A Formal Model for Side-Channel Attacks

Boris Köpf
ETH Zurich

VERIMAG, Grenoble
12.11.2007
Side-Channel Attacks

- Attacks against implementations of cryptographic algorithms
- Physical characteristics of computations are exploited: timing, power, cache behavior, ...

- Increasingly effective
 - template attacks: key recovery from 1 power trace
 - remote timing attacks: 1024 bit RSA key in two hours

- Cryptographic security guarantees do not apply
- This talk: bounds on the information that can be extracted in an adaptive side-channel attack
Approaches to Countering Timing Attacks

▶ **Ad-hoc countermeasures** (randomization, blinding,...)
 ▶ preferred in practice - render *known attacks* impossible
 ▶ no formal security guarantees
 ▶ *more sophisticated attacks* still possible?
Approaches to Countering Timing Attacks

- **Ad-hoc** countermeasures (randomization, blinding, ...)
 - preferred in practice - render *known attacks* impossible
 - no formal security guarantees
 - *more sophisticated attacks* still possible?

- **Formal** approaches
 - physically observable cryptography (Micali & Reyzin ’03)
 - information-flow analysis
 - aims for proving *implementations* secure
 - based on formal system models and notions of security
Limitations of today’s approaches

- Abstract program models
 - timing behavior not adequately captured
- Security properties do not capture adaptive attackers
 - noninterference is very restrictive
 - quantitative properties only for passive observers
Limitations of today’s approaches

- Abstract program models
 - timing behavior not adequately captured
- Security properties do not capture adaptive attackers
 - noninterference is very restrictive
 - quantitative properties only for passive observers

This talk

- How to analyze security with respect to adaptive attackers
- Focus on special-purpose implementation in synchronous hardware
Problem Statement

Question
How much secret information can be extracted in an adaptive side-channel attack against a given implementation?

1joint work with David Basin
Problem Statement

Question
How much secret information can be extracted in an adaptive side-channel attack against a given implementation?

Contributions¹

- A model that allows to express this quantity
- Algorithms and approximation techniques to compute it
- We apply our techniques to analyze implementations in synchronous hardware

¹joint work with David Basin
Problem Statement

Question
How much secret information can be extracted in an adaptive side-channel attack against a given implementation?

Contributions\(^1\)

- A model that allows to express this quantity
- Algorithms and approximation techniques to compute it
- We apply our techniques to analyze implementations in synchronous hardware
- Foundation for push-button tools for analyzing the vulnerability of systems to adaptive side-channel attacks

\(^{1}\)joint work with David Basin
Outline

- Introduction
- Problem Statement
- Formalization of
 - side-channels
 - single attack steps
 - adaptive attacks
- Information-theoretic bounds
- Algorithms
- Experiments
- Conclusions
- Future work
A Simple Model of Side-Channels

\[f : K \times M \rightarrow O \]

Keys \quad Messages \quad Observations

Assumptions

- Fixed unknown key
- Attacker knows \(f \) and can choose messages
- Observations are noiseless

Examples

- Number of clock ticks required for computation (\(O = N \))
- Bit toggles during each of \(n \) clock ticks (\(O = N^n \))

Boris Köpf
A Single Attack Step I

The attacker queries the system with $m \in M$, and...
A Single Attack Step I

The attacker queries the system with $m \in M$, and

- observes $o = f(k, m)$
A Single Attack Step I

The attacker queries the system with \(m \in M \), and

- observes \(o = f(k, m) \)
- narrows down the set of possible keys

Different observations correspond to disjoint subsets of \(K \). \(k_1 \) and \(k_2 \) are in the same subset iff \(f(k_1, m) = f(k_2, m) \). Every \(m \in M \) induces a partition on \(K \). \(f \) corresponds to a set of partitions \(\{P_m_1, P_m_2, \ldots\} \) of \(K \).
A Single Attack Step I

The attacker queries the system with \(m \in M \), and

- observes \(o = f(k, m) \)
- narrows down the set of possible keys
- Different observations correspond to disjoint subsets of \(K \)
 - \(k_1, k_2 \) are in the same subset iff \(f(k_1, m) = f(k_2, m) \)
 - every \(m \in M \) induces a partition on \(K \)
The attacker queries the system with \(m \in M \), and

- observes \(o = f(k, m) \)
- narrows down the set of possible keys
- Different observations correspond to disjoint subsets of \(K \)
 - \(k_1, k_2 \) are in the same subset iff \(f(k_1, m) = f(k_2, m) \)
 - every \(m \in M \) induces a partition on \(K \)
- \(f \) corresponds to a set of partitions \(\{P_{m_1}, P_{m_2}, \ldots\} \) of \(K \).
Abstraction of attack step:

- pick a partition P from

[Diagram of four partitions]
A Single Attack Step II

Abstraction of attack step:

- pick a partition P from

- obtain the block $B \in P$ that contains k
A Single Attack Step II

Abstraction of attack step:

- pick a partition P from
- obtain the block $B \in P$ that contains k
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an **adaptive** attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an **adaptive** attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an adaptive attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an **adaptive** attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an adaptive attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an adaptive attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an **adaptive** attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an adaptive attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an adaptive attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an **adaptive** attack, he can choose queries with respect to this knowledge

![Diagram showing adaptive attack strategy]

A Formal Model for Side-Channel Attacks
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an **adaptive** attack, he can choose queries with respect to this knowledge

![Diagram showing adaptive attacks with different query choices and partitions.]

Boris Köpf
A Formal Model for Side-Channel Attacks
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an **adaptive** attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an **adaptive** attack, he can choose queries with respect to this knowledge

![Diagram showing adaptive attack strategies inducing partitions on key space]
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an *adaptive* attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an **adaptive** attack, he can choose queries with respect to this knowledge
Adaptive Attacks (Intuition)

- Attacker’s knowledge represented as set of possible keys
- In an adaptive attack, he can choose queries with respect to this knowledge

- Block-dependent choice of queries: attack strategy
- Attack strategies induce partitions on K
Adaptive Attacks (Formally)

Definition

An attack strategy α is a tree $T = (V, E)$ with vertex labeling $L : V \to 2^K$ with

1. $L(root) = K$, and
2. for every $v \in V$, there is a $m \in M$ such that $L(v) \cap P_m = \{L(w) \mid w \in succ(v)\}$
Adaptive Attacks (Formally)

Definition

An attack strategy α is a tree $T = (V, E)$ with vertex labeling $L : V \rightarrow 2^K$ with

1. $L(root) = K$, and
2. for every $v \in V$, there is a $m \in M$ such that $L(v) \cap P_m = \{L(w) | w \in succ(v)\}$

- Attack corresponds to a path in α
- Labels of the leaves induce partition P_α of K
- If the attacker follows strategy α, he learns the key’s enclosing block in P_α
Quantitative Evaluation of Attack Strategies

Question
How much information can an attacker gain if he follows a given strategy?
Quantitative Evaluation of Attack Strategies

Question
How much information can an attacker gain if he follows a given strategy?

- Shannon entropy $H(X)$ of random variable X
 - Measure for the uncertainty about the outcome of X
 - Example: uniformly distributed 100-bit keys
 - no knowledge: $H(X) = 100$
 - known key: $H(X | X = k) = 0$
 - known Hamming weight: $H(X | hw(X)) = 95.6$

- Alternative entropy measures can be used
Quantitative Evaluation of Attack Strategies

Question
How much information can an attacker gain if he follows a given strategy?

- Shannon entropy $H(X)$ of random variable X
 - Measure for the uncertainty about the outcome of X
 - Example: uniformly distributed 100-bit keys
 - no knowledge: $H(X) = 100$
 - known key: $H(X|X = k) = 0$
 - known Hamming weight: $H(X|hw(X)) = 95.6$

- Alternative entropy measures can be used
 - U: choice of a key from K (assume fixed distribution)
 - V_P: choice of a block in a partition P of K
 - $H(U|V_P) = E_{B\in P}(H(U|V_P = B))$: expected uncertainty about the key if the enclosing block is known
Quantitative Evaluation of Attack Strategies

Question

How much information can an attacker gain if he follows a given strategy?

- Shannon entropy $H(X)$ of random variable X
 - Measure for the uncertainty about the outcome of X
 - Example: uniformly distributed 100-bit keys
 - no knowledge: $H(X) = 100$
 - known key: $H(X|X = k) = 0$
 - known Hamming weight: $H(X|hw(X)) = 95.6$
 - Alternative entropy measures can be used

- U: choice of a key from K (assume fixed distribution)
- V_P: choice of a block in a partition P of K
 - $H(U|V_{P_\alpha}) = E_{B \in P_\alpha}(H(U|V_{P_\alpha} = B))$: expected uncertainty about the key after an attack with strategy α
Resistance to Attacks

Desirable for evaluating implementations:
Bounds that hold against all attack strategies

\[\Phi(n) = \min \{ H(U|V|P^\alpha) | \alpha \text{ attack strategy of length } n \} \]

\[\Phi(n) : \text{lower bound on the expected uncertainty about the}\]
\[\text{secret after } n \text{ steps of an adaptive attack against} \]
\[\text{f} \]

\[\text{Relates information gain and number of attack steps} \]

How do we compute \(\Phi \) for a given implementation

Boris Köpf
A Formal Model for Side-Channel Attacks
Resistance to Attacks

Desirable for evaluating implementations:
Bounds that hold against all attack strategies

Resistance to attacks

$$\Phi(n) = \min\{H(U|V_{P_{\alpha}}) \mid \alpha \text{ attack strategy of length } n\}$$
Resistance to Attacks

Desirable for evaluating implementations:
Bounds that hold against all attack strategies

Resistance to attacks
\[\Phi(n) = \min \{ H(U \mid V_{P_{\alpha}}) \mid \alpha \text{ attack strategy of length } n \} \]

- \(\Phi(n) \): lower bound on the expected uncertainty about the secret after \(n \) steps of an adaptive attack against \(f \)
- Relates information gain and number of attack steps
- How do we compute \(\Phi \) for a given implementation
Computing $\Phi(n)$

- Brute-force approach
 - treat f as a black box
 - enumerate all attack strategies
 - compute induced partitions
 - pick partition with minimal $H(U|V_P)$
 - requires time $O(n \cdot |M|^r \cdot |K| \cdot \log |K|)$
Computing $\Phi(n)$

- **Brute-force approach**
 - treat f as a black box
 - enumerate all attack strategies
 - compute induced partitions
 - pick partition with minimal $H(U|V_P)$
 - requires time $O(n \cdot |M|^r \cdot |K| \cdot \log |K|)$

- **Approximation techniques**
 - use a greedy strategy instead of enumerating all strategies
 - requires time $O(n \cdot r \cdot |M| \cdot |K|^2)$
 - greedy is not optimal (in general)
 - compute ϕ for small bit-widths. Use regularity to extrapolate
Core Implementation in Haskell

```
greedy :: [Part k] -> Int -> [k] -> Part k
greedy f n keys = app n (greedystep f) [keys]

greedystep :: [Part k] -> Part k -> Part k
greedystep f pt = concat (map refine pt)
    where refine b = minimumBy entropy (restrict b f)
```

- *f* is given by the simulation environment of the HDL GEZELE
- Features of GEZELE:
 - specification of circuits as **automata**
 - **cycle-true translation** to VHDL
Experimental Results - Timing I

Timing analysis of shift-and-add integer multiplication

\[\ldots ((k_{w-1} \cdot m) \cdot 2 + k_{w-2} \cdot m) \cdot 2 + \ldots) \cdot 2 + k_0 \cdot m \]

- Two versions: unpadded and padded
- Operand \(k \) is the secret

Unpadded version leaks Hamming weight
Padded version is secure
Experimental Results - Timing II

Timing behavior of finite field exponentiation

- Three nested loops
- Exponent is the secret

After two attack steps the key is revealed

Implementation is highly vulnerable to timing attacks
Experimental Results - Power

Power analysis of finite field multiplication

- Computes in constant time
- Bit-flips per clock cycle approximate power consumption

After one attack step the key is revealed

Template attacks show that this is possible even with noise
Conclusions

“How much secret information can be extracted in an adaptive side-channel attack?”

- Presented a simple model to *express* this quantity
- Showed how it can be *computed*
- Applied it to analyze implementations in synchronous hardware

Future Work

- Extend model to probabilistic systems
 - measurements with noise
 - evaluation of countermeasures
- Scaling-up
 - white-box analysis
 - entropy estimation – encouraging *experimental results*