Terminology

Barbara Jobstmann
CNRS/Verimag
Terminology

Two-player games between Player 0 and 1
An infinite game $\langle G, \phi \rangle$ consists of

- a game graph G and
- a winning condition ϕ.

G defines the “playground”, in which the two players compete.
ϕ defines which plays are won by Player 0.
If a play does not satisfy ϕ, then Player 1 wins on this play.
Game Graphs

A game graph is a tuple $G = \langle S, S_0, T \rangle$ where:

- S is a finite set of states,
- $S_0 \subseteq S$ is the set of Player-0 states ($S_1 = S \setminus S_0$ are the Player-1 states),
- $T \subseteq S \times S$ is a transition relation. We assume that each state has at least one successor.
Plays

A **play** is an infinite sequence of states \(\rho = s_0s_1s_2 \cdots \in S^\omega \) such that for all \(i \geq 0 \) \(\langle s_i, s_{i+1} \rangle \in T \).

It starts in \(s_0 \) and it is built up as follows:

If \(s_i \in S_0 \), then Player 0 chooses an edge starting in \(s_i \), otherwise Player 1 picks such an edge.

Intuitively, a token is moved from state to state via edges: From \(S_0 \)-states Player 0 moves the token, from \(S_1 \)-states Player 1 moves the token.
Winning Condition

The winning condition describes the plays won by Player 0. A winning condition or winning objective ϕ is a subset of plays, i.e., $\phi \subseteq S^\omega$.

We use logical conditions (e.g., LTL formulas) or automata theoretic acceptance conditions to describe ϕ.

Example:

- always eventually s for some state $s \in S$
- All plays that stay within a safe region $F \subseteq S$ are in ϕ.
- Given a priority function $p : S \to \{0, 1, \ldots, d\}$, all plays in which the smallest priority visited is even.

Games are named after their winning condition, e.g., Safety game, Reachability game, LTL game, Parity game,...
Types of Games

Given a play ρ, we define

- $\text{Occ}(\rho) = \{s \in S \mid \exists i \geq 0 : s_i = s\}$
- $\text{Inf}(\rho) = \{s \in S \mid \forall i \geq 0 \exists j > i : s_j = s\}$

Given a set $F \subseteq S$,

- **Reachability Game** $\phi = \{\rho \in S^\omega \mid \text{Occ}(\rho) \cap F \neq \emptyset\}$
- **Safety Game** $\phi = \{\rho \in S^\omega \mid \text{Occ}(\rho) \subseteq F\}$
- **Büchi Game** $\phi = \{\rho \in S^\omega \mid \text{Inf}(\rho) \cap F \neq \emptyset\}$
- **Co-Büchi Game** $\phi = \{\rho \in S^\omega \mid \text{Inf}(\rho) \subseteq F\}$
Types of Games

Given a priority function \(p : S \rightarrow \{0, 1, \ldots, d\} \) or an LTL formula \(\varphi \)

Weak-Parity Game
\[
\phi = \{ \rho \in S^\omega \mid \min_{s \in \text{Occ}(\rho)} p(s) \text{ is even} \}
\]

Parity Game
\[
\phi = \{ \rho \in S^\omega \mid \min_{s \in \text{Inf}(\rho)} p(s) \text{ is even} \}
\]

LTL Game
\[
\phi = \{ \rho \in S^\omega \mid \rho \models \varphi \}
\]

We will refer to the type of a game and give \(F, p, \) or \(\varphi \) instead of defining \(\phi \).
Strategies

A strategy for Player 0 from state s is a (partial) function

$$f : S^* S_0 \rightarrow S$$

specifying for any sequence of states $s_0, s_1, \ldots s_k$ with $s_0 = s$ and $s_k \in S_0$ a successor state s_j such that $(s_k, s_j) \in T$.

A play $\rho = s_0s_1\ldots$ is compatible with strategy f if for all $s_i \in S_0$ we have that $s_{i+1} = f(s_0s_1\ldots s_i)$.

(Definitions for Player 1 are analogous.)

Given strategies f and g from s for Player 0 and 1, respectively. We denote by $G_{f,g}$ the (unique) play that is compatible with f and g.
Winning Strategies and Regions

Given a game \((G, \phi)\) with \(G = (S, S_0, E)\), a strategy \(f\) for Player 0 from \(s\) is called a winning strategy if for all Player-1 strategies \(g\) from \(s\), if \(G_{f,g} \in \phi\) holds. Analogously, a Player-1 strategy \(g\) is winning if for all Player-0 strategies \(f\), \(G_{f,g} \not\in \phi\) holds.

Player 0 (resp. 1) wins from \(s\) if s/he has a winning strategy from \(s\).
Winning Strategies and Regions

Given a game \((G, \phi)\) with \(G = (S, S_0, E)\), a strategy \(f\) for Player 0 from \(s\) is called a winning strategy if for all Player-1 strategies \(g\) from \(s\), if \(G_{f,g} \in \phi\) holds. Analogously, a Player-1 strategy \(g\) is winning if for all Player-0 strategies \(f\), \(G_{f,g} \not\in \phi\) holds.

Player 0 (resp. 1) wins from \(s\) if s/he has a winning strategy from \(s\).

The winning regions of Player 0 and 1 are the sets

\[
W_0 = \{ s \in S \mid \text{Player 0 wins from } s \}
\]

\[
W_1 = \{ s \in S \mid \text{Player 1 wins from } s \}
\]

Note each state \(s\) belongs at most to \(W_0\) or \(W_1\). Otherwise pick winning strategies \(f\) and \(g\) from \(s\) for Player 0 and 1, respectively, then \(G_{f,g} \in \phi\) and \(G_{f,g} \not\in \phi\): Contradiction.
Questions About Games

Solve a game \((G, \phi)\) with \(G = (S, S_0, T)\):

1. Decide for each state \(s \in S\) if \(s \in W_0\).
2. If yes, construct a suitable winning strategy from \(s\).

Further interesting question:

- Optimize construction of winning strategy (e.g., time complexity)
- Optimize parameters of winning strategy (e.g., size of memory)
Safety game \((G, F)\) with \(F = \{s_0, s_1, s_3, s_4\}\), i.e., \(\text{Occ}(\rho) \subseteq F\)

A winning strategy for Player 0 (from state \(s_0, s_3,\) and \(s_4\)):
- From \(s_0\) choose \(s_3\) and from \(s_4\) choose \(s_3\)

A winning strategy for Player 1 (from state \(s_1\) and \(s_2\)):
- From \(s_1\) choose \(s_2\), from \(s_2\) choose \(s_4\), and from \(s_3\) choose \(s_4\)
Safety game \((G, F)\) with \(F = \{s_0, s_1, s_3, s_4\}\), i.e., \(\text{Occ}(\rho) \subseteq F\)

A winning strategy for Player 0 (from state \(s_0, s_3,\) and \(s_4\)):

- From \(s_0\) choose \(s_3\) and from \(s_4\) choose \(s_3\)

A winning strategy for Player 1 (from state \(s_1\) and \(s_2\)):

- From \(s_1\) choose \(s_2\), from \(s_2\) choose \(s_4\), and from \(s_3\) choose \(s_4\)

\(W_0 = \{s_0, s_3, s_4\}\), \(W_1 = \{s_1, s_2\}\)
LTL game \((G, \varphi)\) with \(\varphi = \text{eventually}(s_0) \land \text{eventually}(s_4)\)

Winning strategy for Player 0 from \(s_0\):

- From \(s_0\) to \(s_3\), from \(s_3\) to \(s_4\), and from \(s_4\) to \(s_1\).

Note: this strategy is not winning from \(s_3\) or \(s_4\).

Winning strategy for Player 0 from \(s_3\):

- From \(s_0\) to \(s_3\), from \(s_4\) to \(s_3\), and from \(s_3\) to \(s_0\) on first visit, otherwise to \(s_4\).
Determinacy

Recall: the winning regions are disjoint, i.e., $W_0 \cap W_1 = \emptyset$

Question: Is every state winning for some player?

A game (G, ϕ) with $G = (S, S_0, E)$ is called determined if $W_0 \cup W_1 = S$ holds.

Remarks:

1. We will show that all automata theoretic games we consider here are determined.

2. There are games which are not determined (e.g., concurrent games: even/odd sum, paper-rock-scissors)
Strategy Types

In general, a strategy is a function \(f : S^+ \rightarrow S \).
(Note that sometimes we might define \(f \) only partially.)

1. **Computable or recursive strategies**: \(f \) is computable
2. **Finite-state strategies**: \(f \) is computable with a finite-state automaton meaning that \(f \) has bounded information about the past (history).
3. **Memoryless or positional strategies**: \(f \) only depends on the current state of the game (no knowledge about history of play)
Positional Strategies

Given a game \((G, \phi)\) with \(G = (S, S_0, E)\), a strategy \(f : S^+ \rightarrow S\) is called positional or memoryless if for all words \(w, w' \in S^+\) with \(w = s_0 \ldots s_n\) and \(w' = s'_0 \ldots s'_m\) such that \(s_n = s'_m\), \(f(w) = f(w')\) holds.

A positional strategy for Player 0 is representable as

1. a function \(f : S_0 \rightarrow S\)

2. a set of edges containing for every Player-0 state \(s\) exactly one edge starting in \(s\) (and for every Player-1 state \(s'\) all edges starting in \(s'\))
Finite-state Strategies

A strategy automaton over a game graph $G = (S, S_0, E)$ is a finite-state machine $A = (M, m_0, \delta, \lambda)$ (Mealy machine) with input and output alphabet S, where

- M is a finite set of states (called memory),
- $m_0 \in M$ is an initial state (the initial memory content),
- $\delta : M \times S \rightarrow M$ is a transition function (the memory update fct),
- $\lambda : M \times S \rightarrow S$ is a labeling function (called the choice function).
Finite-state Strategies

A strategy automaton over a game graph $G = (S, S_0, E)$ is a finite-state machine $A = (M, m_0, \delta, \lambda)$ (Mealy machine) with input and output alphabet S, where

- M is a finite set of states (called memory),
- $m_0 \in M$ is an initial state (the initial memory content),
- $\delta : M \times S \to M$ is a transition function (the memory update fct),
- $\lambda : M \times S \to S$ is a labeling function (called the choice function).

The strategy for Player 0 computed by A is the function

$$f_A(s_0 \ldots s_k) := \lambda(\delta(m_0, s_0 \ldots s_{k-1}), s_k) \text{ with } s_k \in S_0$$

and the usual extension of δ to words: $\delta(m_0, \epsilon) = m_0$ and $\delta(m_0, s_0 \ldots s_k) = \delta(\delta(m_0, s_0 \ldots s_{k-1}), s_k)$. Any strategy f, such that there exists an A with $f_A = f$, is called finite-state strategy.
Recall Example

Objective: visit s_0 and s_4, i.e., $\{s_0, s_4\} \subseteq \text{Occ}(\rho)$

Winning strategy for Player 0 from s_0, s_3 and s_4:
- From s_0 to s_3, from s_4 to s_3, and from s_3 to s_0 on first visit, otherwise to s_4. s_0/s_3, $s_1/-$, $s_2/-$, s_4/s_3
Extended Game
Extended Game
Extended Game
Extended Game

Note: the strategy in the extended game graph is memoryless.