
On-the-fly Test Synthesis
with TGV

Thierry Jéron
Irisa / Inria Rennes

http://www.irisa.fr/pampa,
e-mail: Thierry.Jeron@irisa.fr

Plan

 o1. Conformance Testing

 o2. The TGV project

 o3. Experiments and Industrial Transfer

 o4. Ongoing Work in Testing

1. Conformance Testing
Testing problem: check if animplementation under test (IUT)

of a reactive systemconforms (or not)to itsspecification.
Black box testing: the source code of the IUT isunknown,

only theinterface can becontrolled andobserved
by thetester.

.

IUT

Specification

control

observation

conformance ?

Conformance testing
 o Practice: derive a set oftest cases from the specification,

implement test cases in atester,
try to finderrors (test cases serve asoracles) or gain confidence.

IUT
Tester

Specification

{Test Cases}
verdict

control

observation

(fail , pass, inconc)

Test derivation process
conformance ?

Industrial Practice
 o Manual conception of test suites from informal specifications

- long and repetitive process,
up to 30% of the cost of development process

- subject to errors : up to 20%
- no clear definition of conformance
- maintenance of test suites is difficult

⇒ Automation of test generation from formal specifications
can be profit earning

Conformance testing of protocols
 o Telecom is governed by standards:

- Formal description techniques:Estelle, Lotos, SDL
- ISO 9646:Conformance Testing Methodology and Framework
- -> Test description langages:TTCN (Tree and Tabular Combined

Notation), MSC (Message Sequence Charts),
- Standardized protocols(in SDL in general)
- Standardized test suites

 o Difficulties for automation
- asynchronous communication
- non-determinism
- specificities of different levels: low level -> control

high level -> data
- large and detailed specifications
- constraint to produce test cases similar to manual ones

Structure of test cases (TTCN)
 o Test Purpose:goal of the test case

 o Declarations(types, PCOs),constraints (variables and message parameters).

 o Behavior: reactive program played by theTester against theIUT
Preamble: leads to the initial state of the test purpose
Test body: checks the test purpose
Postamble:back to a stable state or initial state after a verdict.
Timers: observation of quiescence of the IUT.

 o Verdicts:
FAIL : rejection (unauthorized timeout or unspecified input)
(PASS): Test Purpose reached,PASS: and back to a stable state
INCONCLUSIVE : specified input butTest Purposenot reachable

Test cases are re-run until a Fail or Pass verdict is reached

Example: A Simplified Phone Box

0

4

1

5

2

6

3 7

card_out

return

card_in

i_check

accept

return

card_out

i_timeout

number card_out

hang_up

bell

card_out

bell

connected

hang_up

hang_up

i_expired

Spec
!

!

!

!

!

?
?

?
?

?
?

?

!

?

?

laterconnect

number and

Test Purpose:

Expected test case

?accept

! number

 ? bell

 ?connected

!card_in?return

(PASS) ? bell

FAIL
?otherwise

PASS

!hang_up

!card_out

?return

Preamble

Test Body

Postamble

start TAC

?timeout TAC

reset TAC

start TAC

reset TAC
start TAC

reset TAC
start TAC reset TAC

start TAC

reset TAC

reset TAC

elimination of

output freedom of S
mirror image

internal actions

timers management

extraction of behavior
Work needed

Automatic Test Synthesis

(Partial) State Graph

Observable
behavior

Test purpose

Reduction of internal actions
Determinization
(Minimization)

Test generator

IUT

Verdict

development

Exhaustive Simulator

process

Test
execution

Informal
Specification

Formal specification (SDL, Lotos, Estelle)

{ Test cases}
Test Suite =

Automata Theoretic Methods
 o origin: hardware testing

 o models: Mealy machines:

 o fault model: output: , transfer:

 o hypothesis :Spec:input complete, deterministic, minimal, strongly connected
 IUT: input complete, deterministic, minimal (or < k), strongly connected

 o test generation: one test case per transition:
test suite: minimal length sequence with all elementary test cases
algorithms: traveling salesman, flow graphs, linear programming

 o different methods: TT, DS, UIO, W, etc, differ on checking sequences

 o theoretical results: correction and exhaustivity for a fault model + hypothesis.

- strong hypothesis, algorithmic complexity, treatment of non determinism

+ completeness, checking sequences

i/os s’

i/o’s s’ i/os s”

apply i/ check o
s check s’

nsition Systems
 o

 o

 o and Spec
T and Spec after same traces

 o plete

 o l-checking:
on-the-fly execution
test purpose (TGV)

 o
ected
 be rejected.

s, test structure

s’ !o s”
Methods based on Labelled Tra
origin: testing theory, canonical tester.

models: LTS (not well adapted) or IOLTS:

fault model <- > conformance relation between IUT
difference between possible observations of IU

hypothesis : Spec: no hypothesis, IUT: input com

test generation: graph traversal algorithms, mode
- random synthesis (Twente) and
- on-the-fly synthesis guided by a

theoretical results:
unbias: only non conformant IUT may be rej
exhaustiveness: all non conformant IUT may

- no checking sequences
+ weak hypothesis, performant on-the-fly algorithm

s ?i

2. The TGV project
(TestGeneration withVerification technology)

 o Joint project since 94: Verimag Grenoble - Irisa Rennes

 o Goal: usingon the fly model-checking techniques
for efficient test case synthesis for conformance testing.

 o Participants:
- Irisa Rennes:

Researchers: T. Jéron, C. Jard, V. Rusu, C. Viho
Engineers: H. Kahlouche (Montréal), S. Simon, S. Ramangalahy
Ph. D.: P. Morel, L. Nedelka, + training students

- Verimag Grenoble:
Researchers: J.-C. Fernandez (-> LSR), A. Kerbrat (Telelogic),

J. Sifakis,
Ph. D. : M. Bozga, L. Ghirvu

- Inria Grenoble: assistance of H. Garavel for CADP

tics

 o ted from works of
halippou (Cnet Lannion)

 o
ed by a test purpose

 o imize Inconclusive verdicts,

 o L, Lotos,UML

o tocols, hardware, embedded

 o toolbox.

 o logic)
TGV main characteris

Sound testing theory: based on IOLTS and adap
Brinksma and Tretmans (Univ. Twente) and P

Algorithms: on-the-fly model-checking
lazzy construction of a partial state graph guid

Test quality: comparable with manual ones, min
unbias and (theoretical) exhaustiveness

Langage independant: same source code for SD
produces TTCN.

Case studiesin different application domains: pro
systems.

Distribution: free version available in the CADP

Industrial transfert: TestComposer (Verilog/Tele

TGV functionalities
 o Test generation:

 o Generation of the complete test graph:

 o Verification of (manual) test cases

Specification

Test Purpose

TGV Abstract Test Case

Specification

Test Purpose

TGV Test graph
-csg (graph of all

test cases for TP)

Abstract
Test Cases

Specification

TGV_VTS
Abstract Test Case

Abstract Test Case
Corrected/Refined

Test Generation in TGV

Specification S

Black box

Test purpose TP

Test case TC

coherency (preorder)

conformance TGV

Test execution on the IUT

Verdict

automata
for test selection

behavior modelled by an IOLTS

ioco

reject

accept

fail

pass

inconc

IUT I

Properties: unbias : verdict(exec(TC || I) = fail => not (I ioco S)
exhaustivity: if I is fair, not(I ioco S) => exists TP s.t. verdict(exec(TC(S,TP) || I)) = fail

Implementation I

 o s:
,

 o

s’

s s’

!a s”
!a

s s’

!b s”
!a
Models: IOLTS
Transition systems with three kinds of transition

- input: , output:

internal action:

Modelisation facilities:
- non-determinism (automata):

- observable “non-determinism”:

s s’?x s !a

s s’τ

?x

?x

Quiescence
 o quiescence (absence of reaction) of a reactive system is observable

by testing by the use of timers

 o possible quiescence must be computed on the specification

deadlock

livelock

output quiescence

!a

τ

?a

?b

τ ττ

δ

?a

?b

δ

τδ
τ ττ

S Sδ

!a

n

Out(Sδ after σ)

?x

!b
!c

?x

!a

δ

IUT 4

-conformant implementations

bidden
tput

forbidden
quiescence

δ

Conformance relatio

I ioco S

iff
∀ σ ∈traces(Sδ), Out(Iδ after σ) ⊆

?x

!a !b

S

?x

!a

IUT 1

?x

!a !b

IUT 2
?y

IUT 3

!a!c

!c
!c !c

δ

Conformant implementationsSpecification Non

implementation for
ouchoice

partial
specification

δ

Test purposes
Automata used to select behaviors of the specification:

 o Observable and internal actions (-> useful for testing in context)

 o Complete (implicitly => abstraction)

 o Two distinguished sets of trap states:Accept andRefuse
Pass <----> Accept
Fail <--/--> Refuse(traversal cut)

AS \{τ1,τ2}Refuse

!b

Accept

AS \{!b}

AS

AS

TP

τ1

τ2
Test purposeaccepting
sequences withτ1
followed later by !b

Refuse allows to cut sequences
 with aτ2 before any τ1

Principle of on-the-fly generation
o Test Purpose ---> Test Case= mirror imageof theobservable behaviorof a the

part of the Specification behaviorselected by the Test Purpose.
+ a test case should becontrolable

⇒ Lazzy construction of the behavior of the Specification S,
its observable behavior (without internal action and deterministic)
and Test Case selection according to Test Purpose Accept states.

 o Necessitates special algorithms and a particular tool architecture

S

TP
x }

τ-reduction
determinization

SPvis

CTG

TC
TG

controlability
resolution of

generation of
complete
test graph

conflicts

generation
+ controlability

1

2’

on-the-fly generation

2

3

3

Conformance Testing /Model Checking

- consider eachTest Purpose TP as a property
- model-checkS with TP
- generate all witnesses + output freedom of S - internal actions

-- > Complete Test Graph
- add controlability:Test Case TC

{TC} ||

conf
IUT

test generation

?
S

|=
P

?
model-checker

TrueFalse
+

Diagnostic sequence

{TP}

verdict
(PASS, FAIL , Inconc)

+
Witness

Synchronous product

S TP

S x TP

q

q1

p

p1

(q,p)

(q1,p1)

q2

As\ {a,b}

(q3,p)

a
b

a c

a

q3

c
b

p2

(q2,p2)

b

Accept Refuse

Accept

Refuse

As As

τ*-reduction (local view)

τ

τ

τ

τ
τ

τ

τ

q0

q5q1 q3

q2 q6

q4

q0

q1,q2,q3 q5

q6q4

τ τ

τ
τ

?a

!b
?a

!c

q10

q11

q12

q13

q14

?a

(?a, q12)

scc1

scc2
scc4

scc3
scc5

(δ, scc3)

(δ, scc5)

(δ, scc5)
(!c, q13)

(δ, scc3.scc2)

(?a, q12)
(!b, q11)

(?a, q12.q14)
(!b, q11)
(!c, q13)
(δ, scc2.scc3.scc5)

(?a, q14)

SCC computation
computation of quiescence(δ)

synthesis of observable actions

(?a, q14)

τ

τ*-reduction and determinization

?a
!b ?c

?a

!b
?c?a

!b

τ

ττ
τ∗δ

δ

δ

SP = S x TP SPvis=det(τ*-red(SPδ))

SP afterσ

τ τ

τ τ τ

ττ
τ
τ τ

τ

SCC (δ) + subset

SPδ after σ.?a SPδ after σ.!b
SPδ after σ.?c

SPδ after σ.δ

Selection of accepted sub-graph of SPvis

SPvis=det(τ*-red(SxTP))
CTG = (L2A ∪ Inconc ∪ {fail} ,

?a
!x ?x

!a

PASS

fail
?otherwise

)+ Accept + Reject
SCC + synthesis
mirror image Avis, s0, ∪ ∪

Elimination of controlability conflicts
o In general CTG is not a test case: not controlable

o Conflicts resolution during DFS + completed by a reverse DFS of CTG

!a !b !a ?xconfigurations:
Forbidden

the tester controls
its outputs

!a
Authorised ?x

?y

?z

configurations

conflict
Several possible traversals:
- breadth first starting from Pass states

- depth first
-> shortest paths

- SCC (Tarjan) :

-> garbage collection

Pruning modifies reachability to initial state=>
reachability problem

synthesis of information L2init in →CTG
-1

Functional architecture of TGV

API of SP

Synchronous Product

API of S API of TP

τ* reduction and

API of SPVIS

Compiler for SDL, Lotos, etc

Specification Spec(SDL, LOTOS, Aldébaran, ...)

Accepted sub-graph computation
Complete

API of CTG or TG

Optimized

without pruning with pruning

Test purposeTP(Aldébaran)

O
n

th
e

fly

st
or

ag
e

A
P

I
of

 C
A

D
P

Residual conflict resolution

SCC (Tarjan)

subset construction
+

SCC

SCC

Test case TC(TTCN)

Simulator
libraries

determinization

Each API provides the functions:
- init: initial state
- fireable(s):{fireable transitions in t}
- succ(s,t):state reached after t in s

The APIs of SP, SPvis provides also

- Reject(s)
- Accept(s)

The API of CTG or TG provides also
- Pass(s)
- Inconc(s)
- Fail(s)

(Manual) Test case verification

 o Semi-automatic generation: TC outputs proposed by user, inputs and verdicts
computed according to Spec usingτ*-reduction and determinization

API of S x TC

Synchronous Product

API of S API of TC

τ* reduction and

API of det(t*(S x TC))

Compiler

Specification Spec(SDL, LOTOS, Aldébaran, ...)

Depth first traversal

Test Case TC(Aldébaran)

O
n

th
e

fly

st
or

ag
e

A
P

I
of

 C
A

D
P

SCC (Tarjan)

subset construction
+

Unbiased Test case TC’(TTCN)

Simulator
libraries

determinization

- verification of unbias and correction
- reduction if TC accepts non conformant IUT

Variant of TGV used for:
- Verification of unbias of

(manual) test cases
and correction in case of bias

TC biased if TC rejects a conformant IUT

- Refinement if permissiveness
TC permissive if some of its transitions
could produce a fail

Small example: initiator process of Inres in SDL

Complete state graph (not minimized)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

pco !idisind

i

pco !idisind

pco?iconreq

pco !idisind

pco !iconconf

pco?idis
pco !idisind

pco !idisind

pco !icon

i

pco?iconf

pco?idis

pco?idatreq((. white .))

pco?idatreq((. red .))

pco?idis

pco !t

pco !idat((. red .))

pco !idisind

pco !idat((. white .))

pco !idisind

pco?t

A simple test purpose

*

!idat(red)

Accept

Complete Test Graph generated by TGV

8

4

0

10

9

5

1

6

2

7

3

pco?idisind

pco !idis

pco !iconreq

pco?icon

pco?idisind

pco?idisind

pco !iconf

pco?idisind

pco !idis

pco?idisind

pco?iconconf

pco !idatreq((. red .))

pco !idatreq((. white .))
pco !idis

pco?idisind

pco?idat((. white .))

pco?idisind

pco?idat((. red .)), (PASS)

Controlable test case produced on the fly

4

0

5

1

6

2

3

pco?iconconf

pco !iconreq

pco !idatreq((. red .))

pco?icon

pco?idat((. red .)), (PASS)

pco?idisind

pco?idisindpco !iconf

TTCN test case

3. Experiments and Industrial Transfert
 o DREX protocol in SDL (military version of D protocol)

- contract with French Army, CNET, Verilog, Cap Sesa, Verimag, Irisa.
5 service specification (1 per service):

1 process, 35 SDL transitions, 1800 lines of SDL PR, 50 pages of SDL GR.

test case generation: first version of TGV on explicit graphs,
50 test purposes

comparisonwith manual test cases (some errors detected)
with test cases generated by TVeda(CNET) and TTCgeN(Verilog)

result: clearly demonstrated the interest of the approach
in terms of efficiency and test quality.

DE
asynchronousTester

DRdr

de

DREX
communication

 o Cache coherency protocol of the Polykid architecture in Lotos
Cooperation with Bull, INRIA Rhones-Alpes, Irisa

Lotos specification: 2000 lines (1800 ADT, 200 control), 1 process.

- test case generation:
“on the fly” with a connection to the Open Caesar Lotos simulator.

- test case execution:
on the Polykid architecture by a translation of test cases in C.

- results:
- design and coding of a second version of TGV “on the fly”
- use of TGV in a different application domain
- complete chain from specification to test execution
- work still continues on other architectures

o SSCOP protocol of the ATM stack in SDL
Specification:1 process (2 in the asynchronous case),

7000 lines in SDL PR, 100 pages of SDL GR, 175 SDL transitions

test architecture: local with 1PCO and remote with 2PCOs.

Lower
SSCOP

SSCF (responder)

PCO
SSCOP

PCO
 synchronous communication fifo

Lower PCO

 Upper TesterTCP

Tester Tester

SSCOP (continued)

 o Test generation:
- connection of the on-the-fly version of TGV to the ObjectGéode

simulator of Verilog.
- test generation from 50 complex test purposes.

 o Test case verification and correction(unbias and laxness)
- from TTCN test suite translated into our input format (Lex,Yacc)
- verification of test cases w.r.t SDL spec.

using TGV_VTS connected to ObjectGeode .
- 110/250 test cases verified (valid PDU, no Invalid or Inoportune PDU)

--> 16 erroneous test cases corrected

o Protocol of an embedded network in the automotive area in SDL.
- draft of the protocol: 2 processes, 1000 lines of SDL PR,

25 pages of SDL GR

- feasability of on-the-fly generation shown on a few test purposes
- connection of TGV “explicit” to SDT of Telelogic by a translation of

the SDT state graph format into Aldebaran format.

Network Management

Fault Storage Error handlingTester

Industrial Transfert
o Design of an industrial test generation tool TestComposer (Verilog)

in the ObjectGéode environment
based on TVéda (CNET), TTCgeN (Verilog) and TGV(Verimag/Irisa)

GAT project 98-99: France Telecom, Verilog, Verimag, Pampa

The design, coding and validation of the algorithms of TGV
was partially done at Irisa.

SDL specification

test purpose generation(TVeda)

test case generation (TTCgeN / TGV)

test purposes

test cases (TTCN)

generated / specific (MSC) / hand written (Goal)

simulation

sting

 o of data in specifications
straint solving,

rds,

 o ation
equential ones,

 (true concurrency models)
chronous testing and remote
4. Ongoing Work in Te

Symbolic test generation for a better treatment
- combination of TGV techniques with con

static analysis and proof (PVS).
- application domains: protocols, smart ca

Distributed testing and asynchronous communic
- synthesis of distributed test cases from s
- direct synthesis of distributed test cases
- results on respective powers of local syn

asynchronous testing using stamps

 o ftware
on framework.

 o
 the tester
 possible control of the IUT.

 o

t purpose

ster
Test synthesis for distributed object oriented so
- connection of TGV with our UML validati

Use of game theory for test generation
- testing = game between the system and
- winning strategies = test cases with best
- to be implemented in TGV

Controler Synthesis and Test Synthesis

specification property/tes

synthesis
observation

control
controler/tesystem

equivalence/conformance

	On-the-fly Test Synthesis with TGV
	Thierry Jéron Irisa / Inria Rennes http://www.irisa.fr/pampa, e-mail: Thierry.Jeron@irisa.fr

	Plan
	o� 1. Conformance Testing
	o� 2. The TGV project
	o� 3. Experiments and Industrial Transfer
	o� 4. Ongoing Work in Testing

	1. Conformance Testing
	Testing problem: check if an implementation under test (IUT) ����������������������������������of...
	Black box testing: the source code of the IUT is unknown, ��������������������������only the inte...
	��������������������������������by the tester.
	.

	Industrial Practice
	o� Manual conception of test suites from informal specifications
	- long and repetitive process, up to 30% of the cost of development process
	- subject to errors : up to 20%
	- no clear definition of conformance
	- maintenance of test suites is difficult

	ﬁ Automation of test generation from formal specifications can be profit earning

	Conformance testing of protocols
	o� Telecom is governed by standards:
	- Formal description techniques: Estelle, Lotos, SDL
	- ISO 9646: Conformance Testing Methodology and Framework
	- -> Test description langages: TTCN (Tree and Tabular Combined Notation), MSC (Message Sequence ...
	- Standardized protocols (in SDL in general)
	- Standardized test suites

	o� Difficulties for automation
	- asynchronous communication
	- non-determinism
	- specificities of different levels: low level -> control ���������������������������������������...
	- large and detailed specifications
	- constraint to produce test cases similar to manual ones

	Automatic Test Synthesis
	Automata Theoretic Methods
	o� origin: hardware testing
	o� models: Mealy machines:
	o� fault model: output: , transfer:
	o� hypothesis : Spec: input complete, deterministic, minimal, strongly connected ��������� IUT: i...
	o� test generation: one test case per transition: test suite: minimal length sequence with all el...
	o� different methods: TT, DS, UIO, W, etc, differ on checking sequences
	o� theoretical results: correction and exhaustivity for a fault model + hypothesis.
	- strong hypothesis, algorithmic complexity, treatment of non determinism
	+ completeness, checking sequences

	Methods based on Labelled Transition Systems
	o� origin: testing theory, canonical tester.
	o� models: LTS (not well adapted) or IOLTS:
	o� fault model <- > conformance relation between IUT and Spec difference between possible observa...
	o� hypothesis : Spec: no hypothesis, IUT: input complete
	o� test generation: graph traversal algorithms, model-checking: ���������������������- random syn...
	o� theoretical results: ���unbias: only non conformant IUT may be rejected ���exhaustiveness: all...
	- no checking sequences
	+ weak hypothesis, performant on-the-fly algorithms, test structure

	TGV main characteristics
	o� Sound testing theory: based on IOLTS and adapted from works of Brinksma and Tretmans (Univ. Tw...
	o� Algorithms: on-the-fly model-checking lazzy construction of a partial state graph guided by a ...
	o� Test quality: comparable with manual ones, minimize Inconclusive verdicts, unbias and (theoret...
	o� Langage independant: same source code for SDL, Lotos,UML produces TTCN.
	o� Case studies in different application domains: protocols, hardware, embedded systems.
	o� Distribution: free version available in the CADP toolbox.
	o� Industrial transfert: TestComposer (Verilog/Telelogic)

	Models: IOLTS
	o� Transition systems with three kinds of transitions:
	- input: , output: , internal action:

	o� Modelisation facilities:
	- non-determinism (automata):
	- observable “non-determinism”:

	Conformance relation
	Functional architecture of TGV
	(Manual) Test case verification
	- Verification of unbias of ���(manual) test cases ���and correction in case of bias
	TC biased if TC rejects a conformant IUT
	- Refinement if permissiveness
	TC permissive if some of its transitions could produce a fail
	o� Semi-automatic generation: TC outputs proposed by user, inputs and verdicts computed according...

	Test Generation in TGV
	Test purposes
	Automata used to select behaviors of the specification:
	o� Observable and internal actions (-> useful for testing in context)
	o� Complete (implicitly => abstraction)
	o� Two distinguished sets of trap states: Accept and Refuse
	����������Pass <----> Accept
	���������� Fail <--/--> Refuse (traversal cut)

	Small example: initiator process of Inres in SDL
	Complete state graph (not minimized)
	A simple test purpose
	Complete Test Graph generated by TGV
	Controlable test case produced on the fly
	TTCN test case
	Principle of on-the-fly generation
	o� Test Purpose ---> Test Case = mirror image of the observable behavior of a the part of the Spe...
	o� Necessitates special algorithms and a particular tool architecture

	Conformance Testing / Model Checking
	- consider each Test Purpose TP as a property
	- model-check S with TP
	- generate all witnesses + output freedom of S - internal actions �����������������������-- > Com...
	- add controlability: Test Case TC

	4. Ongoing Work in Testing
	o� Symbolic test generation for a better treatment of data in specifications
	- combination of TGV techniques with constraint solving, static analysis and proof (PVS).
	- application domains: protocols, smart cards,

	o� Distributed testing and asynchronous communication
	- synthesis of distributed test cases from sequential ones,
	- direct synthesis of distributed test cases (true concurrency models)
	- results on respective powers of local synchronous testing and remote asynchronous testing using...

	o� Test synthesis for distributed object oriented software
	- connection of TGV with our UML validation framework.

	o� Use of game theory for test generation
	- testing = game between the system and the tester
	- winning strategies = test cases with best possible control of the IUT.
	- to be implemented in TGV

	o� Controler Synthesis and Test Synthesis

	Structure of test cases (TTCN)
	o� Test Purpose: goal of the test case
	o� Declarations (types, PCOs), constraints (variables and message parameters).
	o� Behavior: reactive program played by the Tester against the IUT Preamble: leads to the initial...
	o� Verdicts:
	FAIL: rejection (unauthorized timeout or unspecified input)
	(PASS): Test Purpose reached, PASS: and back to a stable state
	INCONCLUSIVE: specified input but Test Purpose not reachable
	Test cases are re-run until a Fail or Pass verdict is reached

	Example: A Simplified Phone Box
	TGV functionalities
	o� Test generation:
	o� Generation of the complete test graph:
	o� Verification of (manual) test cases

	Quiescence
	o� quiescence (absence of reaction) of a reactive system is observable by testing by the use of t...
	o� possible quiescence must be computed on the specification

	Synchronous product
	2. The TGV project (Test Generation with Verification technology)
	o� Joint project since 94: Verimag Grenoble - Irisa Rennes
	o� Goal: using on the fly model-checking techniques �������for efficient test case synthesis for ...
	o� Participants:
	- Irisa Rennes: Researchers: T. Jéron, C. Jard, V. Rusu, C. Viho Engineers: H. Kahlouche (Montréa...
	- Verimag Grenoble: Researchers: J.-C. Fernandez (-> LSR), A. Kerbrat (Telelogic), ��������������...
	- Inria Grenoble: assistance of H. Garavel for CADP

	Conformance testing
	o� Practice: derive a set of test cases from the specification,
	�����������implement test cases in a tester,
	������������try to find errors (test cases serve as oracles) or gain confidence.

	Expected test case
	t*-reduction and determinization
	o� Cache coherency protocol of the Polykid architecture in Lotos Cooperation with Bull, INRIA Rho...
	Lotos specification: 2000 lines (1800 ADT, 200 control), 1 process.
	- test case generation: �������“on the fly” with a connection to the Open Caesar Lotos simulator.
	- test case execution: ��������on the Polykid architecture by a translation of test cases in C.
	- results: �����- design and coding of a second version of TGV “on the fly” �����- use of TGV in ...
	o�� SSCOP protocol of the ATM stack in SDL

	Specification: 1 process (2 in the asynchronous case), ��������������������7000 lines in SDL PR, ...
	test architecture: local with 1PCO and remote with 2PCOs.
	SSCOP (continued)
	o� Test generation:
	- connection of the on-the-fly version of TGV to the ObjectGéode simulator of Verilog.
	- test generation from 50 complex test purposes.

	o� Test case verification and correction (unbias and laxness)
	- from TTCN test suite translated into our input format (Lex,Yacc)
	- verification of test cases w.r.t SDL spec. using TGV_VTS connected to ObjectGeode .
	- 110/250 test cases verified (valid PDU, no Invalid or Inoportune PDU) ���--> 16 erroneous test ...

	o�� Protocol of an embedded network in the automotive area in SDL.
	- draft of the protocol: 2 processes, 1000 lines of SDL PR, 25 pages of SDL GR
	- feasability of on-the-fly generation shown on a few test purposes
	- connection of TGV “explicit” to SDT of Telelogic by a translation of the SDT state graph format...

	Industrial Transfert
	o�� Design of an industrial test generation tool TestComposer (Verilog) in the ObjectGéode enviro...
	GAT project 98-99: France Telecom, Verilog, Verimag, Pampa
	The design, coding and validation of the algorithms of TGV ������was partially done at Irisa.

	3. Experiments and Industrial Transfert
	o� DREX protocol in SDL (military version of D protocol)
	- contract with French Army, CNET, Verilog, Cap Sesa, Verimag, Irisa.
	5 service specification (1 per service): �������1 process, 35 SDL transitions, 1800 lines of SDL ...
	test case generation: first version of TGV on explicit graphs, ����������������������������������...
	comparison with manual test cases (some errors detected) ������������������������with test cases ...
	result: clearly demonstrated the interest of the approach ����������������in terms of efficiency ...

	Selection of accepted sub-graph of SPvis
	Elimination of controlability conflicts
	o�� In general CTG is not a test case: not controlable
	o�� Conflicts resolution during DFS + completed by a reverse DFS of CTG

	t*-reduction (local view)

