
Describing and executing random reactive systems

Pascal Raymond, Erwan Jahier, Yvan Roux
VERIMAG (CNRS, UJF, INPG)

Grenoble, France
URL: http://www-verimag.imag.fr

E-mail:{Pascal.Raymond,Erwan.Jahier,Yvan.Roux }@imag.fr

Abstract

We propose a operational model for describing non-
deterministic reactive systems, together with a mechanism
for expressing probability issues. Some models have al-
ready been proposed for this purposes, but they are gen-
erally intended to allow global reasoning on systems (e.g.
stockastic analysis, formal proofs). Our goal is somehow
less ambitious, sinve we are mainly interested in executing
such models, which can be useful for testing, prototyping.
On the other hand, the proposed model is not strongly re-
stricted because of decidability concerns, so it is likely to
be more expressive: in particular, we are not restricted to
finite-state models.

The proposed model is rather general: systems are de-
scribed as implicit state/transition machines, possibly infi-
nite, where probabilities are expressed by means of relative
weights. The model itself is more an abstract machine than
a programming language. The idea is then to propose high-
level, user-friendly languages that can be compiled into the
model. We present such a language, based on regular ex-
pressions, together with its translation into the model.

1 Introduction

A reactive system is an automated system that indefi-
nitely responds to its environment. We are particularly in-
terested here in control and embedded applications, where
the environment if often the physical world. During the de-
velopment of such systems, non-determinism is often use-
ful, for describing a partially designed system and/or its en-
vironment.

There are several approaches to non-determinism: the
purely qualitative approach only focuses onpossibles be-
haviors, while the stochastic approach also takes into ac-
count probabilistic information.

There exist many formalisms to express non-

determinism together with probability issues. Some
of them are based on classical finite automata [5], and thus,
the underlying mathematical model is the one of Markov
Chains. The more specific model of I/O automata [12] is
extended with probabilistic features in [19]. PCTL [10] is
an example of temporal logic extended with probabilities.
From a more operational point of view, we can cite stochas-
tic extensions of process algebras [11, 3], or Signalea [2],
an extension of the synchronous language Signal.

Those formalisms are mainly designed to allow global
analysis of systems: formal proofs, model checking, proba-
bilistic analysis. As a consequence, their expressive power
is limited to decidable models (typically finite state ma-
chines).

Our approach is less ambitious, since we only focus on
simulation. More precisely, we do not care if the model is
globally undecidable, as long as it can be efficiently simu-
lated.

In other terms, our goal is more toprogramstochastic
reactive systems, than to reason about them. Concretely,
we separate two problems: the definition of high-level,
user-friendly programming languages, and the definition of
general abstract machines into which those high-level lan-
guages can be compiled. In the paper, we first present
the abstract machines, Weight-labelled Transition System
(WTS), and then a high-level language based on regular ex-
pressions, together with its translation to WTS.

2 Weight-labelled Transition Systems

2.1 Overview

We propose a model where a basic qualitative model de-
scribing a set of behaviors is extended with a probabilistic
mechanism. The main features of this model are presented
here.

Symbolic state/transition systems. The basic qualitative
model consists in a very general state/transition system,
characterized by:

• a memory: a finite set of variables with no special re-
strictions on their domains (to simplify, we will con-
sider here just Boolean, integer and rational values);

• an interface: variables are declared as inputs, outputs,
or locals;

• a finite control structure: an interpreted finite automa-
ton, whose transitions are representing reactions of the
machine.

A global state of the system is then a pair made of the cur-
rent control point in the automaton (thecontrol-state), and a
current valuation of its memory (thedata-state). Therefore
the set of global states is potentially infinite.

Synchronous relations. We adopt the synchronous ap-
proach for the reactions: all values in the memory are
changing simultaneously when a reaction is performed. The
previous value of the memory corresponds to the source
data-state, and the current value to the next data-state. The
transitions are labelled with information denoting what are
the possible values of the current memory depending on the
current data-state. This information is quite general: it is
a relation between the past and current values of the vari-
ables. In particular, no distinction is made between uncon-
trollable and controllable variables. Performing a reaction
will consist in finding solutions to such formula. This prob-
lem induces a restriction: we suppose that, once reduced
according to the past and input values, the constraints are
solvable by some actual procedure1.

Weights instead of probabilistic distribution. The prob-
lem of adding probabilisties to state/transitions systems has
been largely studied [14, 6]. Some variants exist, depend-
ing on how the choice of the action (in our case the data-
state) and the choice of the next control-state are related.
According to the terminology of [6], our approach is close
to Generative Models, where the probabilistic mechanism
includes both the action and the next-state choice.

Since we have to deal with uncontrollable variables,
defining a sound notion of distribution is quite complex:
depending on those variables, a formula may be unfeasi-
ble, and thus its actual probability is zero. In other terms,
if we want to use probabilistic distributions, we have to de-
fine a reaction as a map from the tuple (source state, past
values, input values) to a distribution over the pairs (con-
trollable values, next state). Expressing and exploiting this

1concretely, we have developed a constraint solver for mixed
Boolean/linear constraints.

kind of model would be too complex. We prefer a pragmatic
approach where probabilities are introduced in a more sym-
bolic way.

The main idea is to keep the distinction between the
probabilistic information and the constraint information.
Since constraints are influencing probabilities (zero or non-
zero), this information does not express the probability to be
drawn, but pragmatically, the probability to betried. In or-
der to emphasize the difference, we do not use distributions
(i.e., set of positive values the sum of which is 1) butrelative
weights. A relative weight is a positive rational value, not
necessarily less than one, the meaning of which is only de-
fined relatively to another weight: if two possible reactions
(i.e., the corresponding constraints are both satisfiable) are
labelled respectively with the weightsw andw′, then the
probability to perform the former isw/w′ times the proba-
bility to perform the latter.

Static weights versus dynamic weights. The simplest
solution is to define weights as constants, but in this case,
the expressive power is much weaker than the one of Gen-
erative Models. In this simple case, the uncontrollable vari-
ables qualitatively influence the probabilities (zero or not,
depending on the constraints) but not quantitatively: the
idea is then to definedynamic weightsas numerical func-
tions of the inputs and the past-values. Taking numerical
past-values into account can be particularly useful: a good
example is when simulating analive processwhere the sys-
tem has a known average life expectancy before breaking
down; at each reaction, the probability to work properly de-
pendsnumericallyon an internal counter of the process age.

Transient states. For the time being, we have only one
notion of state: a state is a stable control point, and a tran-
sition between two states defines an atomic reaction. How-
ever, we think it may be convenient to introduce the no-
tion of transient state, and, as a consequence a notion of
micro-step: a complete reaction is then a sequence of tran-
sitions between two stable states, where all the intermediate
states are transient. Transient states do not affect the syn-
chronous interpretation of the variable changes: intuitively,
if we abstract probabilities, a reactionq f

−→t g
−→q′, is qualita-

tively equivalent toqf∧g
−→. In contrast, transient states affect

probabilities, and may be helpful to express complex con-
ditional relative weights.

Global concurrency. Concurrency (i.e., parallel execu-
tion) is a central paradigm for reactive systems. The
problem of merging sequential and parallel constructs has
been largely studied: classical solutions are hierarchical au-
tomata ”̀a la StateCharts” [13, 1], or statement-based lan-
guages like Esterel [4]. Our opinion is that deeply merg-

B A/a

B A/aYX/x Y

Y

B

X/x

YA/a B X/x
A ∧ Y/a B ∧X/x

B ∧ Y

(a) (b)

(c)

Figure 1. Weights and parallelism: the par-
allel comnposition (1a), and, assuming that
A∧X is unfeasible, the product solution (1b)
and the arbiter solution (1c).

ing sequence and parallelism is a problem of high-level lan-
guage, and that it is sufficient to have a notion of global par-
allelism: intuitively, local parallelism can always be made
global by adding extra idle states. As a consequence, con-
currency is a top level notion in our model: a complete sys-
tem is a set of concurrent automata, each one producing its
own constraints on the resulting global behavior.

Weights and parallelism. In terms of control structures,
parallelism corresponds to a kind of synchronous product of
automata. Transient states make this ”product” more com-
plex than a simple Cartesian product, but do not involve big
difficulties. For formulas, the product is simply the logi-
cal and. Unfortunately, there is no obvious way for com-
bining stochastic information: as they are defined, they are
only local information and they may induce paradoxes when
combined into a parallel composition. A simple example is
shown in Figure 1a: the first automaton (resp. the second)
has the choice between the constraintsA or B (resp.X or
Y) both satisfiable. In the first automaton, the choice ofA
has a big weighta >> 1 compared toB (1 by default), and
in the second,X has a big weightx >> 1 comparing toY .
Suppose that the data-state makes it impossible to satisfy
A∧X, it follows that it is impossible to satisfy the stochas-
tic demand of both components. There is mainly two ways
to solve the problem:

• Consider that weights are not only local information,
but are also influencing the parallel composition: for
instance, ifa is much bigger thanx, that means that
the stochastic demand of the first component is much
stronger than the one of the second. The simplest way
to implement this notion is to combine weights with
multiplication, as shown in Figure 1b.

• The problem is treated at the parallel composition
level, where some indications are added to express pri-

ority for satisfying stochastic demands. Intuitively, the
components of a parallel composition are treated se-
quentially: the first one is perfectly served, according
to its own local weights, then the second is served ac-
cording to what was decided by the first one, etc. The
order of components is, in general non-deterministic,
and stochastic information may be added to influence
it. The Figure 1c shows a product where a first fair
choice is made to decide which component will ”play”
first (note that all intermediate states are transient).

There is no obvious argument to prefer one solution to an-
other: each are consistent, and none is clearly more natural
than the other. As a consequence, both are implemented and
the user can choose between them.

2.2 Details

2.2.1 Data structures

Variables. WTS variables are eitherinput, output, local,
or previous: V = Vi] Vo] Vl] Vp. The previous vari-
ables are meant to refer to previous values of the other vari-
ables inV\p = Vi] Vo] Vl. Each previous variable is
denoted by•v wherev ∈ V\p. Moreover, each variable
in V\p is defined with a default value: the value just be-
fore the first reaction. Local variables can be seen as output
variables that are hidden from the outside. The typing func-
tion, Type : V → {B, Z, Q} associates a definition domain
with each variable: Boolean, integer or rational; obviously,
Type(v) = Type(•v).

For the sake of (formula) conciseness, we also introduce
a concept ofmodeattached to controllable variables: in the
stable mode, unconstrained variables are bound to their pre-
vious value; in theunstable mode, unconstrained variables
are drawn from their definition domain (this is to avoid bor-
ing repetitions ofv = •v statements).

Valuations. A valuation is a mapping from variables to
values. Adata-contextis a pair(σi, σp), whereσi (input
valuation) associates a value with each input, andσp (pre-
vious valuation) associates a value with each previous vari-
able. Previous valuations are also calleddata-state. In par-
ticular, the default values of variables are defining theinitial
data-state, denoted byσ0

p.

Formula. A formula is any well-typed Boolean expres-
sion made of variables, constants, and classic logical and
numerical operators (¬,∧,∨,=,>,<,≥,≤,+,−,∗,/). We noteF
the set of well-typed formula.

Given a data-context, any formula can be reduced to
a formula over the controllable variables (Vo] Vl). The

notation(σi, σp) : (σo, σl) |= f states that, given a context
(σi, σp), the controllable valuation(σo, σl) satisfiesf .

2.2.2 Control structure

At the top level, the behavior of a system is described by
a non-empty set of concurrent WTS sharing the same vari-
ables. Each WTS is an interpreted automaton, where tran-
sitions are labelled by qualitative and stochastic constraints,
as presented in the sequel.

Nodes. The set ofcontrol-states, is divided intostable
states andtransientstates:Q = Qs]Qt. The initial control
state is a particular stable stateq0 ∈ Qs.

Weights. Weights are positive numerical functions of the
uncontrollable variables:W : Σi × Σp → Q ∪ {∞}. More
concretely, they are given as numerical expressions made
of inputs, previous variables, classical operators or ad hoc
computable functions. The∞ value is introduced to ex-
press a sound notion of mandatory choice: a transition with
the infinite weight has priority on any finite weighted transi-
tion. There is a single notion of infinite weight: two feasible
transitions with infinite weight have the same probability.
In order to express relative probabilities between manda-
tory choices, it is necessary to detail the control structure
by introducing transient states.

Transitions. The set of transitions is a relation:T ⊆ Q×
F ×W ×Q, and we noteq

f
−→
w

q′ ∈ T a transition fromq to
q′ labelled by the formulaf and the weightw.

Transitional loops. We do not try to give sense to infinite
loops of transient states: models containing such combina-
tional loops are statically rejected.

2.3 Operational Semantics

The WTS are defined in such a way that their operational
semantics is straightforward. In some sense, they areexe-
cutableby definition. We give here the main lines of the
simulation algorithm.

Product. First of all, the behavior which is in general ex-
pressed as a a set of concurrent automata, is semantically
equivalent to the one of a singleproduct automaton. Two
different products are defined, depending on the semantics
chosen for weights composition (Figure 1). The simplest
one is almost a classicalsynchronous product:

• the global state space is the Cartesian product of the
component state spaces; the global initial state is the

tuple of initial states; a global state is stable if it is
composed of stable states only.

• the definition of global transitions is almost a classi-
cal composition where constraints are combined with
the∧ operator, and weights with the∗ operator. The
only problem is to enforce the synchronization on sta-
ble states; we notes1, s2 stable states,t1, t2 transient
states andq1, q2 any states, so:

– (s1, s2)
f1∧f2
−→

w1∗w2
(q1, q2) iff s1

f1
−→
w1

(q1) ands2
f2
−→
w2

(q2)

– (t1, t2)
f1∧f2
−→

w1∗w2
(q1, q2) iff t1

f1
−→
w1

(q1) andt2
f2
−→
w2

(q2)

– (s1, t2)
f2
−→
w2

(s1, q2) iff t2
f2
−→
w2

(q2), and symmetri-

cally for (t1, s2).

The second kind of ”product” (as shown in Figure 1c)
is a little bit tricky: the idea is to introduce, for each com-
ponent, an additionalstarting transient statês and an addi-
tional waiting transient statĕs for each stable states. The
global state space is then defined as the Cartesian product
over the extended component state spaces. The definition
of initial and stable global states does not change. The tran-
sitions are defined in such a way that each component per-
forms its reaction in turn. We only give the rules where the
first component starts, the other case is similar:

• from a global stable state, the first component may start
while the other waits:(s1, s2)−→(ŝ1, s̆2),

• the starting component performs its first transition:

(ŝ1, s̆2)
f1
−→
w1

(q1, s̆2) iff s1
f1
−→
w1

q1,

• the starting component is not yet in a stable state, and

it performs another transition:(t1, s̆2)
f1
−→
w1

(q1, s̆2) iff

t1
f1
−→
w1

q1,

• the starting component has reached a stable state, and

the waiting one starts its reaction:(s1, s̆2)
f2
−→
w2

(s1, q2)

iff s2
f2
−→
w2

q2,

• the second component performs transitions until it

reaches a stable state:(s1, t2)
f2
−→
w2

(s1, q2) iff t2
f2
−→
w2

q2.

In the sequel, we suppose that we have a single automa-
ton, obtained with one of the product operations defined
above. Note that, in the concrete implementation, the global
product is not statically built: local products are simply
build on the flyto avoid space state explosion.

Execution. An WTS execution, according to a given input
history(νn)n≥0 is a sequence of pairs made of a stable state
and a valuation:(sn, σn)n≥0 ∈ N → Qs × Σ, such that:

• s0 is the initial control state andσ0
p is the default map

of the variables,

and for eachk:

• σk
i = νk (the valuation history meets the input history)

• σk
\p = σk+1

p (the current-part of the valuation meets
the previous-part of the next valuation)

• (sk, σk
p , σk

i)σk
o ,σk

l−→ sk+1 is a feasible, fair reaction ac-
cording to the control structure. We detail in the sequel
the algorithm for finding such a reaction.

Reaction. Intuitively, a step in an execution is done by
drawing, according to weight directives and current values
of uncontrollable variables, a path in the automaton from
the current (stable) state to a next stable state. More for-
mally, let s = q0 be the current control-state,σp the cur-
rent data-state andσi the current inputs. For allk, we note

Θk = {qk
f
−→
w

q} the set of transitions leavingqk, and we
use the notationwτ to denote the weight attached to a tran-
sition τ . According to the current data context, the sum of
weightsWk =

∑
τ∈Θk

wτ (σp, σi) is a numerical constant.
If there exist some transitionτ from qk to qk+1, the prob-
ability to complete a path(q0, q1, ..., qk) with qk+1 is then:
wτ (σp, σi)/Wk. This process is repeated until a stable node

qn = s′ is reached:s
f1
−→
w1

q1
f2
−→
w2

q2 · · · qn−1
fn
−→
wn

s′, where all
q1, · · · qn−1 are transient.

The conjunction of all formulas labelling the drawn path

is the elected formula:f =
n
∧

k=1
fk. We substitute inf input

and previous variables (f|σiσp
), and solve it. A valuation

of output and local variables for the current step is obtained
by performing a fair toss among the solutions of that for-
mula. If f|σiσp

is unsatisfiable, another path is drawn. If no
satisfiable path can be drawn, the machine stops.

As it is presented, this algorithm is quite ineffective, and,
moreover it may diverge if no particular precaution is taken
to avoid trying several times the same unfeasible path. In
the actual implementation2, unfeasible paths are detected as
soon as possible, and they are marked to avoid divergence.

2.4 Example

Figure 2 shows a WTS that simulates the temperature in
a room containing a heater and a window which is opened
from times to times. Input variables are a BooleanOn,

2The tool, lucky , is available, at :
www-verimag.imag.fr/ ∼synchron/tools.html .

which is true if the heater in on, and a rationalT , which
indicates the temperature outside the room. The only out-
put variable is a rationalt, indicating the temperature inside
the room. Local variables are the rationalδ, which is used
to compute the new temperature, and the integerj, which
is used to count the number of steps the window remains
open. Previous variables are•t and•j. Stable states are
denoted byson , soff , andsopen . The other unnamed states
are transient. The initial node isson .

If the heater is initially on (resp. off), only 2 transitions
are possible among the 3 output transitions ofson , since the
transition labelled by¬On (resp.On) is unsatisfiable. The
first possible transition has weight 100, and the other one
has weight 1.

• The first transition will therefore be drawn with a prob-
ability of 100/101. It leads to a transient state which
has only one output transition leading back toson
(resp. soff); the elected formula is therefore0 < δ <
0.2 ∧ t = •t + δ. It states that the local variableδ will
be uniformly drawn between0 and 0.2 (resp. −0.1
and 0), and thatδ is then used to increase the tempera-
ture. This is intended to model that, when the heater is
on (resp. off), the temperature slightly increases (resp.
decreases).

• The second transition will be drawn with a probability
of 1/101. After two transient states, the only stable
node that is reachable issopen , and the elected formula
is thereforetrue ∧ 10 ≤ j ≤ 15 ∧ t = 3•t+T

4 . It
states that the local integer variablej is drawn uni-
formly between 10 and 15, and defines how the new
temperature is computed. This is intended to model
that, whenever the window is open, the temperature
become closer from the temperature outside.

For the next step, fromsopen , 3 transitions are possible,
but they are labelled by formulas that can not be true
at the same time (they form a partition): as long asj
is greater than 0, the window will remain open;j is
decremented at each step, and when it reaches 0, the
control gets back to eitherson or soff , depending on
the variableOn.

3 A language for describing WTS

As it is defined, the WTS model is more an abstract ma-
chine model than a user-friendly description language. The
idea is then to define high-level programming languages
that can be compiled into WTS. A possible solution is to
define a graphical languageà la StateCharts[8, 1] based on
the same notion of automata, but with high-level features
like hierarchy and refinement.

Sopen

Son

Soff

•j = 0 ∧On

•j > 0∧
j = •j − 1

t = 3•t+T
4

•j = 0 ∧ ¬On

10 ≤ j ≤ 15

t = •t + δ∧
0 < δ < 0.2

t = •t + δ∧
−0.1 < δ < 0

On

100

¬On

100

On

100

¬On

100

Vi = {On, T}, Vo = {t}, Vl = {δ, j}, Vp = {•t, •j},
Qs = {Son ,Soff ,Sopen}, q0 = Son .

Figure 2. A WTS that simulates the tempera-
ture in a room with a heater and a window.

Another solution is to propose a different style for ex-
pressing the control. In [16], we have presented such a lan-
guage, called Lutin, where the control structure is based on
regular expressions instead of automata. We briefly present
here the principles of this language, and define its compila-
tion into WTS.

3.1 Overview of the language

Data. For the data aspects, the language is compliant with
WTS: a system is declared with a set of variables (inputs,
outputs, locals), and the constraints on atomic reaction are
defined as relations between the previous and current val-
ues of those variables. Concretely, a constraint is a Boolean
expression made of logical and numerical operators and ref-
erences to variables, where the previous value of a variable
v is denoted bypre v . Those Boolean expressions are
calledformulasin the sequel.

Basic control operators. In the body of a Lutin program,
formulas (representing a single instant) are combined with
temporal statements which are basically the regular opera-
tors:

• the sequences1 fby s2 states that the program first
behaves ass1 , and then, if and whens1 stops, ass2 ,

• the n-ary non-deterministic choice{s1 | ... |

sn} means that the system behaves as one ofs1 , ...,
sn .

• the looploop s pool means that the behaviors is
repeated zero or more times. This operator introduce

the important notion ofempty behavior(zero loop)
which is precisely studied in the sequel.

The actual language provides more statements. For in-
stance,assert f in s means that the constraintf must
remain satisfied while the systems is active.

Probabilistic issues. Non-determinism appears both on
data (when choosing a particular solution satisfying a for-
mula) and on control (choices and loops). Like in WTS,
there is no feature to influence the selection of data: we sup-
pose the existence of a constraint solver which guarantees
a relative fairness in the choice of the solution. The only
way to influence the probabilities is attached to the control
structure, as explained below.

Weighted choices. For the non-deterministic choice,
Lutin provides a mechanism of relative weights similar
to the one of WTS: each case in a choice can be com-
pleted by a numerical information representing its relative
chance to be chosen. For the time being, this weight is
a constant, but this notion can be easily extended (like
in WTS) to numerical expression over previous and input
variables. The default weight is1, hence, for example
{s1 weight 2 | s2 } means that, whenever boths1
ands2 are possible, the first one is chosen with a probabil-
ity of 2/3.

Weighted loops. For loops, the user can also use a
weight to express how ”continue” is relatively more prob-
able than ”stop” (the weight of ”stop” is1 by definition):
loop weight 99 s pool means that, whenever it is
both possible to stop or to continue, continue is chosen at
99 percent.

A loop without any probabilistic information has a spe-
cial meaning: it has implicitly aninfinite weight, which
means that the loop is performed as long as possible.

Iteration laws. Another interesting way of controlling
loops is to reason in terms of iterations number. Unfortu-
nately, with simple static weights, it is impossible to control
the repartition of this number3. Describing complex reparti-
tions is possible by using dynamic weights, depending typ-
ically on the number of already made iterations. However,
this solution maybe quite complex, even for simple and in-
tuitive repartition. This is why the language provides two
predefined repartition mechanism: uniform interval loops
and Gaussian average loops.

3The actual shape of the repartition induced by static weights is quite
hard to define, since it depends on the fact that looping is sometimes
mandatory or impossible, but roughly speaking, it follows a kind of trun-
cated, decreasing exponential law.

For uniform loops, the user specifies minimum and max-
imum numbers of loops:loop [100,150] means that
the number of iterations must be between 100 and 150, and
that any particular value within this interval has the same
probability than another one.

An example of Gaussian loop isloop ˜1000:200 ,
which means that the average number of iterations is 1000,
with a standard deviation of 200.

Note that those definitions must be understoodmodulo
the fact that looping is sometimes mandatory/impossible,
depending on the constraints attached to the loop entry and
the loop exit.

Empty behaviors and well founded loops. In terms of
set of behaviors, those operators are exactly the classical
ones, in particular theloop is equivalent to the Kleene’s
star operator. However, for simulation purpose, the classic
Kleene’s star rises problems: consider a statementloop
[100,150] s pool , wheres can generate the empty
behavior. One one hand, this construct suggests that some-
thing must be made at least 100 times. On the other hand,
sinces can do nothing at each step, the loop statement can
generate the empty behavior. In our opinion, this is counter-
intuitive, and not well adapted for simulation. This is why
we have adopted the notion ofwell founded loops: when the
loop statement takes the control it can decide to generate the
empty behavior, but, if the statement decides to loop, each
iteration must generate a non-empty behavior.

In terms of language, our operator must be interpreted as
”ε + (s \ ε)+”. Once again, this isqualitativelyequivalent
to the classic Kleene’s star, and the difference only appears
in simulation.

3.2 Example

Here is a simple example inspired by a heater, but
slightly different from the one in Section 2.4: we do not take
into account the opened window, but just focus on the heater
behavior and its possible defaults. The system (Temp) is
controlling the numerical valuet , according to the com-
mandson andoff . It uses two local variables:running
indicates the state of the system (increasing or decreasing),
anddt represents the discrete slope oft .

Global invariantsstate thatdt is the slope and it is com-
prised between−0.1 and0.2, it is positive when the system
is running and negative otherwise. The main regular expres-
sion expresses the temporal behavior. In theinitial state, the
system is not running andt is between10 and17. Then, the
system enters theworking behaviour, where, for an average
number of10000 iterations, it works (almost) correctly:

• it may obey aon command, which is probable (weight
100),

• it may obey aoff command, which is as probable
(weight100),

• or it may ignore any command, which is less probable
(implicit weight1).

Then the systembreaks downand stays on the not running
mode forever (implicit infinite weight).

system Temp(on, off: bool)
returns(t: real);
var running : bool; dt : real;
let Temp =

(* GLOBAL INVARIANTS *)
assert (dt = (t - pre t))
and (dt > -0.1) and (dt < 0.2)
and (running => (dt > 0.0))
and (not running => (dt < 0.0))
in
(* INITIAL STATE *)
(not running and
t > 10.0 and t < 17.0)
fby
(* WORKING BEHAVIOR *)
loop ˜10000:1000 {

(on and running) weight 100
| (off and not running) weight 100
| (running = pre running)
} pool
fby
(* BREAKDOWN BEHAVIOR *)
loop { not running } pool

tel

3.3 Compilation

We present the translation of a Lutin description into
WTS. We consider only the core language, and use the
following abstract syntax: a Lutin regular expression is ei-
ther a formulaf , a sequenceE1 · E2, a weighted choice
(E1 : w1 + · · · + En : wn) or a well-founded loopE�,
where the�-power is either a single weightw, a uniform
law [l, h] or a Gaussian law∼ m : s.

The classic approach. Translating regular expressions
into non-deterministic automata is quite a classical prob-
lem. The most elegant and efficient algorithms are based
on the Thompson’s idea [18] which consists in usingε-
transitions (or equivalently transient states). With this trick,
the translation is fully modular and has a linear cost with
respect to the size of the regular expression. The counter-
part is that thoseε-transitions may introducecombinational
cycles, when some sub-expression of the formE∗ is such
thatE contains the empty string.

One solution to avoid such combinational cycles is to
perform a pre-processing on the regular expression which
replaces all sub-expressions of the formE∗ by some equiv-
alentF ∗ such thatε 6∈ F [15]. Unfortunately this kind of
solution cannot be used in our case: it strongly modifies the

structure of the expression, which is incompatible with the
probabilistic mechanism.

Hence, we propose a adapted version of the classic al-
gorithm which separates actual paths (taking time) from in-
stantaneous paths: intuitively, this algorithm guarantees by
construction that any cycle contains an actual path.

Principles of the modular translation. The classic algo-
rithm recursively associates with each sub-expressionE a
sub-automatonME with a single initial state and a single
final state.

The semantics is classically defined in terms of language
recognizers, but the adaptation to generators is straightfor-
ward; the semantics is even simpler since, in a generator,
only one state can have the control. The classic generative
semantics is the following: the control reaches the final state
if and only if a behavior inE (empty or not) has been gen-
erated since the control has been passed to the initial state.

We slightly modify this principle in order to separate
the generation of empty and non-empty behaviors: the sub-
automatonME associated toE has two initial states, and
two final states, as shown in the figure beside.

ME

Oε

Oε

Iε

Iε

Intuitively, this machine is intended to be used in a prefix
context which gives the control toME via one of its initial
states. If the control is given viaIε, it means thatME must
consider that the prefix has already generated a non-empty
behavior. If the control is given viaIε, it means that the
prefix has not yet generated a non-empty behavior. Accord-
ing to this information (and, of course, the definition ofE),
ME will pass the control toOε if itself or its prefix-context
have generated a non-empty behavior, and it will pass the
control toOε if neither itself or the context have generated
a non-empty behavior.

The key point of this intuitive definition, it that it guaran-
tees that any path leading from theIε to Oε state is neces-
sarily a non-instantaneous path. The soundness of the trans-
lation will be based on the fact that any cycle must traverse
such a path.

The main inductive property. The intuitive semantics
can be formalized in term of languages. We identify each
state with its corresponding control language, and we note
ε the language reduced to the empty behavior:

(1) Oε = Iε ·E ∪ Iε · (E \ ε) (2) Oε = Iε · (E ∩ ε)

We will demonstrate, when it is not trivial, that the transla-
tion inductively satisfies those properties.

In order to simplify the drawings, we always use the
same topology for the states: top-left forIε, bottom-left for
Iε, top-right for Oε and bottom-right forOε. Moreover,
we put weights under the transitions (default is 1), and con-
straints over the transitions (default istrue).

Sequence. The translation of the sequence is the simplest
one: the automaton forE1 · E2 is obtained by confounding
pairwise their outputs/inputs states. The inductive proper-
ties are trivially preserved.

ME1 ME2

Formula. The formula is the only expression which takes
time: whatever be the entry point,Oε is reached after the
generation of an atomic behavior satisfying the formula (if
such a behavior exists). Note thatOε is stable (filled circle),
and thatOε is unreachable.

f

f

Choice. The union operator trivially distributes on the de-
sired inductive properties. Moreover, the weight seman-
tics of Lutin is exactly the same as the one of WTS. The
schematic translation ofE1 : w1 + ... + En : wn is pre-
sented beside.

ME1

ME2

MEn

w1

wn

wn

w2

w2

wn

Loop. We consider the most general case of well-founded
loops, where dynamic weights are necessary. The idea is
to introduce a new local variablec in the memory of the
WTS. This variable is constrained in such a way that, af-
ter each iteration,•c contains exactly the number of already
performed iterations. This variable is defined as stable (Sec-
tion 2.2.1), which means that it keeps its value when it is not
constrained.

wc̄

ME

c = •c + 1

wc

c = 1

ws

c = 1

ws

ws̄

ws̄

We also have to introduce two pairs of weights. The first
pair is for the very first choice: the loop takes the control
and must chose between no iteration (ws̄) or at least one
iteration (ws). The second pair is used when at least one
iteration has been made: the choice is between performing
another iteration (wc) or not (wc̄).

The inductive property (1) is less trivial here, so here
are some hints of the proof. We noteIE

ε , IE
ε the two in-

put states of the sub-automatonME , andOE
ε its top-output

state. The outermost states are denoted as usual. We have
by constructionIE

ε = ∅ (unreachable), hence, by induction
on property (1):OE

ε = IE
ε · (E \ ε). By construction we

also have:IE
ε = OE

ε ∪ Iε ∪ Iε, so,OE
ε satisfies a recursive

equation whose solution is:

OE
ε = (Iε ∪ Iε) · (E \ ε)+ = (Iε ∪ Iε) · (E∗ \ ε)

by construction we haveOε = Iε ∪OE
ε (transitions leading

to the outermost top-right state), hence:

Oε = Iε ∪ ((Iε ∪ Iε) · (E∗ \ ε))
= Iε · (ε ∪ (E∗ \ ε)) ∪ Iε · (E∗ \ ε)
= Iε · E∗ ∪ Iε · (E∗ \ ε)

At last, let us define the weights involved in the translation,
depending on the probabilistic profile:

• Weighted loop characterized byw: the local variable
c is useless. We simply have:ws = wc = w and
ws̄ = wc̄ = 1.

• Uniform law characterized by[l, h]: the initial case de-
pends on the lower bound. Ifl = 0, then performing
zero loop, is, by definition, as probable as performing
any other value in the interval:ws̄ = 1 andws = h. If
l 6= 0, performing no loop is forbidden:ws̄ = 0 and
ws = 1.

The other weights are used when•c ≥ 1; as long as•c
is less thanl, looping is mandatory; when•c is within
l andh, the probability to stop is 1 overh − l; at last
onceh is reached, the iterations must stop.

•c < l l ≤ •c ≤ h h < •c
wc̄ 0 1 1
wc 1 h− •c 0

• Gaussian repartition characterized by∼ m : s: any
number of iteration is (virtually) feasible. The weights
are always computed in terms of the functionPm,s(n)
which gives the probability for a Gaussian variable to
be greater thann. It is well know that this function
(bell curve integral) has no analytic form. We clas-
sically use a procedure which approximate this inte-
gral via a table of sampled values. With such a pro-
cedureG(m, s, n), we have: ws = G(m, s, 0) and
ws̄ = 1−G(m, s, 0)
wc = G(m, s, •c) andwc̄ = 1−G(m, s, •c)

4 Conclusion

Our aim was to propose a way toprogram and simulate
non-deterministic, stochastic reactive systems.

We have defined an operational model (WTS), with the
main objective to have a compromise between a good ex-
pressive power to describe lots of realistic behaviors, and
a straightforward operational semantics allowing efficient
simulation. We have also shown how such an abstract ma-
chine model can be targeted by an higher-level program-
ming language, Lutin, which is based on regular operators.

Both the low-level abstract machine simulator (lucky)
and the high-level programming language compiler
(lutin) are implemented and available on the net4. Those
tools are, in particular, the main components of the new ver-
sion of Lurette [17, 9], an automated testing tool dedicated
to the Lustre language [7].

Some interesting problems are remaining in this frame-
work. The weight mechanism allows to express which con-
straint are more likely to be tried, but once a constraint is
elected, there is no way to act upon the choice of a partic-
ular solution. This problem is particularly evident with nu-
merical values: for the time being we guarantee a uniform
choice within the set of solutions. It could be interesting to
define more sophisticated repartition mechanisms.

The design of high-level languages that can be com-
piled into WTS is also interesting. For the time being, we
have a language where sequential statements are inspired
by regular operators. An appealing solution would be to de-
fine a language inspired by the Esterel language [4]: this
language propose a notion ofinstantaneoussequence and
loops which is different to the ones of regular expressions.
Moreover, it provides a set of high-level, useful control
structures like local parallelism, watch-dogs and traps. An-
other solution would be to design a graphical languageà
la StateCharts, based on hierarchical concurrent automata;
in this case, the statements of the synchronous language
SynchCharts [1] are certainly the best example to follow.

4www-verimag.imag.fr/ ∼synchron/tools.html

References

[1] C. Andŕe. Representation and analysis of reactive behav-
iors: a synchronous approach. InIEEE-SMC’96, Compu-
tational Engineering in Systems Applications, Lille, France,
jul 1996.

[2] A. Benveniste. Constructive probability and the SIGNalea
language : building and processes via programming. Tech-
nical Report RR-1532, INRIA, 1991.

[3] M. Bernardo, L. Donatiello, and P. Ciancarini. Stochastic
process algebra: From an algebraic formalism to an archi-
tectural description language.Lecture Notes in Computer
Science, 2459:236ff, 2002.

[4] G. Berry and G. Gonthier. The Esterel synchronous pro-
gramming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87–152, 1992.

[5] C. Derman. Finite State Markovian Decision Processes.
Academic Press, 1970.

[6] R. J. V. Glabbeek, S. A. Smolka, and B. Steffen. Reactive,
generative and stratified models of probabilistic processes.
Information and Computation, 121(1):59–80, 15 Aug. 1995.

[7] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, sep 1991.

[8] D. Harel. Statecharts: A visual approach to complex sys-
tems.Science of Computer Programming, 8(3), 1987.

[9] E. Jahier, P. Raymond, and P. Baufreton. Case studies with
lurette v2. In 1st International Symposium on Leverag-
ing Applications of Formal Methods, ISoLA 2004, Paphos,
Cyprus, Oct. 2004.

[10] C. W. Johnson. A probabilistic logic for the development of
safety-critical, interactive systems.International Journal of
Man-Machine Studies, 39(2):333–351, 1993.

[11] B. Jonsson, K. Larsen, and W. Yi. Probabilistic extensions
of process algebras, 2001.

[12] N. A. Lynch and M. R. Tuttle. An introduction to In-
put/Output automata.CWI-Quarterly, 2(3):219–246, Sept.
1989.

[13] F. Maraninchi. Operational and compositional semantics
of synchronous automaton compositions. InCONCUR’92,
Stony Brook, Aug. 1992. LNCS 630, Springer Verlag.

[14] M. O. Rabin. Probabilistic automata.Information and Con-
trol, 6:230–245, 1963.

[15] P. Raymond. Recognizing regular expressions by means
of dataflows networks. In23rd International Colloquium
on Automata, Languages, and Programming, (ICALP’96)
Paderborn, Germany. LNCS 1099, Springer Verlag, July
1996.

[16] P. Raymond and Y. Roux. Describing non-deterministic re-
active systems by means of regular expressions. InFirst
Workshop on Synchronous Languages, Applications and
Programming, SLAP’02, Grenoble, Apr. 2002.

[17] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Au-
tomatic testing of reactive systems. In19th IEEE Real-Time
Systems Symposium, Madrid, Spain, Dec. 1998.

[18] K. Thompson. Regular expression search algorithm.Com-
mun. ACM, 11(6):419–423, June 1968.

[19] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and
behaviors of probabilistic I/O automata.Theoretical Com-
puter Science, 176(1-2):1–38, 1997.

