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Target Application
¢ Large-Scale Global Computing Systems

¢ Subject Application to Dependability Problems
— Can be addressed in the design

¢ Subject Application to Security Problems

— Requires solutions from the area of survivability, security,
fault-tolerance

Page: 3



Global Computing Architecture

¢ Large-scale distributed systems (e.g. Grid, P2P)
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Unbounded Environments

¢ In the Survivability Community our general computing
environment is referred to as

Unbounded Environment

— Lack of physical / logical bound
— Lack of global administrative view of the system.

What risks are we subjecting our
applications to?
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Typical Application

¢ Computation intensive parallel application

— Medical (mammography comparison)
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Two kinds of failures (1/2)

1. Node failures
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Unreliability in the absence of
Fault Tolerance Mechanism

¢ Computation on Cluster
— MTBF = 2000 days (48,000h, approx. 5 1/2 years)
— Unreliability of one node: F(t) =1 -R(t) =1 - ™™
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Fault Tolerance Approaches

¢ Simplified Taxonomy for Fault Tolerance Protocols

FT Protocol
Duplication Checkpointing\/Message-Logging
Uncoordinated Coordinated Communication- Pessimistic Optimisitic ~ Causal
induced

¢ Rely on a “stable storage”
- persistent and assumed to be reliable [Kaapi / Athapascan ]
— Ifnot persistent: only duplication of saved data (checkpoint / message)

» probabilistic FT protocols: fault tolerance is guaranteed with good probability
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Two kinds of failures (2/2)

2. Task forgery
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—  “massive attacks”
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How bad is the Problem?

¢ Vulnerabilities reported (CERT/CC statistics)

1995-1999

Year 1995[1996[1997/1998[1
Vulnerabilities| 171 345] 311] 262| 417
2000-2004

Year 2000[ 2001[ 2002] 2003| 2004
Vulnerabilities|1,090|2,437|4,129|3,784|3,780

Total vulnerabilities reported (1995-2004): 16,726
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How bad is the Problem?

¢ Incidents reported (CERT/CC statistics)

1988-1989 -

Year 1988(1989

Incidents| 6 132]

1990-1999 ) i

Year 199011991(1992| 1993 1994| 1995| 1996| 1997 1998 199
Incidents| 252| 406| 773[1,334(2,340[2,412 [2,573|2,134|3,734/9.85
20002003

Year 2 ﬁ 2001| 2002 2003
Incidents|21,756(52,658(82,094(137 529

Total incidents reported (1988-2003): 319,992
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Fault Models

¢ Simplified Fault Taxonomy

Benign

Fault

— T

Malicious

— T~

Symmetric

Asymmetric

¢ Fault-Behavior and Assumptions

— Independence of faults

—  Common mode faults -> towards arbitrary faults!

¢ Fault Sources

— Trojan, virus, DOS, etc.

— How do faults affect the overall system?
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Assumptions

¢ Anything is possible!

» and it will happen!

¢ Malicious act will occur sooner or later

¢ It is hard or impossible to predict the behavior of an attack
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Attacks and their impact

¢ Attacks
— single nodes, difficult to solve with certification strategies
— solutions: e.g. intrusion detection systems (IDS)

¢ Massive Attacks
— affects large number of nodes
— may spread fast (worm, virus)
— may be coordinated (Trojan)

¢ Impact of Attacks
— attacks are likely to be widespread within neighborhood, e.g. subnet

¢ Our focus: massive attacks
— virus, trojan, DoS, etc.

Page: 15



Certification Against Attacks

¢ Mainly addressed for independent tasks

¢ Current approaches
— Simple checker [Blum97]
—- Voting [SETI@home]
—  Spot-checking [Germain-Playez 2003, based on Wald test]
— Blacklisting
—  Credibility-based fault-tolerance [Sarmenta 2003 ]
— Partial execution on reliable resources (partitioning) [Gao-Malewicz 2004
— Re-execution on reliable resources

¢ Certification of Computation
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Definitions and Assumptions

¢ Dataflow Graph

o (:}:::(T‘)aé;)
N N¢
V finite set of vertices v,
€ set of edges € vertices v, v, €V @ /
\/ yd
¢ Two kinds of tasks C# D @
T, Tasks

sl s2

1n the traditional sense
Dj Data tasks
inputs and outputs
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Global Computing Platform (GCP)

¢ GCP includes workers, checkpoint server and verifiers
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Definitions

¢ Executions in unreliable environment
E execution of workload represented by G
i(T,E) input to 7T in execution £
o(T,E) output of T in execution £

¢ Executions in reliable environment: Verifier

A

E execution of workload G on Verifier

i(T.E) inputto T in execution £

6(T,E) output of T in execution £

o(T,E) output of T with input from £ executing on verifier

Note: notations 6(T,E) and 6(T,E) differ!

e IfE=FE then E is said to be “correct”
otherwise E is said to have “failed”
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Probabilistic Certification

¢ Monte Carlo certification: (analogy to Miller-Rabin)

— arandomized algorithm that
1. takes as input E and an arbitrary €, 0 <g <I

2. delivers
m cither CORRECT
m or FAILED, together with a proof that £ has failed

- certification 1s with error € if the probability of answer
CORRECT, when E has actually failed, 1s less than or
equal to €.
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Probabilistic Certification

¢ What does the certification really mean?
— what is the real interpretation of E = E
_ connection between E = E and massive attack
~ use E = F as a “tool” to determine if a massive attack has occurred

¢ Monte Carlo certification against massive attacks
— number of tasks actually failed/attacked n,
~ consider two scenarios

» Ngp =0
» npislarge => massive attack

¢ Attack Ratio g

n, =[ng|=n,
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Monte Carlo Test

¢ Algorithm MCT

1. Uniformly select one task 7'in G
we know input i(7,E) and output o(7,E) of T from checkpoint server

2. Re-execute T on verifier, using i(7,E) as inputs, to get output o(7T,E)
If o(T,E) #+ 6(T,E) return FAILED

3. Return CORRECT
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Certification of Independent Tasks

¢ How many independent executions of MCT are necessary to
achieve certification of E with probability of error < € ?

NZ{ loge l
log(1-¢)

— Prob. that MCT selects a non-forged tasks is

— N independent applications of MCT results in E< (1 - q)N
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Certification of Independent Tasks

¢ Relationship between attack ratio and N

300 1

—o—c=0.001
250 - —a—e=0.0001
—a—e=0.00001
200 - —o—¢=0.000001
N 150
100 -
S50 1
0 . . . . .
0.05 0.1 0.15 0.2 0.25 0.3
q

Page: 25



Certification of Independent Tasks

¢ Relationship between certification error and N

N

350 -

300 -

250 -+

200 -

150 +

100 -

50 -

0

——q=3%

—a—q=10%
—A—=15%
—o—q=20%

1LE-01 1.E-02 1.E-03 1E-04 1E-05 1.E-06

¢ (1n log scale)
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Certification and Task Dependencies

¢ What does a re-execution really tell us w.r.t. the result?
— One can only talk about outputs of tasks, not tasks!

—- Ifo(T,E) # o(T,E) we know that an error has occurred

—- Ifo(T,E) = o(T,E) we cannot say much at all!

» for independent tasks this indicated a good task/result

» what do we know about the inputs?
m in the presence of error propagation -- not much!

, if the verifier uses #(T,E) then o(T,E) = 6(T,E) indicates a good result

but we don’t have £, (would require total re-execution on verifier)
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Certification and Task Dependencies

¢ The concept of “Initiator”

— o(T,E) = o(T,E) is only useful if we know that the inputs are correct
» this implies that T has no forged predecessors

—  Definition:
An initiator is a falsified tasks that has no falsified predecessors

—  Worst case assumption is very conservative
» one still might detect a falsified non-initiator
» but there is no guarantee
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Certification and Task Dependencies

¢ Certification is now based on initiators

¢ Using Algorithm MCT we get

loge
log(1-"1)
n
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Certification and Task Dependencies

G=(V) predecessor graph of all tasks in V
k<ng be the number of falsified tasks assumed
I(F) set of all initiators

¢ Minimum Number of Initiators

Yy (k) =min |GZ(V)NI(F) |

¢ Minimal Initiator Ratio

Yy (k)

by (k) = 1G=(V) |
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Extended Monte Carlo Test

¢ Algorithm EMCT

1. Uniformly select one task 7'in G

2. Re-execute all 7} in GX(T), which have not been verified yet, with
input i(7,E) on a verifier and return FAILED if for any 7; we have

o(T,E) # 6(T,E)

3. Return CORRECT

¢ Behavior

- disadvantage: the entire predecessor graph needs to be re-executed

—  however: the cost depends on the graph
»  luckily our application graphs are mainly trees
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Analysis of EMCT

¢ Results of independent tasks still hold,

— but N hides the cost of verification

» independent tasks: C =1
» dependent tasks: C = |G=(7)|
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Reducing the cost of verification

For EMCT the entire predecessor graph had to be verified
To reduce verification cost two approaches are considered next:

1. Verification with fractions of GX(T)
2. Verification with fixed number of tasks in G=(7)
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Verifying with fractions of GX(T)
¢ Algorithm EMCTo(E)

1. Uniformly choose one task 7'in GG

2. Uniformly select n, = [a|GS(T)|] tasks in
G'=(T) and let this set be denoted by A. If for any
T’; € A, that has not been verified yet, re-execution
on a verifier results in 6(1};, E) # o(l};, E) then
return FAILED.

3. Return CORRECT.

Page: 35



Verifying with fractions of GX(T)

¢ For Algorithm EMCTo(E)

Lemmal Let T" be a task randomly chosen by
EMCT,(FE). Then the probability of error, e, when
EMCT,(FE) returns CORRECT is given by

o < (1 —qal'r(n,)) for 0<a<1-—T7(n,)
¢ = (1—gq) otherwise.

Page: 36



Verifying with fractions of GX(T)
¢ For Algorithm EMCTo(E)

Theorem 1 Let E be an execution with dependencies
that is either correct or massively attacked with ratio q.
Given € and 0 < o < 1, N independent invocations
of Algorithm EMCT,,(E) provide a certification with
error probability

c < (1— qach;(nq))N for0<a<1-T7(n,
=1 (1=¢)V otherwise.
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Verifying fixed numbers of tasks

¢ We will now modify algorithm EMCT so that only a fixed
number of tasks in the predecessors are verified.

—  We limit our investigations to unity, i.e. one task is verified.
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Verifying fixed numbers of tasks

¢ Algorithm EMCT!(E)

1. Uniformly choose one task 7'in GG.

2. Uniformly select a single 7 in G=(T). If re-
execution of 7); on a verifier results in o(1;, E') #
o(1;, E') then return FAILED.

3. Return CORRECT.
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Verifying fixed numbers of tasks

¢ For Algorithm EMCT!(E)

Lemma 2 Let I' be a task randomly chosen by
EMCTY(E) and let V = G=(T). Then the probabil-

ity of error, eq, when EMCT(E) returns CORRECT
is given by

e <1-— %PT(”’ZF) <1-—ql'r(ngy)
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Verifying fixed numbers of tasks

¢ For Algorithm EMCT!(E)

Theorem 2 Let E be an execution with dependencies
that is either correct or massively attacked with ratio q.
Given € then N independent invocations of Algorithm
EMCTY(E) provide a certification with error proba-
bility

e < (1—qla(ng))".
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The cost of certification

¢ A balance between N and C

¢ Monte Carlo certification for a given €:

1. apriori convergence
- determine up front how many times one has to verify
- one does not know which tasks are selected

2. run-time convergence
- run until certain € is achieved
- take advantage of knowledge about task selected

3. for general graphs
4. for special graphs (e.g. out-trees)

Note: For independent tasks a priori and run-time convergence are the same.
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Results for pathological cases

¢ Number of effective initiators
— this 1s the # of initiators as perceived by the algorithm

— e.g. for EMCT an initiator in G=(7) is always found, if it exists

MCT(E)[7] | EMCT(E) 7] EMCT,(E) EMCT'(E)
# of effective initiators f(lf#)] Ng ngol'r(ng) or n, ngl'r(ng)
1—d
Fesriad
Probability of error 1— T{_ 1—gq 1 —gal'p(ng) orl —q 1 —qI'p(ng)
A priori convergence T e(i—a) e aalatr) & Ba(l—p) | al=eatip)
log(1-——2"/)
=6
(e a priori ——t q qal'¢(n,) or g qL'a(ng)
[ty |
e TUN-tiMe T> q qal'r(ny) or g qI'r(ng)
Verification cost (exact) 1 |G=(T)| [a|G=(T)]] 1
Max. cost (out-tree) 1 h ah
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Results for pathological cases

¢ Probability of error induced by one invocation
— derived for each algorithm

MCT(E)[7] | EMCT(E) 7] EMCT.(E) EMCTY(E)
# of effective initiators fﬁ] Ng ngol'r(ng) or n, ngl'r(ng)
1—d
[ty ]
Probability of error 1— —~—° 1—gq 1 —gal'p(ng) orl —q 1 —qI'p(ng)
- log € log e log e log e log e
A priori convergence P — log(1—q) log(1—gala(ng) ' log(l—q) | Tos(I—qL'c(ng))
1—d
log(1———F )
[( 1—35 )
(e a priori — q qal'¢(n,) or g qL'a(ng)
fﬁhf
e TUN-time 1; q qal'r(ny) or g qI'r(ng)
Verification cost (exact) 1 |G=(T)| [a|G=(T)]] 1
Max. cost (out-tree) 1 h ah
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Results for pathological cases

¢ A priori convergence (NN 1s determined a priori)

— cannot take advantage of run-time knowledge
~ has to use I';(n,) rather than I'(n,) N > [ loge

~ g, is the effective attack ratio log(1-g¢,)
MCT(E)[7] | EMCT(E) 7] EMCTL(E) EMCT(E)
# of effective initiators f(l'f#ﬂ Ng ngol'r(ng) or n, ngl'r(ng)
1—d
[ty |
Probability of error 1— —~—° 1—gq 1 —qgal'p(ng)orl —gq 1 —qI'p(ng)
. . log € log e log e log e log e
A priori convergence —r— oz (l—q) oeT—garam)  Telieg) | bed—eFati))
o1 CET)
[Eai
(e a priori ==L q qal'¢(n,) or g qL'a(ng)
fﬁﬁﬂ
e TUN-time —* q qal'r(ny) or g qI'r(ng)
Verification cost (exact) 1 |G=(T)| [a|G=(T)]]
Max. cost (out-tree) 1 h ah
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Results for pathological cases

¢ Run-time convergence (/N 1s determined at run-time)
— takes advantage of run-time knowledge

~ initial verification ¢.=1 - g,

— ecach verification ¢ ,=¢_(1-gq,) [ loge
— until €, <€ log(1-¢4,)
MCT(E)[7] | EMCT(E) 7] EMCTL(E) EMCT(E)
# of effective initiators f(l'f#ﬂ Ng ngol'r(ng) or n, ngl'r(ng)
1—d
[ty ]
Probability of error 1— —~—° 1—gq 1 —qgal'p(ng)orl —gq 1 —qI'p(ng)
. . log € log e log e log e log e
A PI10I1 CONVErgence [ "C‘?i 1 log(1—gq) log(1—gal'g(ng)) log(1—q) log(1—qTc(ng))
o1 CET)
|- ( - TLZ ) -I
(e a priori + q qal'¢(n,) or g qL'a(ng)
fﬁﬁﬂ
e TUN-time —* q qal'r(ny) or g qI'r(ng)
Verification cost (exact) 1 |G=(T)| [a|G=(T)]] 1
Max. cost (out-tree) 1 h ah
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Results for pathological cases

¢ Verification cost
— per invocation of the algorithm

— special case: out-tree

MCT(E)[7] | EMCT(E) 7] EMCT.(E) EMCTY(E)
# of effective initiators [—( 4 ) | Ng ngal'r(ng) or n, ngl'r(ng)
1—d
Feeriad
Probability of error 11— —~— 1—gq 1 —gal'p(ng) orl —q 1 —qI'p(ng)
. log € log e log e log e log e
A priori convergence P - log(1—=q) log(T—qala(ng) O Tog(l-q) | log(I—al'c(ng)
1—d
log(1———F )
( 11—35 )
(e a priori - q qal'¢(n,) or g qL'a(ng)
[ﬁh—)]
e TUN-tiMe — q qal'r(ny) or g qI'r(ng)
Verification cost (exact) 1 |G=(T)| [a|G=(T)]] 1
Max. cost (out-tree) 1 h ah
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Conclusions

¢ Certification of large distributed applications

— hostile environments with no assumptions on fault model

¢ Considered task dependencies
— tasks or data may be manipulated
— allows for error propagation (much more difficult than independent case)
— very difficult to speculate on the behavior of a falsified task

¢ Several probabilistic certification algorithms were introduced
— based on re-execution on verifier (reliable resource)

— inputs available from dataflow checkpoints

¢ Certification:
— very low probability of error can be achieved
— number of tasks to verify is relatively small, depending on graph

— relationship between attack rate and probability of error
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Questions?
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Certification and Task Dependencies

¢ The impact of graph G

~ Knowing the graph, an attacker may attempt to minimize the visibility
of even a massive attack with ration q.

— What is the number of initiators one might have to expect in a graph?
» In the worst case we have

- N
1-d" /\

Page: 50

)/G(np) =




Results for MCT and EMTC

¢ Considered
— General graphs

— OQOut-trees (application domain based on out/in-trees)

Algorithm MCT EMCT
Number of effective initiators [—4~] ng
(=%)
1—-d
[ —97,—( — )1
Probability of error 1 — I;d 1—gq
Verification cost: general G 1 O(n)
Verification cost: (G is out-tree 1 h —logd(ny)
Ave. # effective initiators, G is out-tree|| -— T +nlq+ TR Ng

T

(1—d)(1—ah+1)

)1
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Relationship between quantities

¢ Given a subset V of tasks in G.

What are the relationships between
Yv(K), Yg(k) and n; with respect to k = n, or k = ny?

By definition

q <np/n andthusn, <ng
also

n; <ng
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Relationship between quantities

¢ With respect to n, we always have

V(i) svg(ng) sn;<ng

- But where does 7, fit into this inequality?
- The only certain relationship is n, < ng

¢ With respect to n, we always have

vwin,) svs(n,) sn, sng

~  But where does 7, fit into this inequality?
— The only certain relationship is v5(n,) = n; < ng
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Relationship between quantities

¢ With respect to n, < n, we can compare directly

Yv(”q) = Yy(ng)
YG(”q) =Yg(ng)

Thus

[ y(n,) =T y(np)
[ s(n,) =T 5(np)
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