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Plan

 o1. Conformance Testing

 o2. The TGV project

 o3. Experiments and Industrial Transfer

 o4. Ongoing Work in Testing



1. Conformance Testing
Testing problem: check if animplementation under test (IUT)

of a reactive systemconforms (or not)to itsspecification.
Black box testing: the source code of the IUT isunknown,

only theinterface can becontrolled andobserved
by thetester.
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Conformance testing
 o Practice: derive a set oftest cases from the specification,

implement test cases in atester,
try to finderrors (test cases serve asoracles) or gain confidence.

IUT
Tester

Specification

{Test Cases}
verdict

control
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(fail , pass, inconc)

Test derivation process
conformance ?



Industrial Practice
 o Manual conception of test suites from informal specifications

- long and repetitive process,
up to 30% of the cost of development process

- subject to errors : up to 20%
- no clear definition of conformance
- maintenance of test suites is difficult

⇒ Automation of test generation from formal specifications
can be profit earning



Conformance testing of protocols
 o Telecom is governed by standards:

- Formal description techniques:Estelle, Lotos, SDL
- ISO 9646:Conformance Testing Methodology and Framework
- -> Test description langages:TTCN (Tree and Tabular Combined

Notation), MSC (Message Sequence Charts),
- Standardized protocols(in SDL in general)
- Standardized test suites

 o Difficulties for automation
- asynchronous communication
- non-determinism
- specificities of different levels: low level -> control

high level -> data
- large and detailed specifications
- constraint to produce test cases similar to manual ones



Structure of test cases (TTCN)
 o Test Purpose:goal of the test case

 o Declarations(types, PCOs),constraints (variables and message parameters).

 o Behavior: reactive program played by theTester against theIUT
Preamble: leads to the initial state of the test purpose
Test body: checks the test purpose
Postamble:back to a stable state or initial state after a verdict.
Timers: observation of quiescence of the IUT.

 o Verdicts:
FAIL : rejection (unauthorized timeout or unspecified input)
(PASS): Test Purpose reached,PASS: and back to a stable state
INCONCLUSIVE : specified input butTest Purposenot reachable

Test cases are re-run until a Fail or Pass verdict is reached



Example: A Simplified Phone Box
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Expected test case
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Automatic Test Synthesis

(Partial) State Graph
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Automata Theoretic Methods
 o origin: hardware testing

 o models: Mealy machines:

 o fault model: output: , transfer:

 o hypothesis :Spec:input complete, deterministic, minimal, strongly connected
 IUT: input complete, deterministic, minimal (or < k), strongly connected

 o test generation: one test case per transition:
test suite: minimal length sequence with all elementary test cases
algorithms: traveling salesman, flow graphs, linear programming

 o different methods: TT, DS, UIO, W, etc, differ on checking sequences

 o theoretical results: correction and exhaustivity for a fault model + hypothesis.

- strong hypothesis, algorithmic complexity, treatment of non determinism

+ completeness, checking sequences
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2. The TGV project
(TestGeneration withVerification technology)

 o Joint project since 94: Verimag Grenoble - Irisa Rennes

 o Goal: usingon the fly model-checking techniques
for efficient test case synthesis for conformance testing.

 o Participants:
- Irisa Rennes:

Researchers: T. Jéron, C. Jard, V. Rusu, C. Viho
Engineers: H. Kahlouche (Montréal), S. Simon, S. Ramangalahy
Ph. D.: P. Morel, L. Nedelka, + training students

- Verimag Grenoble:
Researchers: J.-C. Fernandez (-> LSR), A. Kerbrat (Telelogic),

J. Sifakis,
Ph. D. : M. Bozga, L. Ghirvu

- Inria Grenoble: assistance of H. Garavel for CADP
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TGV functionalities
 o Test generation:

 o Generation of the complete test graph:

 o Verification of (manual) test cases
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Test Purpose

TGV Abstract Test Case

Specification

Test Purpose

TGV Test graph
-csg (graph of all

test cases for TP)

Abstract
Test Cases

Specification

TGV_VTS
Abstract Test Case
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Test Generation in TGV

Specification S

Black box

Test purpose TP

Test case TC

coherency (preorder)

conformance TGV

Test execution on the IUT

Verdict
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for test selection
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Properties: unbias : verdict(exec(TC || I ) = fail => not (I ioco S)
exhaustivity: if I is fair, not( I ioco S) => exists TP s.t. verdict(exec(TC(S,TP) || I) ) = fail

Implementation I
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Quiescence
 o quiescence (absence of reaction) of a reactive system is observable

by testing by the use of timers

 o possible quiescence must be computed on the specification
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Test purposes
Automata used to select behaviors of the specification:

 o Observable and internal actions (-> useful for testing in context)

 o Complete (implicitly => abstraction)

 o Two distinguished sets of trap states:Accept andRefuse
Pass <----> Accept
Fail <--/--> Refuse(traversal cut)

AS \{τ1,τ2}Refuse

!b

Accept

AS \{!b}

AS

AS

TP

τ1

τ2
Test purposeaccepting
sequences withτ1
followed later by !b

Refuse allows to cut sequences
 with aτ2 before any τ1



Principle of on-the-fly generation
o Test Purpose ---> Test Case= mirror imageof theobservable behaviorof a the

part of the Specification behaviorselected by the Test Purpose.
+ a test case should becontrolable

⇒ Lazzy construction of the behavior of the Specification S,
its observable behavior (without internal action and deterministic)
and Test Case selection according to Test Purpose Accept states.

 o Necessitates special algorithms and a particular tool architecture

S

TP
x }

τ-reduction
determinization
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Conformance Testing /Model Checking

- consider eachTest Purpose TP as a property
- model-checkS with TP
- generate all witnesses + output freedom of S - internal actions

-- > Complete Test Graph
- add controlability:Test Case TC

{TC} ||

conf
IUT

test generation

?
S

|=
P

?
model-checker

TrueFalse
+

Diagnostic sequence

{TP}

verdict
(PASS, FAIL , Inconc)

+
Witness



Synchronous product

S TP

S x TP

q

q1

p

p1

(q,p)

(q1,p1)

q2

As\ {a,b}

(q3,p)

a
b

a c

a

q3

c
b

p2

(q2,p2)

b

Accept Refuse

Accept

Refuse

As As



τ*-reduction (local view)
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τ*-reduction and determinization
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Selection of accepted sub-graph of SPvis

SPvis=det(τ*-red(SxTP))
CTG = ( L2A ∪ Inconc ∪ {fail} ,

?a
!x ?x

!a

PASS

fail
?otherwise

)+ Accept + Reject
SCC + synthesis
mirror image Avis, s0, ∪ ∪



Elimination of controlability conflicts
o In general CTG is not a test case: not controlable

o Conflicts resolution during DFS + completed by a reverse DFS of CTG

!a !b !a ?xconfigurations:
Forbidden

the tester controls
its outputs

!a
Authorised ?x

?y

?z

configurations

conflict
Several possible traversals:
- breadth first starting from Pass states

- depth first
-> shortest paths

- SCC (Tarjan) :

-> garbage collection

Pruning modifies reachability to initial state=>
reachability problem

synthesis of information L2init in →CTG
-1



Functional architecture of TGV
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Synchronous Product
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- Reject(s)
- Accept(s)

The API of CTG or TG provides also
- Pass(s)
- Inconc(s)
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(Manual) Test case verification

 o Semi-automatic generation: TC outputs proposed by user, inputs and verdicts
computed according to Spec usingτ*-reduction and determinization

API of S x TC

Synchronous Product

API of S API of TC

τ*  reduction and

API of det(t*(S x TC))

Compiler

Specification Spec(SDL, LOTOS, Aldébaran, ...)

Depth first traversal
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+

Unbiased Test case TC’(TTCN)

Simulator
libraries

determinization

- verification of unbias and correction
- reduction if TC accepts non conformant IUT

Variant of TGV used for:
- Verification of unbias of

(manual) test cases
and correction in case of bias

TC biased if TC rejects a conformant IUT

- Refinement if permissiveness
TC permissive if some of its transitions
could produce a fail



Small example: initiator process of Inres in SDL



Complete state graph (not minimized)
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A simple test purpose
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Complete Test Graph generated by TGV
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Controlable test case produced on the fly
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TTCN test case



3. Experiments and Industrial Transfert
 o DREX protocol in SDL (military version of D protocol)

- contract with French Army, CNET, Verilog, Cap Sesa, Verimag, Irisa.
5 service specification (1 per service):

1 process, 35 SDL transitions, 1800 lines of SDL PR, 50 pages of SDL GR.

test case generation: first version of TGV on explicit graphs,
50 test purposes

comparisonwith manual test cases (some errors detected)
with test cases generated by TVeda(CNET) and TTCgeN(Verilog)

result: clearly demonstrated the interest of the approach
in terms of efficiency and test quality.

DE
asynchronousTester

DRdr

de

DREX
communication



 o Cache coherency protocol of the Polykid architecture in Lotos
Cooperation with Bull, INRIA Rhones-Alpes, Irisa

Lotos specification: 2000 lines (1800 ADT, 200 control), 1 process.

- test case generation:
“on the fly” with a connection to the Open Caesar Lotos simulator.

- test case execution:
on the Polykid architecture by a translation of test cases in C.

- results:
- design and coding of a second version of TGV “on the fly”
- use of TGV in a different application domain
- complete chain from specification to test execution
- work still continues on other architectures



o SSCOP protocol of the ATM stack in SDL
Specification:1 process (2 in the asynchronous case),

7000 lines in SDL PR, 100 pages of SDL GR, 175 SDL transitions

test architecture: local with 1PCO and remote with 2PCOs.

Lower
SSCOP

SSCF (responder)

PCO
SSCOP

PCO
 synchronous communication fifo

Lower PCO

 Upper TesterTCP

Tester Tester



SSCOP (continued)

 o Test generation:
- connection of the on-the-fly version of TGV to the ObjectGéode

simulator of Verilog.
- test generation from 50 complex test purposes.

 o Test case verification and correction(unbias and laxness)
- from TTCN test suite translated into our input format (Lex,Yacc)
- verification of test cases w.r.t SDL spec.

using TGV_VTS connected to ObjectGeode .
- 110/250 test cases verified (valid PDU, no Invalid or Inoportune PDU)

--> 16 erroneous test cases corrected



o Protocol of an embedded network in the automotive area in SDL.
- draft of the protocol: 2 processes, 1000 lines of SDL PR,

25 pages of SDL GR

- feasability of on-the-fly generation shown on a few test purposes
- connection of TGV “explicit” to SDT of Telelogic by a translation of

the SDT state graph format into Aldebaran format.

Network Management

Fault Storage Error handlingTester



Industrial Transfert
o Design of an industrial test generation tool TestComposer (Verilog)

in the ObjectGéode environment
based on TVéda (CNET), TTCgeN (Verilog) and TGV(Verimag/Irisa)

GAT project 98-99: France Telecom, Verilog, Verimag, Pampa

The design, coding and validation of the algorithms of TGV
was partially done at Irisa.

SDL specification

test purpose generation(TVeda)

test case generation (TTCgeN / TGV)

test purposes

test cases (TTCN)

generated / specific (MSC) / hand written (Goal)

simulation
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