
1

Certification of Large DistributedCertification of Large Distributed
Computations with Task DependenciesComputations with Task Dependencies

in Hostile Environmentsin Hostile Environments

Thierry Gautier, Samir Jafar, Axel Krings,
Franck Leprévost, Jean-Louis Roch, Sébastien Varrette

Equipe MOAIS Laboratoire ID-IMAG, France

Jean-Louis.Roch@imag.fr

[99] Samir Jafar, Thierry Gautier, Axel W. Krings, and Jean-Louis Roch. A checkpoint/recovery model
for heterogeneous dataflow computations using work-stealing. EUROPAR'2005, Lisbonne, August 2005.
[97] Axel W. Krings, Jean-Louis Roch, and Samir Jafar. Certification of large distributed computations
with task dependencies in hostile environments. IEEE EIT 2005, Lincoln, May 2005.
[92] Sébastien Varrette, Jean-Louis Roch, and Franck Leprévost. Flowcert: Probabilistic certification
for peer-to-peer computations. IEEE SBAC-PAD 2004, pages 108-115, Foz do Iguacu, Brazil, October 2004.
[89] Samir Jafar, Varrette Sébastien, and Jean-Louis Roch. Using data-flow analysis for resilience and
result checking in peer-to-peer computations. In IEEE DEXA'2004, Zaragoza, August 2004.



Page: 2

 Motivation: Application and Threat
 Execution Model
 Certification with independent tasks
 Certification with task dependencies
 Results
 Conclusions and Future Work

Presentation OutlinePresentation Outline



Page: 3

 Large-Scale Global Computing Systems

 Subject Application to Dependability Problems
– Can be addressed in the design

 Subject Application to Security Problems
– Requires solutions from the area of survivability, security,

fault-tolerance

Target ApplicationTarget Application



Page: 4

Global Computing ArchitectureGlobal Computing Architecture

Internet

 Large-scale distributed systems (e.g. Grid, P2P)
 Transparent allocation of resources

User



Page: 5

 In the Survivability Community our general computing
environment is referred to as

                         Unbounded Environment

– Lack of physical / logical bound
– Lack of global administrative view of the system.

What risks are we subjecting our
applications to?

Unbounded EnvironmentsUnbounded Environments



Page: 6

 Computation intensive parallel application
– Medical (mammography comparison)

Typical ApplicationTypical Application

store image



Page: 7

Two kinds of failures (1/2)Two kinds of failures (1/2)

Internet

1. Node failures
– “fail stop” model

User



Page: 8

Unreliability in the absence ofUnreliability in the absence of
Fault ToleranceFault Tolerance  MechanismMechanism

 Computation on Cluster
– MTBF = 2000 days (48,000h,  approx. 5 1/2 years)
– Unreliability of one node: F(t) = 1 - R(t) = 1 - e-λt

Grid5000 status (end of sept.)



Page: 9

Fault Tolerance ApproachesFault Tolerance Approaches
 Simplified Taxonomy for Fault Tolerance Protocols

 Rely on a “stable storage”
– persistent and assumed to be reliable [Kaapi / Athapascan ]
– If not persistent:  only duplication of saved data (checkpoint / message)

» probabilistic FT protocols: fault tolerance is guaranteed with good probability

FT Protocol

Duplication Checkpointing

Uncoordinated

Message-Logging

Communication-
induced

PessimisticCoordinated Optimisitic Causal



Page: 10

Two kinds of failures (2/2)Two kinds of failures (2/2)

Internet

2. Task forgery
– “massive attacks”

User
worm,virus

bad result



Page: 11

How bad is the Problem?How bad is the Problem?
 Vulnerabilities reported (CERT/CC statistics)



Page: 12

How bad is the Problem?How bad is the Problem?
 Incidents reported (CERT/CC statistics)



Page: 13

Fault ModelsFault Models
 Simplified Fault Taxonomy

 Fault-Behavior and Assumptions
– Independence of faults
– Common mode faults  ->  towards arbitrary faults!

 Fault Sources
– Trojan, virus, DOS, etc.
– How do faults affect the overall system?

Fault

Benign Malicious

Symmetric Asymmetric



Page: 14

AssumptionsAssumptions

 Anything is possible!
» and it will happen!

 Malicious act will occur sooner or later

 It is hard or impossible to predict the behavior of an attack



Page: 15

 Attacks
– single nodes, difficult to solve with certification strategies
– solutions: e.g. intrusion detection systems (IDS)

 Massive Attacks
– affects large number of nodes
– may spread fast (worm, virus)
– may be coordinated (Trojan)

 Impact of Attacks
– attacks are likely to be widespread within neighborhood, e.g. subnet

 Our focus: massive attacks
– virus, trojan, DoS, etc.

Attacks and their impactAttacks and their impact



Page: 16

 Mainly addressed for independent tasks

 Current approaches
– Simple checker [Blum97]
– Voting    [SETI@home]
– Spot-checking [Germain-Playez 2003, based on Wald test]
– Blacklisting
– Credibility-based fault-tolerance [Sarmenta 2003]
– Partial execution on reliable resources (partitioning) [Gao-Malewicz 2004]
– Re-execution on reliable resources

 Certification of Computation

Certification Against AttacksCertification Against Attacks



Page: 17

 Motivation: Application and Threat
 Execution Model
 Certification with independent tasks
 Certification with task dependencies
 Results
 Conclusions and Future Work

Presentation OutlinePresentation Outline



Page: 18

 Dataflow Graph

– G = (v,ε)

v finite set of vertices vi

ε set of edges ejk  vertices vj , vk ∈ v

 Two kinds of tasks
Ti     Tasks

in the traditional sense
Dj    Data tasks

inputs and outputs

Definitions and AssumptionsDefinitions and Assumptions



Page: 19

 GCP includes workers, checkpoint server and verifiers

Global Computing Platform Global Computing Platform (GCP)(GCP)



Page: 20

 Executions in unreliable environment
E          execution of workload represented by G
i(T,E)   input to T in execution E
o(T,E)  output of T in execution E

 Executions in reliable environment: Verifier
Ê          execution of workload G on Verifier
î(T,Ê)   input to T in execution Ê
ô(T,Ê)  output of T in execution Ê
ô(T,E)  output of T with input from E executing on verifier

Note: notations ô(T,Ê)  and ô(T,E)  differ!

 If E = Ê   then E is said to be “correct”
                      otherwise E is said to have “failed”

DefinitionsDefinitions



Page: 21

 Monte Carlo certification: (analogy to Miller-Rabin)

– a randomized algorithm that
1. takes as input E and an arbitrary ε,     0 < ε ≤1
2. delivers

 either CORRECT
 or FAILED, together with a proof that E has failed

– certification is with error ε if the probability of answer
CORRECT, when E has actually failed, is less than or
equal to ε.

Probabilistic CertificationProbabilistic Certification



Page: 22

 What does the certification really mean?
– what is the real interpretation of E = Ê
– connection between E = Ê and massive attack
– use E ≠ Ê as a “tool” to determine if a massive attack has occurred

 Monte Carlo certification against massive attacks
– number of tasks actually failed/attacked  nF
– consider two scenarios

»  nF  = 0
»  nF  is large  => massive attack

 Attack Ratio q

Probabilistic CertificationProbabilistic Certification

! 

nq = nq" # $ nF



Page: 23

 Algorithm MCT

1. Uniformly select one task T in G
we know input i(T,E) and output o(T,E) of T from checkpoint server

2. Re-execute T on verifier, using i(T,E) as inputs, to get output ô(T,E)
If o(T,E) ≠  ô(T,E) return FAILED

3. Return CORRECT

Monte Carlo TestMonte Carlo Test



Page: 24

 How many independent executions of MCT are necessary to
achieve certification of E with probability of error ≤ ε ?

– Prob. that MCT selects a non-forged tasks is

– N independent applications of MCT results in      ε ≤ (1 - q)N

Certification of Independent TasksCertification of Independent Tasks

! 

N "
log#

log(1$ q)

% 

& 
& 

' 

( 
( 

! 

n " nF

n
#1" q



Page: 25

 Relationship between attack ratio and N

Certification of Independent TasksCertification of Independent Tasks



Page: 26

 Relationship between certification error and N

Certification of Independent TasksCertification of Independent Tasks

For q = 1% :

•300 checks => ε < 5%

•4611 checks => ε < 10-20

•24000 checks => ε < 10-125



Page: 27

 Motivation: Application and Threat
 Execution Model
 Certification with independent tasks
 Certification with task dependencies
 Results
 Conclusions and Future Work

Presentation OutlinePresentation Outline



Page: 28

 What does a re-execution really tell us w.r.t. the result?
– One can only talk about outputs of tasks, not tasks!

– If o(T,E) ≠  ô(T,E)  we know that an error has occurred

– If o(T,E) = ô(T,E)  we cannot say much at all!

» for independent tasks this indicated a good task/result
» what do we know about the inputs?

 in the presence of error propagation -- not much!
» if the verifier uses î(T,Ê)  then o(T,E) = ô(T,Ê) indicates a good result

but we don’t have Ê,  (would require total re-execution on verifier)

Certification and Task DependenciesCertification and Task Dependencies



Page: 29

 The concept of “Initiator”

– o(T,E) = ô(T,E)  is only useful if we know that the inputs are correct
» this implies that T has no forged predecessors

– Definition:
An initiator is a falsified tasks that has no falsified predecessors

– Worst case assumption is very conservative
» one still might detect a falsified non-initiator
» but there is no guarantee

Certification and Task DependenciesCertification and Task Dependencies



Page: 30

 Certification is now based on initiators

 Using Algorithm MCT we get

Certification and Task DependenciesCertification and Task Dependencies

! 

N "
log#

log(1$
n
I

n
)

% 

& 

& 
& 
& 

' 

( 

( 
( 
( 



Page: 31

G≤(V) predecessor graph of all tasks in V
k ≤ nF be the number of falsified tasks assumed
I(F) set of all initiators

 Minimum Number of Initiators

 Minimal Initiator Ratio

Certification and Task DependenciesCertification and Task Dependencies

! 

"
V
(k) =min |G

#
(V )$ I(F) |

! 

"
V
(k) =

#
V
(k)

|G
$
(V ) |



Page: 32

 Algorithm EMCT
1. Uniformly select one task T in G

2. Re-execute all Tj in G≤(T), which have not been verified yet, with
input i(T,E) on a verifier and  return FAILED if for any Tj we have
o(Tj,E) ≠  ô(Tj,E)

3. Return CORRECT

 Behavior
– disadvantage: the entire predecessor graph needs to be re-executed
– however: the cost depends on the graph

» luckily our application graphs are mainly trees

EExtended xtended MMonte onte CCarlo arlo TTestest



Page: 33

 Results of independent tasks still hold,
– but N hides the cost of verification

» independent tasks:  C = 1
» dependent tasks: C =  |G≤(T)|

Analysis of EMCTAnalysis of EMCT



Page: 34

For EMCT the entire predecessor graph had to be verified
To reduce verification cost two approaches are considered next:

1. Verification with fractions of G≤(T)
2. Verification with fixed number of tasks in G≤(T)

Reducing the cost of verificationReducing the cost of verification



Page: 35

 Algorithm EMCTα(E)

Verifying with fractions of GVerifying with fractions of G≤≤((TT))



Page: 36

 For Algorithm EMCTα(E)

Verifying with fractions of GVerifying with fractions of G≤≤((TT))



Page: 37

 For Algorithm EMCTα(E)

Verifying with fractions of GVerifying with fractions of G≤≤((TT))



Page: 38

 We will now modify algorithm EMCT so that only a fixed
number of tasks in the predecessors are verified.

– We limit our investigations to unity, i.e. one task is verified.

Verifying fixed numbers of tasksVerifying fixed numbers of tasks



Page: 39

 Algorithm EMCT1(E)

Verifying fixed numbers of tasksVerifying fixed numbers of tasks



Page: 40

 For Algorithm EMCT1(E)

Verifying fixed numbers of tasksVerifying fixed numbers of tasks



Page: 41

 For Algorithm EMCT1(E)

Verifying fixed numbers of tasksVerifying fixed numbers of tasks



Page: 42

 A balance between N  and C

 Monte Carlo certification for a given ε:
1. a priori convergence

– determine up front how many times one has to verify
– one does not know which tasks are selected

2. run-time convergence
– run until certain ε is achieved
– take advantage of knowledge about task selected

3. for general graphs
4. for special graphs (e.g. out-trees)

Note: For independent tasks a priori and run-time convergence are the same.

The cost of certificationThe cost of certification



Page: 43

 Number of effective initiators
– this is the # of initiators as perceived by the algorithm
– e.g. for EMCT an initiator in  G≤(T) is always found, if it exists

Results for pathological casesResults for pathological cases



Page: 44

 Probability of error induced by one invocation
– derived for each algorithm

Results for pathological casesResults for pathological cases



Page: 45

 A priori convergence (N is determined a priori)
– cannot take advantage of run-time knowledge
– has to use ΓG(nq) rather than ΓT(nq)
– qe is the effective attack ratio

Results for pathological casesResults for pathological cases

! 

N "
log#

log(1$ qe )

% 

& 
& 

' 

( 
( 



Page: 46

 Run-time convergence (N is determined at run-time)
– takes advantage of run-time knowledge
– initial verification  εe = 1 - qe
– each verification  εe = εe (1 - qe)
– until  εe ≤ ε

Results for pathological casesResults for pathological cases

! 

N "
log#

log(1$ qe )

% 

& 
& 

' 

( 
( 



Page: 47

 Verification cost
– per invocation of the algorithm
– special case: out-tree

Results for pathological casesResults for pathological cases



Page: 48

 Certification of large distributed applications
– hostile environments with no assumptions on fault model

 Considered task dependencies
– tasks or data may be manipulated
– allows for error propagation (much more difficult than independent case)
– very difficult to speculate on the behavior of a falsified task

 Several probabilistic certification algorithms were introduced
– based on re-execution on verifier (reliable resource)
– inputs available from dataflow checkpoints

 Certification:
– very low probability of error can be achieved
– number of tasks to verify is relatively small, depending on graph
– relationship between attack rate and probability of error

ConclusionsConclusions



Page: 49

Questions?Questions?



Page: 50

 The impact of graph G
– Knowing the graph, an attacker may attempt to minimize the visibility

of even a massive attack with ration q.
– What is the number of initiators one might have to expect in a graph?

» In the worst case we have

Certification and Task DependenciesCertification and Task Dependencies

! 

"
G
(n

F
) =

n
F

1# dh

1# d

$ 

% 
& 

' 

( 
) 

* 

+ 

+ 
+ 
+ 
+ 

, 

- 

- 
- 
- 
- 

…

…



Page: 51

 Considered
– General graphs
– Out-trees  (application domain based on out/in-trees)

Results for MCT and EMTCResults for MCT and EMTC



Page: 52

 Given a subset V of tasks in G.

      What are the relationships between
             γV(k), γG(k) and nI  with respect to k = nq or k = nF?

      By definition
q ≤ nF / n  and thus nq ≤ nF

         also
            nI ≤ nF

 Γ

Relationship between quantitiesRelationship between quantities



Page: 53

 With respect to nF we always have
               γV(nF) ≤ γG(nF) ≤ nI ≤ nF

– But where does nq fit into this inequality?
– The only certain relationship is nq ≤ nF

 With respect to nq we always have
               γV(nq) ≤ γG(nq) ≤ nq ≤ nF

– But where does nI fit into this inequality?
– The only certain relationship is  γG(nq) ≤  nI  ≤  nF

 Γ

Relationship between quantitiesRelationship between quantities



Page: 54

 With respect to nq ≤ nF  we can compare directly

                   γV(nq) ≤ γV(nF)
                   γG(nq) ≤ γG(nF)

       Thus

                   Γ V(nq) ≤ Γ V(nF)
                   Γ G(nq) ≤ Γ G(nF)

Relationship between quantitiesRelationship between quantities


