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Abstract—Concurrent systems are prone to deadlocks that
arise from competing access to shared resources and synchro-
nization between the components. At the same time, concurrency
leads to a dramatic increase of the possible state space due
to interleavings of computations, which makes standard veri-
fication techniques often infeasible. Previous work has shown
that approximating the state space of component based systems
by computing invariants allows to verify much larger systems
then standard methods that compute the exact state space. The
approach comes with the drawback, though, that not all of the
reported specification violations may be reachable in the system.
This paper deals with that problem by combining the information
from the invariant with model checking techniques and strategies
for reducing the memory footprint. The approach is implemented
as post processing step for generating the exact set of reachable
specification violations along with traces to demonstrate the error.

I. INTRODUCTION

Deadlock detection is one of the most common tasks in
model checking and can be used (with some overhead) to
check any safety property [1]. The complexity of deadlock
detection of concurrent systems is PSPACE-complete in the
size of the system, same as model checking. There have been
many approaches for deadlock detection, e.g., using explicit
state space [2], [3], [4], symbolic model checking [5] and SAT
solving [6]. Due to the inherent complexity of the problem,
it is not surprising that each approach finds its own difficult
instances.

We propose here a new algorithm for deadlock detection
for concurrent systems. Our method works in two stages; first
we use an over-approximation to limit the potential deadlocks
using a recent technique [7], [8]; then we employ a backwards-
forwards search to eliminate false positives and to provide
the full counterexamples from initial states to deadlocks. The
main principle of our approach is to provide a tight invariant
to calculate an efficient over-approximation for the reachable
deadlocks of the system. There is an obvious tradeoff between
the tightness of the initial approximation (which is a key
factor in the success of our algorithm) and the efficiency of
its calculation; a forward search from the initial states, for
example, would provide an exact set of reachable states and
deadlock states, however, it may fail to do so due to time and
space limitations.

The research leading to these results has received funding from the
European Communitys Seventh Framework Programme [FP7] under grant
agreements no 257414 (ASCENS).

Our approach starts by using structural properties of the
system to provide an over-approximation of the set of reach-
able states. It combines local invariants of the processes
with an interaction invariant, calculated based on Boolean
behavioral constraints that capture the effects of synchroniza-
tion of parallel components [7], [8]. The computation of the
interaction invariants is efficient, as it does not involve a state
space search. We find this combination of local invariants and
interaction invariant quite satisfying in terms of the tightness
of the approximation and the amount of work required, but
it comes with the drawbacks that 1) not all of the reported
deadlocks are really reachable and 2) it does not generate
counterexamples for the deadlocks, which makes locating the
actual error much harder.

To remedy these problems, we add a second phase that is
the main contribution of this paper. In this phase, we use the
invariant to compute a set of deadlock suspects and perform
a backwards/forwards search to check their reachability: from
the deadlock states towards the initial states, and reversely,
from the initial states towards the deadlock states. In this
way we find concrete traces for each reachable deadlock state
(starting from initial states and ending at deadlock states).
The approach exploits binary decision diagrams (BDDs) [9]
to use the invariant for a reduction of the memory footprint
of the procedure, and is therefore dependent on a Boolean
representation of the model. For problems that can be directly
represented in such a way, the presented approach returns the
exact set of reachable deadlock states along with an error
trace that demonstrates its reachability. General BIP models
require abstraction, e.g., by reduction to the Boolean variables
and the control structure of BIP (control states of the com-
ponents and their interactions). Such an abstraction may lead
to infeasible traces, which do, however, show the interactions
among components and assists a manual feasibility check to
find possible remaining false positives. Traces to the deadlocks
are also a precondition for future extensions to compute better
abstractions by performing automatic feasibility checks and
predicate abstraction in form of an abstraction refinement loop
(CEGAR). As usual for infinite systems, a CEGAR loop may
not terminate, but nevertheless produce intermediate models
that are valid for refuting false positives [10], [11]. For this
paper and the implementation we consider Boolean systems
and do not go into details on their construction.

Our approach has been implemented in the BIP tool-



set [12]. In the BIP language, atomic components are rep-
resented by transition systems labeled with C/C++ functions
– which allows the encoding of a wide range of applications
including module coordination in robotic software [13]. Bigger
components are obtained by combining smaller units through
a series of interactions and communication primitives. The
tool can use those communication mechanisms to automat-
ically synthesize C code that coordinates the components.
BIP uses DFinder [7] to verify programs written in the BIP
language. In order to achieve this goal, DFinder computes an
invariant of the system that is an (hopefully compact) over-
approximation of the set of reachable states on which the tool
can reason in an efficient manner. In addition, DFinder uses
an incremental design process which exploits the hierarchy
between components that is induced by the BIP language.
More precisely, DFinder allows reuse of the results obtained
for sub-components in order to ease the verification of the
global system. We have implemented the counter example
refinement algorithm on top of DFinder, hence providing
a finer analysis of BIP models by removing false-positive
introduced by invariant over-approximation.

A. Related Work.

There are numerous approaches and tools that propose
techniques for checking deadlocks of concurrent systems
(see for e.g., [3], [4], [14], [15], [16]). These approaches
comprise techniques like abstraction and symmetry or partial
order reduction and are highly effective in reducing the state
space to be searched, and in principle can be combined with
the approach shown in this paper. Other approaches do not
reduce number of states to be searched, but impose additional
conditions and search strategies to keep the representation
small. [17], [18] systematically perform under-approximations
to incrementally compute the full set or reachable states. In
contrast, we use information that can be computed statically
in form of invariants to give an over- approximation of the
reachable state space and use it to reduce the size of the BDDs.

The work presented here is in the context of the BIP frame-
work, which promotes a component based design and allows
synthesizing the C code for coordination of the participating
components. This structure helps in generating the invariants
required for the presented approach and furthermore allows its
application already in early design stages. In contrast to this,
most existing approaches for general programs in languages
such as C or Java [19], [20], [10] start from the code and need
to extract the control structure by, e.g., abstraction to decide
whether the underlying system behaves properly. While these
approaches often work very well for single programs, it is
hard to extract dependencies among distributed programs –
information that is given explicitly in the work flow of BIP.

B. Structure of the paper.

Section II gives a brief introduction to the language BIP
(used to describe our systems) and to the methods used
to compute the deadlock suspects. Section III presents the
general methodology on how to compute the set of all shortest

counterexamples while exploiting the advantages given by
the use of the invariant. In this section, we also propose a
series of heuristics to improve efficiency. Section IV discusses
experimental results and compares the approach to previous
results without counter example generation. Finally, Section
V concludes the paper and provides an overview over some
related work.

II. PRELIMINARIES

In this section, we present concepts and definitions that
will be used throughout the rest of the paper. We start
with the component-based design framework that is used to
describe our systems. Then we give a brief description on the
computation of component and interaction invariants, which
are used to reduce the state space in further computation. The
framework that we will present resembles a subset of the BIP
modeling language [21]. The language of the tool allows for
component-based design of complex systems in a hierarchical
manner. Although not all BIP models are directly covered, a
large subset can be transformed to this framework [22], [13],
[23]. For more technical details regarding this section, please
refer to current work on BIP and invariant generation presented
in [24], [8].

A. A framework for Concurrent Systems

In our framework, a concurrent system shall be viewed as a
set of atomic components that synchronize on interactions. To
define the semantics of an atomic component, we start with a
transition system with a set of locations L = {l1, l2, . . . , lk},
and transitions T ⊆ L × P × L, where P denotes the set of
ports that are used for synchronization between components.
This basic transition system is extended by adding variables
X , guards {gτ}τ∈T and actions {fτ}τ∈T on transitions as
follows:

Definition 1 (Semantics of Atomic Components): The
semantics of an Atomic Component B=(L,P , T , X ,
{gτ}τ∈T , {fτ}τ∈T ), is a transition system (Q,P, T0) such
that
• Q = L × X where X denotes the set of valuations of

variables X .
• T0 is the set of transitions ((l, x), p, (l′, x′)) such that
gτ (x) ∧ fτ (x, x′) for some τ = (l, p, l′) ∈ T . As usual,
if ((l, x), p, (l′, x′)) ∈ T0 we write (l, x)

p→ (l′, x′).

Intuitively, L defines the set of control locations. We call
a valuation of the variables at a control location (L × X) a
configuration c and write l(c) for its location and x(c) for the
variable valuation respectively. A transition τ is enabled for
a valuation x if g(x)τ gives true, and fτ (x, x′) is a variable
transformation with x′ being the new values. We use location
l also as predicate which is true iff the system is at location l.
A state predicate Φ is a Boolean expression involving location
predicates and predicates on X . Any state predicate can be put
in the form

∨
l∈L l ∧ ϕl. Notice that the transition system is

in exactly one control location, which means that only one



location predicate is true at a time and their disjunction is
always true.

The system is composed by synchronizing the atomic
components by interactions, which describe the simultaneous
execution of a transition at different components as follows:

Definition 2 (Interactions): Given a set of components
B1, B2, . . . , Bn, where Bi = (Li,Pi, Ti, Xi, {gτ}τ∈Ti ,
{fτ}τ∈Ti), an interaction a is a nonempty set of ports, subset
of

⋃n
i=1 Pi, such that ∀i = 1, . . . , n |a ∩ Pi| ≤ 1.

The BIP framework allows defining rich interaction models
by using hierarchical interactions extended with data transfer
as presented in [22], [13]. In this work, we restrict to pure
synchronizations. The absence of hierarchy is not a real
limitation, as long as hierarchical interaction models can be
statically transformed into equivalent flat interaction models
with a potentially increased number of interactions [22], [13],
[23].

Definition 3 (Parallel Composition): Given n components
Bi=(Li, Pi, Ti, Xi, {gτ}τ∈Ti , {fτ}τ∈Ti) that do not share
common variables and a set of interactions γ, we define
B = γ(B1, . . . , Bn) as the component (L,γ, T , X , {gτ}τ∈T ,
{fτ}τ∈T ), where:
• (L, γ, T ) is the transition system such that

– L = L1×L2×. . .×Ln is the set of control locations,
– T ⊆ (L,X)×γ× (L,X) consists of transitions τ =

((l1,x1), . . . , (ln,xn), a, ((l′1,x
′
1), . . . , (l′n,x

′
n)))

obtained by synchronization of sets of transitions
{τi = ((li,xi), pi, (l

′
i,x
′
i) ∈ Ti}i∈I such that

{pi}i∈I = a ∈ γ and l′j = lj if j 6∈ I , for arbitrary
I ⊆ {1, ..., n}

• X =
⋃n
i=1Xi and for a transition τ resulting from the

synchronization of a set of transitions {τi}i∈I , the asso-
ciated guard and function are respectively gτ =

∧
i∈I gτi

and fτ =
∧
i∈I fτi ∧

∧
i6∈I(X

′
i = Xi).

Finally, we consider systems defined as parallel composition
of components together with an initial condition.

Definition 4 (System): A system S is a pair 〈B, Init〉
where B is a component and Init is a state predicate charac-
terizing the initial states of B.

Example 1: Figure 1 shows the model of the well known
Dining Philosopher example with two philosophers P1 and
P2 using two forks F1 and F2 . The diamond states are
initial. Each philosopher picks first the left fork (pick l),
then the right fork (pick r), then eats (eat) and eventually
puts back both forks simultaneously. Picking up a fork is
done by synchronization with the pick port of the respective
fork component, while eat is an internal port that is not
synchronized with any other component. Note that the put
interaction comprises three component and is only enabled
when all participants have the respective port enabled. It is
easy to see that the given configuration leads to a deadlock
if P1 , F1 perform the interaction {P1 .pick l ,F1 .pick},

followed by the interaction {P2 .pick l ,F2 .pick} from the
other two components. The reason is that this sequence of
interactions leads to the global state P1 .HAS ONE FORK ,
P2 .HAS ONE FORK , F1 .USED , F2 .USED , in which
none of the interactions is enabled. As usual, the deadlock can
be removed by changing one of the philosophers to first take
the right fork (or changing the connectors respectively). Note
that in addition to the components shown in this example,
a component also can contain local variables which can
be changed when a transition is executed. Furthermore, the
enabledness of a transition (and therefore a port) can be
dependent on expressions over the local variables.

Definition 5 (Invariants): Given a component as B =
(L,P, T , X, {gτ}τ∈T , {fτ}τ∈T ), a predicate Inv on (L,X) is
an invariant of B, denoted by inv(B, Inv), if for any location
l ∈ L, valuation x, and port p ∈ P , Inv(l,x), τ = (l,x)

p−→
(l′,x′) ∈ T , and fτ (x,x′) imply Inv(l′,x′), where Inv(l,x)
means that l and x satisfy Inv . For a system S = 〈B, Init〉,
Inv is an invariant of S, denoted by inv(S, Inv), if it is an
invariant of B and if Init⇒ Inv .

Clearly, if Inv1, Inv2 are invariants of B (respectively S)
then Inv1 ∧ Inv2 and Inv1 ∨ Inv2 are also invariants of B
(respectively S).

In the next section, we recap an efficient technique that can
be used to compute invariants that was presented in [25], [26],
[7], [24], [8]. We also show how to check for deadlocks using
this methodology.

B. Invariant Computation

A tight approximation of the reachable state-space of the
concurrent system is key to our approach. This approximation
is computed by conjunction of two different invariants: The
component invariant Φ, and interaction invariant Ψ. The
component invariant is computed as conjunction of Φi, local
invariants that over approximate the reachable states on the
atomic components, while the interaction invariant Ψ captures
restrictions on the reachable state space imposed by the com-
munication between the components. In a series of work [26],
[25], [7], we have presented new and efficient methodologies
to compute these invariants and verify properties of concurrent
systems. In the center of these methods is the approximation
of the reachable states by compositional invariant computation
based on the following rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧
i Φi) ∧Ψ⇒ Φ

‖γ{Bi}i < Φ >

The rule states that if all components Bi fulfill their
respective component invariants Φi, the composition of all
components II(‖γ{Bi}i, {Φi}i) with the interactions γ fulfills
an interaction invariant (which expresses constraints on the
global state space induced by interactions) Ψ, and if the
conjunction of the invariants (

∧
i Φi) ∧Ψ implies a predicate

on the global system Φ, then also the global system ‖γ{Bi}i
itself fulfills Φ. Although the approach shown in this paper
is applicable to general safety properties, we concentrate on
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Fig. 2. Counter example generation using pre- and postimage computation

deadlock detection. To this end, we first compute the set of
deadlocks as DIS =

∧
τ∈T : ¬enabled(τ). The above rule

can now be used to check global deadlock-freedom by proving
that predicate ¬DIS is implied by the invariants.
• Computing Component Invariants: The component in-

variants Φi are local invariants that over-approximate the
reachable states on the atomic components. Each Φi is
computed as fixed point from alternating computation of
the possible valuations x on one of its locations l, and the
post-condition computation of the transitions. Intuitively,
the possible evaluations in a location l is the disjunction
of the valuations that are computed by the functions f
on incoming transitions, which in turn can be computed
as the post-condition of the invariant at the start state,
strengthened by the guard. This computation continuously
leads to smaller sets of possible valuation of the variables
until eventually a fixed-point (or timeout) is reached. For
finite state systems, the local set of reachable states can
also be computed exactly to improve the overall invariant.
See [27] for more details.

• Computing Interaction Invariant: The interaction in-
variant Ψ captures constraints on the behavior of the
system that are induced by the synchronization of the

components. Static analysis of the atomic components
and their interactions gives so called Boolean behavioral
constraints [8], which are structural properties of con-
current systems that capture the communication between
different components and hence allow to model a uni-
fied transition relation. Solutions of BBCs can be used
to symbolically compute a strong interaction invariant.
A series of previous work is concerned with various
methodologies [28], [24], [8], [25] to effectively compute
Ψ using the above principle. In our experiments, we use
our most recent methodology to incrementally construct
Ψ from smaller subsystems [8]. The resources spent to
compute the invariants are negligible compared to the
efforts of generating the error traces.

III. METHODOLOGY

Using the results from the previous section, we compute
the set of deadlock suspects as D = (

∧
i Φi) ∧ Ψ ∧ DIS .

In practice, this gives a good approximation of the deadlock
state. In fact, this approach has shown to be very effective
for verification of component based systems [13]. This section
shows how to extend this approach of invariant computation by
static analysis with state space search. This combined approach
removes false positives from D and results in the exact set of
deadlocks along with the corresponding error traces from the
initial states. Intuitively, we use the global invariant of the
system, Inv = (

∧
i Φi) ∧ Ψ, to guide the state space search

from D towards the initial states.
Although the invariant computation and many of the fol-

lowing concepts are applicable to general systems, we restrict
ourselves in the following to Boolean systems and discuss the
implementation and optimizations based on Boolean decision
diagrams (BDD) [9]. In practice, such a system can be
obtained by removing all operations and conditions on data
from the components, and only considering the explicit control
and interaction structure of BIP models. In such a case, not
all moved, but the users are assisted by the computed trace
in identifying potentially remaining false positives. (More
accuracy can be obtained by predicate abstraction.)



To describe the details of the algorithm, we extend the no-
tion of configuration from components to systems with parallel
composition in the natural way as c ∈ ((L1×L2×· · ·×Ln),X)
and define a trace in S as follows:

Definition 6 (Trace): Given a System composed of parallel
components S = (L, γ, T , X , {gτ}τ∈T , {fτ}τ∈T ), we
define a trace π of length m as (c1, a1, c2, . . . , am−1, cm)
with (cj , aj , cj+1) = τj ∈ T , gτj (x(cj)) = true and
fτj (x(cj)),x(cj+1)) for 0 < j < m

A trace is initial if c1 ∈ init , and is called an error trace
(or interchangeably counterexample) if it is initial and has
a final configuration cm ∈ D. To identify and remove false
positives, we search for an error trace for each of the states
in D. The approach is visualized in Fig. 2 with DIS and
Inv depicted as ellipses, and the (unknown) reachable states
within a dotted line. Computation starts at D and performs
pre-state computation to find initial configurations cd that
reach a deadlock. In the second step, forward computation
is performed to compute the states that are on an error trace.
If the approach cannot find such an error trace for a state d,
then d is not reachable and therefore a false positive that is
excluded from the result. The algorithm is given as pseudo
code in Fig. 3.

We denote sets of configurations as capital letters Y , Z, and
define pre- and postimage computation as follows:

Definition 7 (Preimage): Given a System of parallel com-
ponents S = (L,γ, T , X , {gτ}τ∈T , {fτ}τ∈T ) and an invariant
Inv , we define the preimage pre() of a set of configurations
Z as

pre(Z) = {c | ∃c′ ∈ Z, a ∈ γ, τ ∈ T
. (c, a, c′) = τ ∧ c ∈ Inv

∧ gτ (x(c)) = true ∧ fτ (x(c)),x(c′)}

and similarly

Definition 8 (Postimage): Given a System of parallel com-
ponents S = (L,γ, T , X , {gτ}τ∈T , {fτ}τ∈T ) and an invariant
Inv , we define the postimage post() of a set of configurations
Z as

post(Z) = {c′ | ∃c ∈ Z, a ∈ γ, τ ∈ T
. (c, a, c′) = τ ∧ c′ ∈ Inv

∧ gτ (x(c)) = true ∧ fτ (x(c)),x(c′)}

Note that the pre- and postimages return only states within
the invariant. This guides the search in the direction of
the reachable states as traces that include states outside the
invariant are omitted. It is easy to see that this guidance does
not influence the computation of initial traces, as by definition
any state on an initial trace is reachable, and by construction
of Inv also within the invariant.

In the first phase of the counter example computation, we
incrementally construct the states that reach D (depicted by
gray cones in Fig 2) by computing

1Let F [0] := D
2while D 6= false and F [0] 6= false
3begin
4Let i := 0
5Let O[0] := D;
6Let S := false;
7while O[i] ∧ init = false and O[i] 6= false do
8begin
9Let S := S ∨ O[i];
10Let O[i+ 1] := pre(O[i]) ∧ ¬S;
11Let i := i+ 1
12end;
13If O[i] ∧ init 6= false then do
14begin
15Let F [i] := O[i] ∧ init ;
16for j := i− 1 backto 0
17do F [j] := O[j] ∧ post(F [j + 1]);
18Let D := D ∧ ¬F [0];
19extract error traces from F
20end
21else Let F [0] := false;
22end

Fig. 3. Counter example generation for D

O[0] = D
O[i]i>0 = pre(O[i− 1]) \

⋃
0≤j<i

O[j]

Thus, if a (reachable) configuration c has a path to D, then
the shortest path from c to D has length i iff c ∈ O[i]. If there
exists a cd ∈ O[d] ∩ init , then there exists a configuration
in D that is reachable in d steps and a counterexample can
be generated by computing a series of configurations ci ∈
post({ci+1}) ∩ O[i] for d > i ≥ 0. To compute an error
trace for each of the reachable configurations in D, a small
overhead is added to the usual counter example generation.
Instead of directly computing a single trace as described above,
we compute the states that reach D and are reachable by cd
(depicted by the shaded area in Fig 2) as:

F [d] = O[d] ∩ init

F [i]d>i≥0 = post(F [i+ 1]) ∩ O[i]

Thus, F [0] ⊆ O[0] and all error traces of length d
to F [0] consist of transitions between adjacent sets in F
and can be computed for each c0 ∈ F [0] by selecting a
ci ∈ pre({ui−1}) ∩ F [i] for 0 < i ≤ d. As we are only
interested in one counterexample per configuration c ∈ D, c0
is reported to be a reachable deadlock and removed from D
after computation. This computation is repeated until either D
is empty, or there is a i such that O[i] is empty (the remaining
elements in D are unreachable).



Theorem 1: The algorithm in Figure 3 terminates for finite
state systems.

Proof: Termination is given because the inner loop ter-
minates due to the finite state space and D is reduced in each
step by the found reachable configurations, or the approach
reached a fixed point (O[i] = false and thus F [0] = false).

A. Implementation and Optimization

The approach was implemented as an add-on to the D-
Finder tool-set [7], which uses BIP [21] as input language and
implements the various techniques for computing interaction
invariants introduced in [24], [8], [25].

DFinder uses JavaBDD [29] for manipulating BDDs, which
in turn allows using various BDD managers as back-ends by
accessing them via the Java Native Interface (JNI). BDDs
allow a succinct representation for sets of configurations and
effective implementations for pre() and post() computation.
As usual for symbolic representations [5], the transition rela-
tion is encoded using separate current- and next state variables.
The order of those state variables, and the corresponding
variables for the ports, have a great influence on the number
of nodes a BDD requires to represent a relation and therefore
strongly influence the size of the system we are able to verify.

To optimize for large systems, the implementation con-
sequently requires careful handling of variable ordering and
management of the memory. Two aspects have to be consid-
ered: reducing the size of BDDs by grouping variables that are
strongly dependent on each other in terms of functionality, and
optimization for frequently used operations like conversion
between current- and next state variables [30], [31]. These
considerations were especially relevant for deciding if port
variables should use a consecutive block of the BDD variables
to facilitate computations on the interactions, or be interleaved
with the state variables of their respective component for a bet-
ter representation of the local transitions. Experimental results
showed that an interleaved ordering of ports and current- and
next state variables performed by magnitudes better in both
the time needed to compute the transition relation, and the
size of its representation.

In general, a smaller set of states does not necessarily also
mean a smaller BDD1. It can therefore be advantageous to add
or remove valuations of the BDDs in order to reduce its size.
This is especially important for big sets like the intermediate
results from the computation of O. To find save valuations
to add or remove from the BDDs, we use our knowledge
about Inv , which is an over-approximation of the reachable
states. Clearly, a configuration can only be in an error trace,
if it is reachable. Configurations outside the invariant can
therefore be used to simplify the BDDs. In other words, for a
BDD Z describing a set of configurations, we are looking
for a smaller BDD Z ′, such that Inv =⇒ (Z ′ ↔ Z).
A simplification function that exactly provides us with this

1As an example, the set of all states is represented by a single BDD node
for true.

behavior is the restrict(Z, Y ) function from Coudert, Madre,
and Berthet [32]. The function computes a BDD such that
Y =⇒ (restrict(Z, Y )↔ Z) is a tautology.

Applying this function to our setting, restrict(O[i], Inv)
gives us a BDD O′[i] which coincides with the original onion
ring O[i] on the states that are within the invariant Inv .
Because we know that states outside this invariant are not
reachable, this simplification does not induce false error traces.

Theorem 2 (Preservation of error traces): Using the
restrict function to reducing the BDD size of the intermediate
values O[i] does not introduce new error traces.

Proof: Assume that by using O′[i] = restrict(Inv ,O[i])
a new (false) error trace π was introduced. Then, because
restrict only adds states in ¬Inv , there is a configuration ci in
π that is outside Inv and there is a prefix of π that starts at
an initial state, and ends in ci. This is in contradiction to the
fact that the set of reachable states is a subset of Inv .

We use the restrict function to reduce the size of the
intermediate sets in the computation of O, resulting in typical
reductions of 50% to 75% of the BDD size.

As a side note: Although the pre-image computation only
returns states that lie within Inv , the restrict function in general
could lead to extra states x if the pre-image of a state that is
generated by the restrict function has a predecessor within Inv .
However, since x can reach a state outside the invariant, but
states outside the invariant cannot be reached from an initial
state, we know that x itself can not be reachable. Nevertheless,
to avoid the extra computation that can arise by the extra states,
we restrict the transition relation to not contain any transitions
between Inv and ¬Inv , thus avoiding x.

In the case that the computation of O still fails due
to size restrictions, we fall back to compute O for single
configurations of D. In case an initial state is reached, a
counterexample is created as described above. Otherwise, the
result is used to strengthen the Inv as follows: The result
of pre(Z) contains all configurations that can reach Z in one
step. Consequently, repeated pre computation on the result will
give all states that can reach Z. If this set does not contain
an initial state, then it is unreachable. We use this observation
to iteratively strengthen the invariant (and in consequence D)
until it is strong enough to continue computations of O for
the remaining set D.

IV. EXPERIMENTAL RESULTS

To show the applicability of the approach, we use the results
of a number of experiments with a prototype implementation
on top of the DFinder tool-set [7], [33]. We use different
versions of the Dining Philosopher example, and other bench-
marks which easily can be instantiated with different domain
sizes to show the scalability of the approach. Note that we do
not use techniques to exploit the symmetry of the examples but
use the instantiation of many components purely for generation
of large models. We use the same benchmarks as in previous
papers without error trace generations and added deadlocks
in those examples that were deadlock-free. The experiments
were performed on a MacBook Pro OS X with 2.6 MHz and
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8 GB of memory. To analyze the strengths and weaknesses of
the approach for different kinds of models, we implemented a
mode for counter example generation that omits computation
of invariants and reports the very first error it can find,
thus basically performing standard backwards model checking
(mc). Note that the shown results only concern examples
that do have deadlocks. In many cases without deadlock, the
invariant computation suffices to show the correctness of the
model immediately. Furthermore, by first reporting possible
deadlock suspects which are later on refined, our approach is
able to give quick response to a user, who therefore might be
able to quickly identify real problems.

A. Dining Philosopher

We use different versions of the well known philosopher
example to examine and clarify the impact of the properties
of a model on the performance of the counter example
generation. The models differ in the way the philosophers
are implemented, which leads to a different number of false
positives and counterexamples. The first model, philosopher1,
models the philosopher with four states and allows the exact
identification of the deadlock just by computing the inter-
section of Inv and DIS. This leads to a set D with only
one entry, which is reachable from the initial state. A second
model, philosopher2, uses only three states and gives a less
exact invariant that leads to three deadlock suspects, one of
which is actually reachable. To study the impact of increasing
number of false positives, we add a “confused” philosopher as
shown in Fig. 8. It uses a Boolean variable “confused”, which
is initialized non-deterministically. If true, it enables additional
transitions that allow the philosopher to pick the second fork
but forget to put it down again, and to pick the forks in a
different order. This behavior adds two additional reachable
deadlocks and gives more false positives, whose actual number
depends on the total number of philosophers (several hundred
for the examined range of components).

The results are given in Fig. 4 to 6, where we use the
time for standard model checking (mc) without invariant as
benchmark (•). The approach from Section III is referred to
as rmfp and marked by 4. For comparison, we also give the
time that is needed to only compute the first counterexample
without removing all false positives from D (1-shot) with (∗)

THINKING
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pick_l 
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O_FORK

pick_r 

<confused> 
pick_r

C1

<confused> 
put

C2

pick_r 

pick_l 

put 

Fig. 8. Model of the confused philosopher

and without (�) BDD optimizations.
The first example shows a very strong performance of the

approach where the use of the invariant allows us to check
double the number of components then without. Because of
the good invariant, rmfp and 1-shot both perform only one
backward search to generate a counter example because rmfp
detects that there cannot be any more deadlocks in the model
without requiring a fixed point computation. This advantage
is not present anymore for philosopher2, where we have false
positives in the computation of deadlock suspects. Note how-
ever, that the computation of the exact set of deadlocks with
BDD optimizations is still faster then the 1-shot computation
without.

For models with larger sets of false positives, as present
in the confused philosopher example in Fig. 6, backward
computation of rmfp has, in spite of the invariant, to compute
the pre-images of numerous states at once, which reduces the
advantage it has over the pure mc computation. Note, though,
that the gain is still considerable and that rmfp produces
error traces for all three reachable deadlocks, while the time
given for mc is for one error trace only. This is significantly
harder, as it requires to compute a fixed point to show that the
infeasible deadlocks can indeed not reach the initial state. This
is also demonstrated by comparing with the results for the 1-
shot methods, where the version without BDD optimizations
is not the first time faster then the full computation. We still
think that giving a complete set where possible is favorable,
which is the reason for using the more expensive computation
of a complete set of reachable deadlocks as default setting.
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B. Gas Station

The Gas Station model [34] consists of an Operator with
a computer, a set of pumps, and a set of customers. Each
pump can be used by a fixed number of customers. The set
of the atomic components involved in a system with n pumps
and m customers for each pump is denoted by B[n,m] =
{Operator, {pumpi}1≤i≤n, {customerij}1≤i≤n,1≤j≤m}.

Before using a pump, each customer has to prepay for the
transaction. Then the customer uses the pump, collects his
change and goes to a state from which he may start a new
transaction. Before being used by a customer, the pumps have
to be activated by the Operator. When a pump is shut off, it
can be re-activated for the next operation.

Fig. 7 gives the model for Gas Station system for one pump
and two customers. For that number of pumps, the Operator
has two control locations and three ports. The transition
labeled with prepay accepts a customer’s prepay and activates
the pump for the customer. When a customer is served, the
transition labeled with finish will synchronize the pump and
the customer. A pump has three control locations and three
ports. Besides the synchronization between the Operator and
customer through activate and finish ports, a pump and a
customer are synchronized through start ports.

In contrast to previous verification of the model, e.g., in
[26], [7], [34], we introduce a deadlock by limiting the number
of concurrent customers a operator can handle to be smaller
than the actual number of pumps. This is done by replicating
the control states to form a counter that keeps track of the
number of customers that prepaid ; a sequence of finish and
change reduces that counter by one. The operator moves to
a deadlocking state if the number of supported customers is
exceeded. For example, if Operator can handler a maximum
of n customers, the prepay transition for the the (n + 1)th
concurrent customer (in state sn) will lead Operator to an
error state from where the entire system is blocked.

Note, however, that this does not lead to an immediate
deadlock of the complete system as the customers that already
did pay still can interact with their assigned Pumps. Together

with the fact that the deadlock only depends on the number
of customers that interact with the operator, but not their
particular IDs, this quickly leads to an immense number of
reachable deadlocks that only differ by the combinations of
customers that are interacting with a pump. This number of
deadlocks exceeded several thousand for 30 customers already,
which lead to the effect that generating and output of the traces
actually exceeded the time required for excluding the false
positives. For the results in Table I we therefore report the time
taken for computing the first 10 counter examples in columns
full and opt-full and compare with the 1-shot option with and
without BDD optimization as before. Columns comps, locs,
and intrs correspond to the number of components, locations
and interactions of the models. Note that in this particular
case with a single initial state and shortest counterexamples
of equal length, this still means that the approach computes
the exact set of reachable deadlock states — only the last step
of extracting the trace for all states is omitted.

The results are promising and even closer to the results
from [7] then the philosopher example. In [7], without false
positive elimination, we were able to compute a system with
300 pumps with the global approach in about 30 minutes. The
differences are to be explained 1) by the higher complexity of
the problem of exact computation and deadlock generation,
but also by the more complex model that we constructed to
introduce a deadlock.

C. Automatic Teller Machine

An Automatic Teller Machine (ATM) is a computerized
telecommunication device that provides services to access
financial transactions in a public space without the need
for a cashier, human clerk or bank teller. The system is
composed of the following components: User, ATM (modeling
a cash dispenser) and Bank (modeling some aspects of bank
operation). User and Bank interact only with ATM, but not
with each other. Fig. 9 presents the modeling of ATM in BIP:
• Initially at location l0, user can insert the card by

insert transition and enter the confidential code (enter



TABLE I
RESULTS FOR REMOVING FALSE POSITIVES AND COMPUTING THE FIRST

ERROR TRACE IN THE GAS STATION EXAMPLE

scale comps locs intrs full opt-full 1shot opt-1shot
5 ps×10 ctms 16 65 40 0:06 0:06 0:06 0:06
5 ps×20 ctms 26 105 80 0:11 0:10 0:10 0:11
5 ps×30 ctms 36 145 120 0:20 0:20 0:20 0:21
5 ps×40 ctms 46 185 160 0:32 0:32 0:31 0:33
5 ps×50 ctms 56 225 200 - 0:46 - 0:46
5 ps×70 ctms 76 305 280 - 1:15 - 1:15
5 ps×90 ctms 96 385 360 - 1:44 - 1:41

TABLE II
RESULTS FOR REMOVING FALSE POSITIVES AND COMPUTING THE ERROR

TRACE IN THE ATM EXAMPLE

scale comps locs intrs full opt-full 1shot opt-1shot
5 atms 12 114 85 0:14 0:13 0:11 0:10
10 atms 22 224 170 0:32 0:27 0:18 0:28
15 atms 32 334 255 5:36 4:47 0:45 0:40
20 atms 42 444 340 4:19 2:50 2:11 1:43
25 atms 52 554 425 - 9:47 4:30 2:37
30 atms 62 664 510 - - - 3:19
35 atms 72 774 595 - - - 5:24
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Fig. 9. Model of an ATM system in BIP

transition). Then there are two cases: if the code is
invalid, user gets back the card by eject transition and
returns to the initial state l0; otherwise, user continues by
entering the amount of cash he/she wants to withdraw. If
the amount is not accepted, the transaction is canceled
(cancel transition); else there are two cases: transition
fails (fail transition) or is ready (success transition) for
user to withdraw the money. Finally user gets back their
card.

• Initially at location l0, ATM is waiting for user to
insert the card (insert transition) and then to enter the
confidential code (enter transition). If it receives non-
authorized for the code by non authorized transition,
invalid transition takes place and then it ejects the card.
If it receives authorized signal by authorized transition,
the transition validated takes place and it moves to a
location where user can enter the amount of cash. If
the user cancels the transaction or the amount is not
allowed, it returns to l6 to eject the card; else it accepts
the amount and starts the transaction. If the transaction
is forbidden (veto transition), it will announce to user by
fail transition; else it will wait for user to withdraw the
cash (withdraw transaction) and eject the card to finish
the transaction.

• For Bank, there are two components: BankValidation
component checks the validity of PIN code and Bank-
Transaction component checks whether the transaction
is forbidden (veto) or allowed (fiat). The use of these
parallel components allows us to support multi Users and

multi ATMs.

Again, we introduce a deadlock to the previously deadlock-
free benchmark example to present our approach. We do this
by modeling a deadlock situation where one ATM decides
to cancel the transaction while waiting for the authorization
from Bank Validation. This error behavior is represented by
the transition validate from l2 to l6 in the component ATM
in Fig. 9. This transition causes a deadlock because the ATM
sends a request to Bank Validation to check the authorization
without waiting for the response while Bank Validation is
waiting for sending back the response to the ATM.

The model contains exactly one reachable deadlock, but this
particular models proofs to be particularly hard for the interac-
tion invariant computation, which quickly generates thousands
of false positives even for small numbers of ATMs. Due to the
large number of false positives to start the initial backward
computation from, it therefore also represents a particularly
hard case for the counter example generation. Especially the
one-by-one fall-back becomes tooth-less. The results are given
in Table II. We use the example to demonstrate the usefulness
of the optimizations represented in Section III. The first result
column gives computation times without simplification of the
BDDs. Column opt gives the times for backward computation
using the restrict function to reduce the size of the BDDs. As
explained in Section III, this method reduces the size the onion
rings in the backward computation by allowing us to add states
from outside the invariant. We see that this method allows us
to identify deadlocks for much greater systems than without
considering the invariant. This becomes especially apparent



for the two columns 1shot, which give the time until the first
counterexample is generated. Even though this instance is hard
for removing all false positives of the system, comparison
with previous work in [7] shows that extracting a single error
trace is close to the global approach of showing the deadlock
free model correct with the invariant computation and even
outperforms the initial implementation of DFinder.

V. CONCLUSION

In a series of recent works [24], [8], [25], we have proposed
efficient techniques for checking absence of deadlocks in con-
current systems. While very efficient in showing that systems
are deadlock free, the approach has the drawback that it can
report false positives, i.e., deadlocks might be reported for
correct systems. Furthermore, no error traces are provided to
assist the engineer in correcting the fault. This paper proposes
a solution to this problem by combining the previous approach
of invariant computation with model checking techniques.
In particular, we use the computation of deadlock suspects
as a pre-processing step and using the invariant to reduce
the state space to search and guide in the search for error
traces. Experimental results show that the approach can be
very effective in practice and performs comparable to standard
model checking tools in cases that are hard for the invariant
approach.

Our technique is fully automatic and complete for the case
of Boolean programs and was implemented as an extension of
the DFinder tool-set. In current work we experiment with fur-
ther techniques and heuristics to improve the performance of
the approach. More specifically, we will exploit the component
structure of the system to split the BDDs into a set of implicitly
conjoined BDDs as motivated by [35], first steps of splitting
the transition relation showed promising results. We also work
on further strengthening the invariants, which directly will
benefit to the shown approach, and started implementing an
CEGAR approach to further reduce false positives in the
case of non-Boolean systems. Finally, we shall extended our
methodology beyond deadlock detection.
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