduce the
state explosion problem and facilitates the debugging of the concrete system. The
computed abstract system is optionally represented in the specification language
of PVS or in that of SMV. A graphical interface allows to interact with InVeSt
and SMV in a uniform way.

Finally, it is important to understand that our use of the theorem-prover
PVS is limited to discharging the verification conditions. This shows a difference
of our approach to the approach followed in most of the work using theorem-
proving for verifying invariance properties (e.g. [9, 10]). That is we do not encode
the invariance problem in the specification language of the considered theorem-
prover and then use the theorem-prover to solve it, but we use the deductive
approach to reduce the problem to a set of first-order formulas whose validity is
proved using the theorem-prover. Moreover, the construction of the verification
conditions as well as the generation of an auxiliary invariant are performed
outside the theorem-prover.

3 Design Principles

The structure of InVeSt is motivated by a number of design decisions. These
decisions are :

— Minimization of user’s intervention. This decision is motivated by our
belief that the success of the algorithmic approach is partly due to the fact
that it does not require user’s intervention. To support this choice we have

e developed techniques for the generation of auxiliary invariants,

e implemented the strengthening method and its refined version,

e investigated strategies for proving first-order predicates, and

e developed a method for computing abstractions of infinite state systems.

— Use of an existing theorem-prover. We build on an existing theorem-
prover for the following reasons. The first is that we want to rely on a widely
used tool; this increases our trust and confidence in the prover. Our par-
ticular choice is to use PVS, since PVS gives us the possibility to combine
decision procedures and interactive proofs (see [18]). The examples we have
considered show that this feature is a prerequisite to reach a high level of
automation.

— Theorem-prover as a “Decision Procedure”. Most of the theorem-
provers, including PVS, are general purpose provers. This means that they
have general specification languages and if they include pre-defined strate-
gies, then these are in general not tuned to a particular application. This
is often a source of inefficiency and prevents a higher level of automation.
There is always a trade off between generality on one side and efficiency and
automation on the other side. We use the theorem-prover in a particular
way and for a particular task, namely to discharge the verification condi-
tions. This should be seen in contrast to the alternative approach where one



encodes the verification problem within the specification language of PVS
and tries to solve it completely within this theorem-prover, usually by ex-
panding the definitions of the semantics of the programs and the definition
of invariance and using an induction argument. Our approach is different,
since we use deductive rules to reduce the invariance problem to a set of
first-order formulas whose validity is proved using PVS. This design decision
allows us to implement the components of our tool outside PVS.

— Modularity with respect to the theorem-prover. Our tool builds on
PVS in two different ways. The first obvious point is that it uses PVS to
discharge verification conditions as explained above. There is another, less
transparent dependency, which lies in the fact that we use the internal rep-
resentations of PVS of all objects constructed by the PVS type-checker in-
cluding programs, actions, formulas, expressions, etc.. In order to be modular
with respect to PVS, the interface between the components of the tool and
PVS itself has to be defined precisely. As interface, we use a module which
contains functions that allow to access internal PVS variables. This ensures
that even when the data structure used in PVS is modified, the functioning
of our tool is still guaranteed as long as the accessor functions maintain their
semantics.

4 Tool structure

The main components of InVeSt are: a front-end that translates guarded command-
like programs into a PVS-theory, a module of functions for generating invariants,

a module of proof strategies, and a module for computing abstractions. In the
sequel, we discuss each of these components.

— Front-end: As formalism for describing systems we consider a language
similar to Unity. Variables are allowed to be of any type of the specifica-
tion language of PVS. The role of the front-end consists of translating the
extended transition system into a PVS-theory that can be type-checked.
The components of the system are translated into PVS-constants of type
”Program” consisting of a list of actions. An action can be a function or a
relation between states. When the PVS-theory corresponding to the system
is type-checked a list of LISP-objects corresponding to the declarations in the
PVS-theory is constructed. By accessing to the elements of this list, we have
at our disposal PVS-representations corresponding to the relevant syntactic
objects of the system. Our tool works with these representations. Accessors
functions have been implemented that allow to access these representations
and their components. For instance, there is a function GET-GUARD that
is used to extract the guard of an action, and a function GET-AFFECTED-
VARIABLES to extract the list of variables to which a value is assigned by the
action.

— Generation of Invariants: A central component in the tool is a module
consisting of functions that implement strategies used to automatically gen-
erate invariants. Basically, we implemented the strategies presented in [1]



which allow us to derive local invariants, that is, predicates attached to
control locations such that these predicates are satisfied whenever the com-
putation reaches the corresponding control point. We have strategies for
deriving local invariants for sequential systems and a composition principle
that allows to combine invariants generated for sequential systems to obtain
an invariant of a composed system.

— Proof strategies: A proof strategy determines which verification conditions
are constructed and how to handle failed proofs. The choice of a strategy is
determined by:

1 whether auxiliary invariants are generated automatically,
2 whether in case the proof of a verification condition fails, the strength-
ening method [16] or its refined version [3] is applied.
In case auxiliary invariants are generated, verification conditions are weak-
ened by taking the generated predicate as assumption in the left-hand side
of the implication. Thus, if ¢ is the generated invariant, then to prove that
P is preserved by a transition 7 it suffices to prove (¢ A P) = wp(r, P). We
implemented a function that takes as arguments two predicates ¢ and ¢, a
transition 7, and a PVS-proof strategy str and which calls the PVS-prover
on the formula (¢ A P) = wP (7, ) with the strategy str.

— Computing Abstractions: The abstraction module implements the method
presented in [2] for computing abstractions of infinite state systems. For a
given concrete system and a given abstraction function, it computes an ab-
straction of the concrete system compositionally and automatically. The pro-
cess of generation of the abstract system does not depend on the assumed
semantics of the parallel operator; it works for the synchronous as well as for
the asynchronous computation model. The generated abstract system has
the same structure as the concrete one and there is a clear correspondence
between the transitions of both systems. This does not only allow to apply
further abstractions and techniques to mitigate the state explosion problem
but also facilitates the debugging of the concrete system.

References

1. S. Bensalem and Y. Lakhnech. Automatic generation of invariants. Accepted in
Formal Methods in System Design. To appear.

2. S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite state
systems automatically and compositionally. Accepted in CAV’98, 1998.

3. S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the automatic
generation of invariants. In CAV’96, volume 1102 of LNCS. Springer-Verlag, 1996.

4. E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In
10th ACM symp. of Prog. Lang. ACM Press, 1983.

5. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5), 1994.

6. D. Dams. Abstract interpretation and partition refinement for model checking.
PhD thesis, Technical University of Eindhoven, 1996.



7. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive sys-
tems: Abstractions preserving ACTL*, ECTL* and CTL*. In PROCOMET. IFIP
Transactions, North-Holland/Elsevier, 1994.

8. J.W. de Bakker. Mathematical Theory of Program Cortrectness. Prentice-Hall,
NJ., 1980.

9. K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol verification. In FMFE’96, volume 1051 of LNCS. Springer-verlag, 1996.

10. J. Hooman. Verifying part of the access.bus protocol using PVS. In Proc. 15th
Conference on the Foundations of Software Technology and Theoretical Computer
Science, volume 1026 of LNCS. Springer-Verlag,, 1995.

11. R.P. Kurshan. Computer-Aided Verification of Coordinating Processes, the au-
tomata theoretic approach. Princeton Series in Computer Science. 1994.

12. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserv-
ing abstractions for the verification of concurrent systems. Formal Methods in
System Design, 6(1), 1995.

13. D. E. Long. Model Checking, Abstraction, and Compositional Reasoning. PhD
thesis, Carnegie Mellon, 1993.

14. Z. Manna, A. Anuchitanukul, N. Bjgner, A. Browne, E. Chang, M. Colon,
L. de Alfaro, H. Devarajan, H. Sipma, and T. Uribe. STeP : The Stanford Tem-
poral Prover. Technical report, Stanford Univ., Stanford, CA, 1994.

15. Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer
Science, 83(1):97-130, 1991.

16. 7Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.

17. K.L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Boston,
1993.

18. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. volume 1102 of LNCS, pages
411-414. Springer-Verlag, 1996.

19. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEFE Transactions on
Software Engineering, 21(2):107-125, Feb. 1995.

20. J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. 5th Int. Sym. on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337-351. Springer-Verlag, 1982.

This article was typeset using the IMTEX macro package with the LLNCS2E class.



