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Abstract This paper presents an operational semantics for a subset
of Java Card bytecode, focussing on aspects of the Java Card firewall,
method invocation, field access, variable access, shareable objects and
contexts. The goal is to provide a precise description of the Java Card
firewall using standard tools from operational semantics. Such a descrip-
tion is necessary for formally arguing the correctness of tools for validat-
ing the security of Java Card applications.

1 Introduction

Java Card is being promoted as a high-level language for programming of multi-
application smart cards. The high-level nature of the language should ease the
programming and the reasoning about such applications. Java Card keeps the
essence of Java, like inheritance, virtual methods, overloading, etc, but leaves
out features such as large primitive data types (long, double and float), char-
acters and strings, multidimensional arrays, garbage collection, object cloning,
the security manager, etc. (see the specification [1] and also [8]). Furthermore,
given the security-critical application areas of Java Card, the language has been
endowed with an elaborate security architecture.

Central to this architecture is the Java Card firewall. Applets installed on
the card are separated by a firewall that prevents one applet from accessing
objects owned by another applet. Shareable objects and interfaces are used to
provide communication between otherwise separated applets. A limited form of
stack inspection allows a server applet to know the identity of the client that
requested a particular service. These mechanisms (that will be further detailed
in section 2) facilitate the design of secure applications but do not in themselves
guarantee security. They do, however, offer the possibility of formal verification
of the security of an application using tools from semantics and static program
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analysis. The purpose of this paper is to give a formal semantic description of
the Java Card firewall. The interest of such a description lies in its use as a
foundation for designing and proving static analysis methods for verifying the
security of a multi-application Java Card, but for lack of space we do not detail
this here.

The paper is organised as follows. In section 2 we give a description of the
central security features of Java Card 2.1.1. This is followed by the definition of
semantics domains in section 3 and the operational semantic of selected bytecode
in section 4. In section 5, we discuss related work.

2 The Java Card firewall

The Java Card platform is a multi-application environment in which an applet’s
sensitive data must be protected against malicious access. In Java, this protection
is achieved by using class loaders and security managers to create private name
spaces for applets. In Java Card, class loaders and security managers have been
replaced with the Java Card firewall. The separation that is enforced by the
firewall is based on the package structure of Java Card (which is the same as
that of Java) and the notion of contexts.

When an applet is created, the JCRE gives it a unique applet identifier (AID)
from which it is possible to retrieve the name of the package in which it is defined.
If two applets are instances of classes coming from the same Java Card package,
they are said to belong to the same context (which we identify by the package
name). In addition to the contexts defined by the applets executing on the card,
there is a special “system” context, called the JCRE context. Applets belonging
to this context can access objects from any other context on the card. Thus, the
set Contexts of contexts can be defined by:

Contexts = {JCRE} ∪ {pckg : pckg is a legal package name}

Every object is assigned a unique owner context viz., the context of the applet
that created the object. A method of an object is said to execute in the owner
context of the object1. It is this context that decides whether an access to another
object will succeed. The firewall isolates the contexts in the sense that a method
executing in one context cannot access any fields or methods of objects belonging
to another context.

There are two ways in which the firewall can be circumvented: via JCRE
entry points and via shareable objects. JCRE entry points are objects owned by
the JCRE that have been designated specifically as objects that can be accessed
from any context. The most prominent example is the APDU buffer in which
commands sent to the card are stored. This object is managed by the JCRE
and in order to allow applets to access this object, it is designated as an entry
point. Other examples include the elements of the table containing the AIDs
of the applets installed on the card. Entry points can be marked as temporary.

————————————————————
1 In the case of static call, the execution is in the caller’s context.



References to temporary entry points cannot be stored in objects (this is enforced
by the firewall).

Two applets in different contexts may want to share some information. For
that, Java Card offers a sharing mechanism, called shareable objects, that gives
limited access to objects across contexts. An applet can allow access to an ob-
ject’s methods from outside its context (it is impossible to share fields) by using
a shareable interface that is, an interface which extends javacard.framework.-

Shareable. In this interface, the applet gives the list of the method’s signatures
that it wants to share. The class of the object to be shared must implement this
interface. The “server” applet must define a method, getShareableInterface-

Object. This method is called when an applet is asked to provide a shared ob-
ject. It is passed as parameter the AID of the “client” applet which requested
the shared object. This allows different objects to be shared with client applets.

In the following section, we give a small example to illustrate these sharing
mechanisms.

2.1 A simple scenario

We have 3 applets: Alice, Bob and Charlie, each belonging to a different context.
Alice implements a shareable interface MSI and she is prepared to share an object
MSIO with Bob (MSIO is an instance of a class that implements MSI). When Al-
ice receives a request for sharing (using the method getShareableInterfaceObject,
she verifies that the caller is Bob. If it is Bob, she returns the MSIO, otherwise
she returns null (see also section 4).
public class Alice extends Applet implements MSI {

public Shareable getShareableInterfaceObject (AID client, byte param){

if (client.equals (BobAID, (short)0, (byte)BobAID.length) == false)

return null;

return (this); } }

Using the method JCSystem.getAppletShareableInterfaceObject, Bob asks for
a shareable object from Alice. Assume now that Bob (inadvertantly) leaks a
reference to MSIO to the third applet Charlie2. With it, Charlie can access the
same methods as Bob.
public class Bob extends Applet {

public static MSI AliceObject;

AliceObject =

(MSI)JCSystem.getAppletShareableInterfaceObject(AliceAID,(byte)0);}

public class Charlie extends Applet {

private static MSI AliceObject;

AliceObject = Bob.AliceObject;

// The method void foo () exists in MSI

AliceObject.foo (); }

------------------------------------------------------------
2 for example, by storing the reference into a public static field (there are other more

subtle ways in which this can happen)



Alice has some doubts about Bob so she decides to verify, at each access to
one of her shared methods, the identity of the caller. In this case Charlie can’t
access MSIO anymore.

public class Alice extends Applet implements MSI {

public void foo () {

// The caller is Bob?

AID client = JCSystem.getPreviousContextAID ();

if (client.equals (BobAID, (short)0, (byte)BobAID.length) == false)

ISOException.ThrowIt (SW UNAUTHORIZED CLIENT);

... // OK, the caller was Bob } }

2.2 Limitations of the firewall

As illustrated by this example, Java Card has a limited form of the stack in-
spection mechanism that underlies the Java 2 security architecture. The Java 2
checkPermission instruction verifies whether all callers on the call stack have a
specific permission (e.g. to write a file in a given directory). Java Card contains
a mechanism for knowing from which context a method was called but there is
no mechasnism for obtaining the identity of all the callers. More precisely, an
applet can get a description of the last context switch that took place, by calling
the method getPreviousContextAID. (Notice that this context switch could have
happened several levels down in the call stack.) In the example, Alice does not
know whether the call made by Bob is in turn a result of Bob being called by
some other applet. Neither can she know what Bob will do with the result of
the call. This is problematic since an object is only marked as shared, not with
whom it is supposed to be shared. Thus, while the firewall can serve to prevent
direct information flow, further program analysis is required in order to verify
that all information flow of the application respects a given security policy.

3 Semantic description of the Java Card firewall

In the following we describe the semantic domains of a modified version of Java
Card bytecode. Rather than a stack-oriented bytecode we shall be working with a
“three-address” bytecode where arguments and results of a bytecode instruction
are fetched and stored in local variables instead of being popped and pushed
from a stack. This format is similar to the intermediate language used in the
Java tool Jimple [17]. Furthermore, we assume that the constant pool has been
expanded i.e. that indices into the constant pool have been replaced by the
corresponding constant. For example, the bytecode instruction invokevirtual

takes as parameter the signature of the method called, rather than an index into
the constant pool. The transformation of code into this format is standard and
straightforward.



3.1 Notation

The term P(X) denotes the power set of X: P(X) ≡ {S | S ⊆ X}. A product
type X = A×B ×C is sometimes treated as a labelled record: with an element
x of type X we can access its field with the names of its constituent types (x.A,
x.B or x.C). A list can be given by enumeration of its elements: x1 :: · · · :: xn.
Given a list v we can access one of its element by its position in the list (v(i)
for the ith element). And finally, we can concatenate two lists: (x1 :: · · · :: xn) :::
(xm :: · · · :: xp) = x1 :: · · · :: xn :: xm :: · · · :: xp. We denote, by X∗, the type
of finite lists, whose elements are of type X. We use the symbol → to form the
type of partial functions: X → Y. We can update a function f with a new value
v for an argument x: g := f[x 7→ v]. We (ab)use the same notation for objects:
the object obtained from object o by modifying field f to have value v is written
o[f 7→ v].

3.2 Semantic types

Our semantic domains follow the same structure as the domains defined by
Bertelsen [5,6].

Before introducing the representation of the different elements, we define
some basic types. Idp, Idc, Idi, Idf and Idm are the types of qualified name of a
package, a class, an interface, a field and a method, respectively3. When we want
to talk about a class or an interface name, we can use the set Idci (Idci = Idc ∪
Idi). Idv is the type of (unqualified) names of variables. We assume furthermore
a set Pc of program counters. A program counter identifies an instruction within
the whole class hierarchy (i.e. it is relative to a class hierarchy and not just a
method). We assume a set Label which represents the different labels used with
a jump instructions.

General types We use types to stand for abstract primitive values. For ex-
ample, byte instead of 12. A type can be an array type (type between square
brackets), or a simple type where a simple type is a Primitive or the name of a
class or of an interface (Idci).

Primitive = { boolean, short, byte, int }
Type = ’[’SType’]’ ∪ Stype

SType = Primitive ∪ Idci

Classes A class or an interface descriptor consists of the set of the associated
access modifiers (P(Modci)

4), the name of the class or interface (Idci), the name
————————————————————

3 The qualified name of an entity is the complete name. For a class, it is p.c where p
is the name of the package and c the (unqualified) name of the class. For a method
(c.m) or a field (c.f), it is the qualified name of the class and the (unqualified) name
of the method or field.

4 The access modifier Interface is used to specify that the declaration is for an
interface.



of the direct superclass or the names of direct superinterfaces (Ext), the name
of the interfaces that the class implements (Imp), the name of its package (Idp),
field declarations (Fld), method declarations and implementations (Mtd). A class
must have a superclass, the default being java.lang.Object, but an interface can
have zero, one or more superinterfaces. Only a class can implement an interface,
so for an interface this field is the empty set.

The fields of a class are described by a map from field names (Idf ) to a set
of access modifiers (P(Modf )) together with a type descriptor (Type). The type
descriptor defines what type of values can be stored in the field.

Descci = P(Modci) × Idci × Ext × Imp × Idp × Fld × Mtd
Modci = { Public, Package, Final, Abstract, Shareable, Interface }

Ext = Idc ∪ P(Idi)
Imp = P(Idi)
Fld = Idf → Descf

Descf = P(Modf ) × Type
Modf = { Public, Package, Private, Protected, Final, Static }

Methods The methods are described by a map that to a method signature
(Sig) associates a method descriptor (Descm). This structure consists of the set
of the associated access modifiers (P(Modm)), the code of the method (Code),
a description of the formal parameters (Param) and the local variables of the
method (Varl). A signature is the name of the method (Idm) and the list of type
descriptors for its parameters (Type∗). Code is a list whose elements consist of
a program counter value (Pc) and the instruction at this address (Bytecode).
The set of local variables is the list of all variable names (Idv) with their type
descriptor (Type).

Mtd = Sig → Descm

Sig = Idm × Type∗

Descm = P(Modm) × Code × Param × Varl
Modm = { Public, Package, Private, Protected, Static }
Code = Inst∗

Inst = Pc × Bytecode | Pc × Bytecode × Label
Varl = (Idv × Type)∗

Param = (Idv × Type)∗

For this paper we consider a small set of bytecodes that is sufficient for
illustrating the different features of the semantics. In the following, NT and T
range over local variables. The invokevirtual instruction takes as argument a
fully qualified method name, indicating the point of declaration of the method.
The explainations of these intructions are given in section 4.2.



Bytecode = NT := getstatic C.f
| putfield C.f T1 T2

| NT := invokevirtual C.m T0 T1 · · · Tn S1::· · ·::Sn

| goto label
| NT := new C
| NT := invokestatic getAID
| NT := invokestatic getPrevCtx
| NT := invokestatic getASIO T1 T2

3.3 The run-time state

This section defines the run-time values used in the semantics. We are primarily
interested in modelling the object structure and ownership so we abstract prim-
itive values such as booleans and integers to their type. In addition to the values
already introduced we have a set, Ref, of references for modelling the heap of
objects. A particular element Null ∈ Ref denotes the undefined reference. We
introduce two kinds of reference, Refi (respectively Refa) can point to class in-
stances Obji (respectively array instances Obja) and the union of them with Null
is Ref.

Ownership The notion of ownership in Java Card is very clear, an object
is owned by the active applet at the moment of its creation. We extend the
definition of an owner with the context (package) of its creation. We model this
notion with a pair (Package, Applet).

Owner = Idp × Refi

The owner of an applet is the applet itself.

Values

Value = Ref ∪ Primitive
RValue = Object ∪ Primitive
Object = Obji ∪ Obja

Obji = Idci × Owner × JCREep × tJCREep × Fldv
Fldv = Idf → Value
Obja = ’[’ SType ’]’ × Owner × JCREep × tJCREep × global × Elt

Elt = P(Value)

We have three kinds of values: class instances, arrays and primitive values
(such as bytes and booleans). A class instance contains the name of the class,
the owner of this instance, boolean flags indicating whether or not it is a JCRE
entry point and a temporary JCRE entry point (cf. section 2) and the set of
fields. The set of fields maps a field name to a value.

An array instance is described by the type of its elements, the owner, the
information about being an entry point or not, a flag indicating whether the
array is global or not and finally the set of its elements.



The state With these types, we can define the state used in the semantics. A
state consists of a call stack of frames, the memory and the class hierarchy. The
latter is part of the run-time state because it is used to store the values of static
fields. We write the call stack as a sequence of frames such that the currently
active frame appears as the first element of the sequence.

State = Frame? × Mem × Eci

Frame = Inst × Ref × Locals
Locals = Idv → Value
Mem = Value → RValue

Eci = Idci → Descci × FldS
FldS = Idf → Value

The current frame contains the current instruction and a reference to the
object on which the method currently executing has been invoked. This object
represents the currently active context. An element of the set Locals maps a local
variable to its value. The memory (also called the heap of objects) is modelled
by a map from references to values. The class hierarchy is represented as a map
that to a class or an interface name associates its descriptor and its static fields.

AIDs and the table of installed applets The JCRE keeps a table record-
ing the applets installed on the card. These applets are identified by an applet
identifier, an AID. An AID is an object of class AID containing a byte array with
a number that identifies the applet together with a method for testing whether
two AIDs represent the same number. With a reference to an AID, we can find
a reference to the corresponding applet instance through the table Applet tbl of
installed applets:

Applet tbl : Ref → Ref .

Were we to model the dynamic installation of applets this table would have to
be made part of the state but we do not consider this here.

3.4 Auxiliary Functions

We follow Bertelsen [5,6] and define a number of functions that abstract the
syntactic structure of a list of bytecodes.

Succ : Inst → P(Inst)
Find : Label → Inst
First : Descm → Inst

The flow of control inside a method is modelled by the function Succ that for each
instruction yields the set of instructions that can follow in the execution. The
need for returning a set of instructions is due to the fact that we have abstracted
away all primitive values; in particular, the semantics will not be able to evaluate
the value of the condition in a branching statement. The function Find permits



us to find an instruction with a given label. Finally, the function First takes a
method descriptor and returns the first instruction of this method.

The function Lookup models the dynamic resolution of virtual method calls.
It takes as arguments the signature of a method, the dynamic class of the object
on which the method is invoked, the class in which the method is declared and
the class hierarchy. It returns the method descriptor of the implementation of
the method designated by the signature.5

Lookup : Sig × Id ci × Id ci × Eci → Descm.

The function Imp Shareable? determines if the class of an object implements
a Shareable interface. This function is recursive on the field Imp of the class.

Imp Shareable? : P(Idi) → boolean .

The function Ext Shareable? determines if an interface extends the interface
Shareable. This function is recursive on the field Ext of the interface.

Ext Shareable? : Idi → boolean .

Initialisation The function Init Var constructs a function that maps the local
variables of a method to their initial values.

Init Var : Param × Value∗ × Varl → Locals .

It takes the name and the descriptor of the formal parameters, the value of the
actual parameters and the name of local variables of the frame to be constructed.
The result is a function that maps the formal parameters to the value of the
corresponding arguments and is default on local variables. The default value for
a object and an array is Null. For a primitive, the default value is type of the
primitive value.

Similarly, when creating a new object instance, we use a function Init Fields
to prepare the set of instance fields for a specified class and all of its superclasses:

Init Fields : Id ci → Fldv .

It takes the name of the class and returns a function in which a field name
maps the default value for its type (the default value is the same as defined for
Init Var).

4 Operational semantics for instructions with the firewall

In this section we give an operational semantics for a small subset of Java Card
instructions. The main feature that distinguishes this semantics from a Java
bytecode semantics is the modelling of the Java Card firewall. The rules for in-
structions that can violate the firewall include an extra hypothesis that formalises
when the instruction can be executed without raising a security exception.

————————————————————
5 In this paper we do not describe any further the details of dynamic method lookup

in Java(see [11, section 15.12] and [9]).



4.1 Firewall checks

The checks made by the firewall are formalised through a collection of predicates.
Covering all bytecode instructions requires eight different predicates. We give the
exact formula only for the two predicates used in this paper.

CheckVirtual? This check is performed during a call to a virtual method.
CheckVirtual? : Object × Object → boolean.

For (o1,o2) ∈ Object × Object, the access is authorized if and only if the
context represented by o1 is the context of the JCRE (o1.Owner.Idp = JCRE)
or if the contexts of o1 and o2 are the same (o1.Owner.Idp = o2.Owner.Idp) or
if the object o2 is global (o2.global) or if the object o2 is a JCRE entry point
(o2.JCREep).
CheckVirtual? (o1,o2) =
(o1.Owner.Idp = JCRE) ∨ (o1.Owner.Idp = o2.Owner.Idp) ∨ (o2.global) ∨

(o2.JCREep)

CheckPutfield? This check is performed when storing a value in a field.
CheckPutfield? : Object × Obji × RValue → boolean.

For (o1,o2,v) ∈ Object × Obji × RValue, the access is authorized if and only
if the context represented by o1 is the context of the JCRE (o1.Owner.Idp =
JCRE) or if the contexts of o1 and o2 are the same (o1.Owner.Idp = o2.Owner.-
Idp) and if the value is not a global object (¬ v.global) and is not a temporary
JCRE entry point (¬ v.tJCREep).
CheckPutfield? (o1,o2,v) =
(o1.Owner.Idp = JCRE) ∨ ((o1.Owner.Idp = o2.Owner.Idp) ∧ (¬ v.global) ∧

(¬ v.tJCREep))

CheckALoad? This check is performed when read access is made to an array.
CheckALoad? : Object × Obja → boolean.

For (o,a) ∈ Object × Obja, the access is authorized if and only if the context
represented by o is the context of the JCRE (o.Owner.Idp = JCRE) or if the
contexts of o and a are the same (o.Owner.Idp = a.Owner.Idp) or if the array
represented by a is a global array (a.global).

The instruction arraylength performes exactly the same check, so for this
instruction we use the CheckALoad? predicate.

CheckAStore? This check is performed when storing an element in an array.
CheckAStore? : Object × Obja × RValue → boolean.

For (o,a,v) ∈ Object × Obja × RValue, the access is authorized if and only if
the context represented by o is the context of the JCRE (o.Owner.Idp = JCRE)
or if the contexts of o and a are the same (o.Owner.Idp = a.Owner.Idp) or if the
array represented by a is a global array (a.global) and if the value not represents
a global array (¬ v.global) or a temporary JCRE entry point (¬ v.tJCREep).



CheckClass? This check is performed during a cast or an instance of check.
CheckClass? : Object × Object × Idi → boolean.

For (o1,o2,Id) ∈ Object × Object × Idi, the access is authorized if and only
if the context represented by o1 is the context of the JCRE (o1.Owner.Idp =
JCRE) or if the contexts of o1 and o2 are the same (o1.Owner.Idp = o2.Owner.-
Idp) or if the object o2 is global (o2.global) or if the object o2 is a JCRE entry
point (o2.JCREep) or if the object’s class implements a Shareable interface
(Imp Shareable? (o2.Imp)) and if the object being cast into or an instance of an
interface that extends Shareable (Ext Shareable? (Id)).

CheckGetfield? This check is performed when reading access on a field is made.
CheckGetfield? : Object × Obji → boolean.

For (o1,o2) ∈ Object × Obji, the access is authorized if and only if the context
represented by o1 is the context of the JCRE (o1.Owner.Idp = JCRE) or if the
contexts of o1 and o2 are the same (o1.Owner.Idp = o2.Owner.Idp).

CheckInterface? This check is performed during a call to an interface method.
CheckInterface? : Object × Obji × Idi → boolean.

For (o1,o2,Id) ∈ Object × Obji × Idi, the access is authorized if and only if the
context represented by o1 is the context of the JCRE (o1.Owner.Idp = JCRE)
or if the contexts of o1 and o2 are the same (o1.Owner.Idp = o2.Owner.Idp)
or if the object o2 is a JCRE entry point (o2.JCREep) or if the object’s class
implements a Shareable interface (Imp Shareable? (o2.Imp)) and if the interface
being invoked extends Shareable (Ext Shareable? (Id)).

CheckPutstatic? This check is performed when storing a value in a static field.
CheckPutstatic? : Object × RValue → boolean.

For (o,v) ∈ Object × RValue, the access is authorized if and only if the
context represented by o is the context of the JCRE (o.Owner.Idp = JCRE)
or if the value is not a global array (¬ v.global) and is not a temporary JCRE
entry point (¬ v.tJCREep).

4.2 The semantics

The present semantics does not take visibility into account. Although the model
has enough information to deal with visibility modifiers, we omit this for brevity.

Concerning the Java Card API, we only consider methods directly related
to the firewall. These are getAppletShareableInterfaceObject, getShareable-

InterfaceObject, getAID and getPreviousContextAID. The static method get-

AppletShareableInterfaceObject that belongs to the JCSystem package is called
by a client when it wants to obtain a shareable object from a server applet
(cf. Section 2.1). The JCRE in turn invokes the method getShareableInterface-

Object that returns a shareable object based on the identity of the client. Thus,
the modelling of a call to getAppletShareableInterfaceObject is a combination
of a static and a virtual method call. The call to getShareableInterfaceObject



is made directly by the rule of getAppletShareableInterfaceObject, the invoke-

static is transformed into a invokevirtual if the call to getShareableInterface-

Object is possible. The semantics contains a rule that treats the invocation of this
method separately. Similarly, there is a separate semantic rule for the invocation
of the two static methods of the JCSystem package getAID and getPreviousContext-

AID for accessing the AID of the applet that owns the currently executing object
and the AID of the context in action before the switch to the current context, re-
spectively. In addition, we give semantics to five bytecodes: getstatic, putfield,
invokevirtual, goto and new.

getstatic The getstatic instruction loads a value stored in a static class or
interface field and stores it in a local variable.

I = (pc, NT := getstatic C.f)
V ′ = V [NT 7→ Eci(C).F ldS(C.f)]
I ′ ∈ Succ(I)
〈〈I, r, V 〉 :: A, mem, Eci〉 ⇒ 〈〈I ′, r, V ′〉 :: A, mem, Eci〉

The class or the interface C must have a descriptor in Eci. The field C.f must
exist in the set of static field of C. Then the value of the field (Eci(C).F ldS(C.f))
is loaded and stored into variable NT.

putfield The putfield instruction loads a value from a local variable and stores
it into an instance field.

I = (pc, putfield C.f T1 T2)
o = mem(V (T1))
g = o.F ldv[C.f 7→ V (T2)]
o′ = o[F ldv 7→ g]
mem′ = mem[V (T1) 7→ o′]
I ′ ∈ Succ(I)
[ CheckPutfield?(mem(r), mem(V (T1)), mem(V (T2))) ]
〈〈I, r, V 〉 :: A, mem, Eci〉 ⇒ 〈〈I ′, r, V 〉 :: A, mem′, Eci〉

The value stored in T1 must be a reference to a class object. This object
must have a field C.f. Then the value stored in T2 is stored in the field.

invokevirtual The invokevirtual instruction makes a call to an instance method.

I = (pc, NT := invokevirtual C.m T0 T1 · · · Tn S1 :: · · · :: Sn)
desc = Lookup((m, S1 :: · · · :: Sn), mem(V (T0)).Idci, C, Eci)
V ′ = Init V ar(desc .Param, V (T0) :: · · · :: V (Tn), desc.V arl)
I ′ = First(desc)
r′ = V (T0)
[ CheckVirtual?(mem(r), mem(V (T0))) ]
〈〈I, r, V 〉 :: A, mem, Eci〉 ⇒ 〈〈I ′, r′, V ′〉 :: 〈I, r, V 〉 :: A, mem, Eci〉

The value stored in T0 must be a reference to a class instance. We search for the
implementation of the method called using the function Lookup. We construct
the new list of local variables with the variables set to the actual parameters.



goto The goto instruction makes a jump to an instruction labelled label.

I = (pc, goto label)
I ′ = Find(label)
〈〈I, r, V 〉 :: A, mem, Eci〉 ⇒ 〈〈I ′, r, V 〉 :: A, mem, Eci〉

new The new instruction creates a new object in memory.

I = (pc, NT := new C)
O = (C, mem(r).Owner, false , false , Init F ields(C))
R ∈ Ref \ dom(mem)
V ′ = V [NT 7→ R]
mem′ = mem[R 7→ O]
I ′ ∈ Succ(I)
〈〈I, r, V 〉 :: A, mem, Eci〉 ⇒ 〈〈I ′, r, V ′〉 :: A, mem′, Eci〉

A new object of class C is created in the memory with the flags for entry point
and temporary entry point set to false. A reference to this object is stored in
the variable NT.

getAID

I = (pc, NT := invokestatic JCSystem.getAID)
V ′ = V [NT 7→ mem(r).Owner.AID]
I ′ ∈ Succ(I)
〈〈I, r, V 〉 :: A, mem, Eci〉 ⇒ 〈〈I ′, r, V ′〉 :: A, mem, Eci〉

The AID of the currently active applet is the AID of the owner of the current
object. A reference to the current object can be retrieved from the frame as r.

getPreviousContextAID

I1 = (pc, NT := invokestatic JCSystem.getPreviousContextAID)
∀i ∈ {2, · · · , n − 1}, Mem(ri).Owner.Idp = mem(r1).Owner.Idp

mem(rn).Owner.Idp 6= mem(r1).Owner.Idp

V ′ = V [NT 7→ mem(rn).Owner.AID]
I ′ ∈ Succ(I1)
〈〈I1, r1, V1〉 :: · · · :: 〈In, rn, Vn〉 :: A, mem, Eci〉 ⇒

〈〈I ′, r1, V
′〉 :: 〈I2, r2, V2〉 :: · · · :: 〈In, rn, Vn〉 :: A, mem, Eci〉

The previous context is found by searching down the call stack for the most
recent frame whose current object has an owner context that differs from the
owner context of the current object on top of the call stack. If none such is found,
Null is returned.



getAppletShareableInterfaceObject

I = (pc, NT := invokestatic JCSystem.getAppletShareableInterfaceObject
T1 T2)

server = V (T1)
server ∈ Dom(Applet tbl)
class = Mem(Applet tbl(Server)).Idci

desc = Lookup((getShareableInterfaceObject , AID :: byte), class, Applet, Eci)
client = mem(r).Owner.AID

I ′ = First(desc)
r′ = Applet tbl(server)
V ′ = Init V ar(desc.Param, r′ :: client :: mem(V (T2)), desc.V arl)
〈〈I, r, V 〉 :: A, mem, Eci〉 ⇒ 〈〈I ′, r′, V ′〉 :: 〈I, r, V 〉 :: A, mem, Eci〉

This method is called by the client to get the server applet’s shareable ob-
ject. Although a static method call, it functions as a virtual call of the method
getShareableInterfaceObject of the server. If the firewall conditions are not re-
spected, the result is Null.

5 Related works

There are several works on a formal semantics for Java [4,10]. The Bali project [2]
provides an axiomatic semantics for a substantial subset of Java and Java Card
but does not give an axiomation of the firewall. To formalize the language,
they use a Hoare-style calculus [18,19]. All definitions and proofs are done for-
mally with the theorem prover Isabelle/HOL. The resulting proof system can
be proved sound, is easy to use, and complete. A similar goal is pursued in the
Loop project [3], where they develop an interface specification in JML of the
Java Card API [14] and provide proofs that the current Java Card API classes
satisfy these interface specifications [15]. The more comprehensive semantics was
proposed by Bertelsen [5] and was taken as the starting point for the present
work. This semantics models the stack-based Java bytecode. Our choice of pass-
ing to a variable-oriented language means that we no longer have an operand
stack in the frames. Moreover, we had to add certain attributes to the run-time
structures to keep track of the owner of objects, whether they are entry points
etc. Pusch has formalised the JVM in HOL [16]. Like us, she considers the class
file to be well-formed so that the hypotheses of rules are just assignments. The
operational semantics is presented directly as a formalisation in HOL, whereas
we have chosen (equivalently) to use inference rules. Several works have focussed
on formalising aspects of the Java Card firewall. Motré has formalised the firewall
in the B language [13]. She transforms the informal specification into an abstract
machine which can then be refined into an actual implementation. Each oper-
ation of this machine corresponds to a specific object access. This description
of the firewall provides a formal description of the security policy as defined in
JCRE specification [12] and provides a reference implementation of the firewall.



She formally demonstrates that the firewall verifications of bytecodes are suffi-
cient to fulfil the security policy and to ensure the memory integrity (that only
an authorised operation can access the memory). Bieber et al. [7] propose a veri-
fication technique based on model checking for detecting illegal information flow
between Java Card applets. They associate a level with each applet and the legal
flow between applets are given as a lattice of levels. Each applet is abstracted
into a set of call graphs. All call graphs that do not include an interface meth-
ods are discarded (the sharing mechanism uses interface method). All values of
variables are abstracted by computed levels, a variable having the level of the
applets which use it. They give an invariant that is a sufficient condition for the
security property, and verify it by model checking. It would be worth examining
how the semantics defined in this paper can be used to provide a formal proof
of correctness of their analysis.

6 Summary

We have described a small-step operational semantics of a representative subset
of byte codes pertaining to the Java Card firewall. In doing so, we have delib-
erately abstracted away certain aspects of the language; for example, numeric
calculations are not modelled. The continuation of this work is to demonstrate
that the level of abstraction chosen is suitable for constructing and arguing the
correctness of verification techniques for the firewall.
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