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 Large-Scale Global Computing Systems

 Subject Application to Dependability Problems
– Can be addressed in the design

 Subject Application to Security Problems
– Requires solutions from the area of survivability, security,

fault-tolerance

Target ApplicationTarget Application
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Global Computing ArchitectureGlobal Computing Architecture

Internet

 Large-scale distributed systems (e.g. Grid, P2P)
 Transparent allocation of resources

User



Page: 5

 In the Survivability Community our general computing
environment is referred to as

                         Unbounded Environment

– Lack of physical / logical bound
– Lack of global administrative view of the system.

What risks are we subjecting our
applications to?

Unbounded EnvironmentsUnbounded Environments
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 Computation intensive parallel application
– Medical (mammography comparison)

Typical ApplicationTypical Application

store image
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Two kinds of failures (1/2)Two kinds of failures (1/2)

Internet

1. Node failures
– “fail stop” model

User
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Unreliability in the absence ofUnreliability in the absence of
Fault ToleranceFault Tolerance  MechanismMechanism

 Computation on Cluster
– MTBF = 2000 days (48,000h,  approx. 5 1/2 years)
– Unreliability of one node: F(t) = 1 - R(t) = 1 - e-λt

Grid5000 status (end of sept.)
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Fault Tolerance ApproachesFault Tolerance Approaches
 Simplified Taxonomy for Fault Tolerance Protocols

 Rely on a “stable storage”
– persistent and assumed to be reliable [Kaapi / Athapascan ]
– If not persistent:  only duplication of saved data (checkpoint / message)

» probabilistic FT protocols: fault tolerance is guaranteed with good probability

FT Protocol

Duplication Checkpointing

Uncoordinated

Message-Logging

Communication-
induced

PessimisticCoordinated Optimisitic Causal
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Two kinds of failures (2/2)Two kinds of failures (2/2)

Internet

2. Task forgery
– “massive attacks”

User
worm,virus

bad result
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How bad is the Problem?How bad is the Problem?
 Vulnerabilities reported (CERT/CC statistics)
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How bad is the Problem?How bad is the Problem?
 Incidents reported (CERT/CC statistics)
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Fault ModelsFault Models
 Simplified Fault Taxonomy

 Fault-Behavior and Assumptions
– Independence of faults
– Common mode faults  ->  towards arbitrary faults!

 Fault Sources
– Trojan, virus, DOS, etc.
– How do faults affect the overall system?

Fault

Benign Malicious

Symmetric Asymmetric
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AssumptionsAssumptions

 Anything is possible!
» and it will happen!

 Malicious act will occur sooner or later

 It is hard or impossible to predict the behavior of an attack
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 Attacks
– single nodes, difficult to solve with certification strategies
– solutions: e.g. intrusion detection systems (IDS)

 Massive Attacks
– affects large number of nodes
– may spread fast (worm, virus)
– may be coordinated (Trojan)

 Impact of Attacks
– attacks are likely to be widespread within neighborhood, e.g. subnet

 Our focus: massive attacks
– virus, trojan, DoS, etc.

Attacks and their impactAttacks and their impact
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 Mainly addressed for independent tasks

 Current approaches
– Simple checker [Blum97]
– Voting    [SETI@home]
– Spot-checking [Germain-Playez 2003, based on Wald test]
– Blacklisting
– Credibility-based fault-tolerance [Sarmenta 2003]
– Partial execution on reliable resources (partitioning) [Gao-Malewicz 2004]
– Re-execution on reliable resources

 Certification of Computation

Certification Against AttacksCertification Against Attacks
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 Dataflow Graph

– G = (v,ε)

v finite set of vertices vi

ε set of edges ejk  vertices vj , vk ∈ v

 Two kinds of tasks
Ti     Tasks

in the traditional sense
Dj    Data tasks

inputs and outputs

Definitions and AssumptionsDefinitions and Assumptions
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 GCP includes workers, checkpoint server and verifiers

Global Computing Platform Global Computing Platform (GCP)(GCP)
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 Executions in unreliable environment
E          execution of workload represented by G
i(T,E)   input to T in execution E
o(T,E)  output of T in execution E

 Executions in reliable environment: Verifier
Ê          execution of workload G on Verifier
î(T,Ê)   input to T in execution Ê
ô(T,Ê)  output of T in execution Ê
ô(T,E)  output of T with input from E executing on verifier

Note: notations ô(T,Ê)  and ô(T,E)  differ!

 If E = Ê   then E is said to be “correct”
                      otherwise E is said to have “failed”

DefinitionsDefinitions
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 Monte Carlo certification: (analogy to Miller-Rabin)

– a randomized algorithm that
1. takes as input E and an arbitrary ε,     0 < ε ≤1
2. delivers

 either CORRECT
 or FAILED, together with a proof that E has failed

– certification is with error ε if the probability of answer
CORRECT, when E has actually failed, is less than or
equal to ε.

Probabilistic CertificationProbabilistic Certification
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 What does the certification really mean?
– what is the real interpretation of E = Ê
– connection between E = Ê and massive attack
– use E ≠ Ê as a “tool” to determine if a massive attack has occurred

 Monte Carlo certification against massive attacks
– number of tasks actually failed/attacked  nF
– consider two scenarios

»  nF  = 0
»  nF  is large  => massive attack

 Attack Ratio q

Probabilistic CertificationProbabilistic Certification

! 

nq = nq" # $ nF
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 Algorithm MCT

1. Uniformly select one task T in G
we know input i(T,E) and output o(T,E) of T from checkpoint server

2. Re-execute T on verifier, using i(T,E) as inputs, to get output ô(T,E)
If o(T,E) ≠  ô(T,E) return FAILED

3. Return CORRECT

Monte Carlo TestMonte Carlo Test
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 How many independent executions of MCT are necessary to
achieve certification of E with probability of error ≤ ε ?

– Prob. that MCT selects a non-forged tasks is

– N independent applications of MCT results in      ε ≤ (1 - q)N

Certification of Independent TasksCertification of Independent Tasks
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 Relationship between attack ratio and N

Certification of Independent TasksCertification of Independent Tasks
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 Relationship between certification error and N

Certification of Independent TasksCertification of Independent Tasks

For q = 1% :

•300 checks => ε < 5%

•4611 checks => ε < 10-20

•24000 checks => ε < 10-125
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 What does a re-execution really tell us w.r.t. the result?
– One can only talk about outputs of tasks, not tasks!

– If o(T,E) ≠  ô(T,E)  we know that an error has occurred

– If o(T,E) = ô(T,E)  we cannot say much at all!

» for independent tasks this indicated a good task/result
» what do we know about the inputs?

 in the presence of error propagation -- not much!
» if the verifier uses î(T,Ê)  then o(T,E) = ô(T,Ê) indicates a good result

but we don’t have Ê,  (would require total re-execution on verifier)

Certification and Task DependenciesCertification and Task Dependencies
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 The concept of “Initiator”

– o(T,E) = ô(T,E)  is only useful if we know that the inputs are correct
» this implies that T has no forged predecessors

– Definition:
An initiator is a falsified tasks that has no falsified predecessors

– Worst case assumption is very conservative
» one still might detect a falsified non-initiator
» but there is no guarantee

Certification and Task DependenciesCertification and Task Dependencies
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 Certification is now based on initiators

 Using Algorithm MCT we get

Certification and Task DependenciesCertification and Task Dependencies
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G≤(V) predecessor graph of all tasks in V
k ≤ nF be the number of falsified tasks assumed
I(F) set of all initiators

 Minimum Number of Initiators

 Minimal Initiator Ratio

Certification and Task DependenciesCertification and Task Dependencies
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 Algorithm EMCT
1. Uniformly select one task T in G

2. Re-execute all Tj in G≤(T), which have not been verified yet, with
input i(T,E) on a verifier and  return FAILED if for any Tj we have
o(Tj,E) ≠  ô(Tj,E)

3. Return CORRECT

 Behavior
– disadvantage: the entire predecessor graph needs to be re-executed
– however: the cost depends on the graph

» luckily our application graphs are mainly trees

EExtended xtended MMonte onte CCarlo arlo TTestest
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 Results of independent tasks still hold,
– but N hides the cost of verification

» independent tasks:  C = 1
» dependent tasks: C =  |G≤(T)|

Analysis of EMCTAnalysis of EMCT
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For EMCT the entire predecessor graph had to be verified
To reduce verification cost two approaches are considered next:

1. Verification with fractions of G≤(T)
2. Verification with fixed number of tasks in G≤(T)

Reducing the cost of verificationReducing the cost of verification
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 Algorithm EMCTα(E)

Verifying with fractions of GVerifying with fractions of G≤≤((TT))



Page: 36

 For Algorithm EMCTα(E)

Verifying with fractions of GVerifying with fractions of G≤≤((TT))
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 For Algorithm EMCTα(E)

Verifying with fractions of GVerifying with fractions of G≤≤((TT))
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 We will now modify algorithm EMCT so that only a fixed
number of tasks in the predecessors are verified.

– We limit our investigations to unity, i.e. one task is verified.

Verifying fixed numbers of tasksVerifying fixed numbers of tasks
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 Algorithm EMCT1(E)

Verifying fixed numbers of tasksVerifying fixed numbers of tasks
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 For Algorithm EMCT1(E)

Verifying fixed numbers of tasksVerifying fixed numbers of tasks
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 For Algorithm EMCT1(E)

Verifying fixed numbers of tasksVerifying fixed numbers of tasks
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 A balance between N  and C

 Monte Carlo certification for a given ε:
1. a priori convergence

– determine up front how many times one has to verify
– one does not know which tasks are selected

2. run-time convergence
– run until certain ε is achieved
– take advantage of knowledge about task selected

3. for general graphs
4. for special graphs (e.g. out-trees)

Note: For independent tasks a priori and run-time convergence are the same.

The cost of certificationThe cost of certification
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 Number of effective initiators
– this is the # of initiators as perceived by the algorithm
– e.g. for EMCT an initiator in  G≤(T) is always found, if it exists

Results for pathological casesResults for pathological cases
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 Probability of error induced by one invocation
– derived for each algorithm

Results for pathological casesResults for pathological cases
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 A priori convergence (N is determined a priori)
– cannot take advantage of run-time knowledge
– has to use ΓG(nq) rather than ΓT(nq)
– qe is the effective attack ratio

Results for pathological casesResults for pathological cases
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 Run-time convergence (N is determined at run-time)
– takes advantage of run-time knowledge
– initial verification  εe = 1 - qe
– each verification  εe = εe (1 - qe)
– until  εe ≤ ε

Results for pathological casesResults for pathological cases
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 Verification cost
– per invocation of the algorithm
– special case: out-tree

Results for pathological casesResults for pathological cases
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 Certification of large distributed applications
– hostile environments with no assumptions on fault model

 Considered task dependencies
– tasks or data may be manipulated
– allows for error propagation (much more difficult than independent case)
– very difficult to speculate on the behavior of a falsified task

 Several probabilistic certification algorithms were introduced
– based on re-execution on verifier (reliable resource)
– inputs available from dataflow checkpoints

 Certification:
– very low probability of error can be achieved
– number of tasks to verify is relatively small, depending on graph
– relationship between attack rate and probability of error

ConclusionsConclusions
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Questions?Questions?



Page: 50

 The impact of graph G
– Knowing the graph, an attacker may attempt to minimize the visibility

of even a massive attack with ration q.
– What is the number of initiators one might have to expect in a graph?

» In the worst case we have

Certification and Task DependenciesCertification and Task Dependencies
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 Considered
– General graphs
– Out-trees  (application domain based on out/in-trees)

Results for MCT and EMTCResults for MCT and EMTC
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 Given a subset V of tasks in G.

      What are the relationships between
             γV(k), γG(k) and nI  with respect to k = nq or k = nF?

      By definition
q ≤ nF / n  and thus nq ≤ nF

         also
            nI ≤ nF

 Γ

Relationship between quantitiesRelationship between quantities
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 With respect to nF we always have
               γV(nF) ≤ γG(nF) ≤ nI ≤ nF

– But where does nq fit into this inequality?
– The only certain relationship is nq ≤ nF

 With respect to nq we always have
               γV(nq) ≤ γG(nq) ≤ nq ≤ nF

– But where does nI fit into this inequality?
– The only certain relationship is  γG(nq) ≤  nI  ≤  nF

 Γ

Relationship between quantitiesRelationship between quantities
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 With respect to nq ≤ nF  we can compare directly

                   γV(nq) ≤ γV(nF)
                   γG(nq) ≤ γG(nF)

       Thus

                   Γ V(nq) ≤ Γ V(nF)
                   Γ G(nq) ≤ Γ G(nF)

Relationship between quantitiesRelationship between quantities


