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Abstract determinism together with probability issues. Some
of them are based on classical finite automata [5], and thus,

We propose a operational model for describing non- the underlying mathematical model is the one of Markov
deterministic reactive systems, together with a mechanismChains. The more specific model of 1/O automata [12] is
for expressing probability issues. Some models have al-extended with probabilistic features in [19]. PCTL [10] is
ready been proposed for this purposes, but they are gen-an example of temporal logic extended with probabilities.
erally intended to allow global reasoning on systems (e.g. From a more operational point of view, we can cite stochas-
stockastic analysis, formal proofs). Our goal is somehow tic extensions of process algebras [11, 3], or Signalea [2],
less ambitious, sinve we are mainly interested in executingan extension of the synchronous language Signal.
such models, which can be useful for testing, prototyping. Those formalisms are mainly designed to allow global
On the other hand, the proposed model is not strongly re- analysis of systems: formal proofs, model checking, proba-
stricted because of decidability concerns, so it is likely to bilistic analysis. As a consequence, their expressive power
be more expressive: in particular, we are not restricted to is limited to decidable models (typically finite state ma-
finite-state models. chines).

The proposed model is rather general: systems are de- Our approach is less ambitious, since we only focus on
scribed as implicit state/transition machines, possibly infi- simulation More precisely, we do not care if the model is
nite, where probabilities are expressed by means of relativeglobally undecidable, as long as it can be efficiently simu-
weights. The model itself is more an abstract machine thanlated.

a programming language. The idea is then to propose high-  In other terms, our goal is more f@ogram stochastic
level, user-friendly languages that can be compiled into the reactive systems, than to reason about them. Concretely,
model. We present such a language, based on regular exwe separate two problems: the definition of high-level,
pressions, together with its translation into the model. user-friendly programming languages, and the definition of
general abstract machines into which those high-level lan-
guages can be compiled. In the paper, we first present
the abstract machines, Weight-labelled Transition System
(WTS, and then a high-level language based on regular ex-
pressions, together with its translation to WTS.

A reactive system is an automated system that indefi-
nitely responds to its environment. We are particularly in-
terested here in control and embedded applications, where? Weight-labelled Transition Systems
the environment if often the physical world. During the de-
velopment of such systems, non-determinism is often use-
ful, for describing a partially designed system and/oritsen- 2.1 Overview
vironment.

There are several approaches to non-determinism: the
purely qualitative approach only focuses possibles be- We propose a model where a basic qualitative model de-
haviors while the stochastic approach also takes into ac- scribing a set of behaviors is extended with a probabilistic
count probabilistic information. mechanism. The main features of this model are presented

There exist many formalisms to express non- here.

1 Introduction



Symbolic state/transition systems. The basic qualitative  kind of model would be too complex. We prefer a pragmatic
model consists in a very general state/transition system,approach where probabilities are introduced in a more sym-
characterized by: bolic way.
o ) ) ] The main idea is to keep the distinction between the
 amemory: a finite set of variables with no special re- gpapilistic information and the constraint information.
strictions on their domains (to simplify, we will con-  gince constraints are influencing probabilities (zero or non-
sider here just Boolean, integer and rational values);  ,¢rq), this information does not express the probability to be
e an interface: variables are declared as inputs, outputs,drawn’ but pra_gmatlcal_ly, the probability to bréed. _In or
or locals: der to emphasize the difference, we do not use distributions
(i.e., set of positive values the sum of which is 1) talative
e a finite control structure: an interpreted finite automa- weights A relative weight is a positive rational value, not
ton, whose transitions are representing reactions of thenecessarily less than one, the meaning of which is only de-
machine. fined relatively to another weight: if two possible reactions

_ ) (i.e., the corresponding constraints are both satisfiable) are
A global state of the system is then a pair made of the cur-|gpelled respectively with the weights and w’, then the

rent control point in the automaton (thentrol-statg, anda  propability to perform the former is /w’ times the proba-
current valuation of its memory (thiata-stat¢. Therefore pijity to perform the latter.

the set of global states is potentially infinite.

Static weights versus dynamic weights. The simplest
solution is to define weights as constants, but in this case,
the expressive power is much weaker than the one of Gen-
erative Models. In this simple case, the uncontrollable vari-
ables qualitatively influence the probabilities (zero or not,
epending on the constraints) but not quantitatively: the
idea is then to defindynamic weightsas numerical func-
Sions of the inputs and the past-values. Taking numerical
past-values into account can be particularly useful: a good
example is when simulating aive processvhere the sys-
tem has a known average life expectancy before breaking
down; at each reaction, the probability to work properly de-
dpendsnumericallyon an internal counter of the process age.

Synchronous relations. We adopt the synchronous ap-
proach for the reactions: all values in the memory are
changing simultaneously when a reaction is performed. The
previous value of the memory corresponds to the source
data-state, and the current value to the next data-state. Th
transitions are labelled with information denoting what are
the possible values of the current memory depending on th
current data-state. This information is quite general: it is
arelation between the past and current values of the vari-
ables. In particular, no distinction is made between uncon-
trollable and controllable variables. Performing a reaction
will consist in finding solutions to such formula. This prob-
lem induces a restriction: we suppose that, once reduce
according to the past and input values, the constraints are
solvable by some actual procedtre Transient states. For the time being, we have only one
notion of state: a state is a stable control point, and a tran-
Weights instead of probabilistic distribution. The prob- sition between two states defines an atomic reaction. How-

lem of adding probabilisties to state/transitions systems hasSVe" }Ne th'nk it may be convenient to introduce the no]:
been largely studied [14, 6]. Some variants exist, depend-UON Of fransient stateand, as a consequence a notion o

ing on how the choice of the action (in our case the data- micro-step: a complete reaction is then a sequence of tran-
state) and the choice of the next control-state are relatedsmons between two stable states, where all the intermediate

According to the terminology of [6], our approach is close states are transient._ Transient stgtes do not affgct t.h_e syn-
to Generative Modelswhere the probabilistic mechanism phronous mterpretatlp_n' of the Va”?‘b"? Chang?S: |ntl_J|t|ver,
includes both the action and the next-state choice. if we abstract probabilities, a reactign’ ¢ ¢ ¢, is qualita-
Since we have to deal with uncontrollable variables, tively equivalent ta;/"9. In contrast, transient states affect
defining a sound notion of distribution is quite complex: probabilities, and may be helpful to express complex con-
depending on those variables, a formula may be unfeasi-ditional relative weights.
ble, and thus its actual probability is zero. In other terms,
if we want tc_> use probabilistic distributions, we have to de- 5 qpg) concurrency. Concurrency (i.e., parallel execu-
fine a reaction as a map from the tuple (source state, pasfign) is a central paradigm for reactive systems. The
values, input values) to a distribution over the pairs (COn- yrohiem of merging sequential and parallel constructs has
trollable values, next state). Expressing and exploiting this peen, jargely studied: classical solutions are hierarchical au-
lconcretely, we have developed a constraint solver for mixed toMata a la StateCharts” [13, 1], or statement-based lan-
Boolean/linear constraints. guages like Esterel [4]. Our opinion is that deeply merg-




ority for satisfying stochastic demands. Intuitively, the

|
|
A/;/O\B : X/;/Q\v A/%Q&)\(/ comppnents of a parallgl composition are treated'se—
O O O O O O qu_ent|ally: the flrst_ one is perfectly serveql, according
[ to its own local weights, then the second is served ac-
(@ (b) cording to what was decided by the first one, etc. The
order of components is, in general non-deterministic,
B /e X504 and stochastic information may be added to influence
vy & 5 Bf\A/a it. The Figure 1c shows a product where a first fair
\\ ¥ choice is made to decide which component will "play”
O 00000 first (note that all intermediate states are transient).

C
© There is no obvious argument to prefer one solution to an-

other: each are consistent, and none is clearly more natural
than the other. As a consequence, both are implemented and
the user can choose between them.

Figure 1. Weights and parallelism: the par-
allel comnposition (1a), and, assuming that
A A X is unfeasible, the product solution (1b)

and the arbiter solution (1c). 2.2 Details

ing sequence and parallelism is a problem of high-level lan-5 5 1 pata structures

guage, and that it is sufficient to have a notion of global par-

allelism: intuitively, local parallelism can always be made

global by adding extra idle states. As a consequence, con-

currency is a top level notion in our model: a complete sys- Variables. WTS variables are eithénput, output local,

tem is a set of concurrent automata, each one producing itor previous V = V; W V, & V; W V,,. The previous vari-

own constraints on the resulting global behavior. ables are meant to refer to previous values of the other vari-
ables in\y,, = V; WV, W V;. Each previous variable is

Weights and parallelism. In terms of control structures, —denoted bysuv wherev € 14,. Moreover, each variable

parallelism corresponds to a kind of synchronous product ofin V4, is defined with a default value: the value just be-

automata. Transient states make this "product” more com-fore the first reaction. Local variables can be seen as output

plex than a simple Cartesian product, but do not involve big variables that are hidden from the outside. The typing func-

difficulties. For formulas, the product is simply the logi- tion, Type : V — {B, Z, Q} associates a definition domain

cal and. Unfortunately, there is no obvious way for com- with each variable: Boolean, integer or rational; obviously,

bining stochastic information: as they are defined, they areType(v) = T'ype(ev).

only local information and they may induce paradoxes when ~ For the sake of (formula) conciseness, we also introduce

combined into a parallel composition. A simple example is @ concept ofnodeattached to controllable variables: in the

shown in Figure 1a: the first automaton (resp. the Second)stable modeunconstrained variables are bound to their pre-

has the choice between the constraifter B (resp. X or vious value; in theunstable modeunconstrained variables

Y) both satisfiable. In the first automaton, the choicelof are drawn from their definition domain (th|S is to avoid bor-

has a big weight. >> 1 compared td3 (1 by default), and  ing repetitions ol = ev statements).

in the secondX has a big weight: >> 1 comparing tay.

Suppose that the data-state makes it impossible to satisfyvaluations. A valuationis a mapping from variables to

AN X, it follows that it is impossible to satisfy the stochas- values. Adata-contexis a pair(o;, 0,), Whereo; (input

tic demand of both components. There is mainly two ways valuation) associates a value with each input, apdpre-

to solve the problem: vious valuation) associates a value with each previous vari-

able. Previous valuations are also caltkda-state In par-

ticular, the default values of variables are definingittitgal

data-statedenoted by?.

e Consider that weights are not only local information,
but are also influencing the parallel composition: for
instance, ifa is much bigger than;, that means that
the stochastic demand of the first component is much

stronger than the one of the second. The simplest WayF.ormuIa. A formula is any well-typed Boolegn EXpres-
to implement this notion is to combine weights with sion made of variables, constants, and classic logical and
multiplication, as shown in Figure 1b. numerical operators-(a,v,=,>,<,>,<,4+,—,%,/). We noteF
the set of well-typed formula.
e The problem is treated at the parallel composition  Given a data-context, any formula can be reduced to

level, where some indications are added to express pri-a formula over the controllable variableg,(w V;). The



notation(c;, 0,,) : (0,,0;) = f states that, given a context tuple of initial states; a global state is stable if it is
(04, 0p), the controllable valuatiofv,, o;) satisfiesf. composed of stable states only.

2.2.2 Control structure e the definition of global transitions is almost a classi-
cal composition where constraints are combined with
At the top level, the behavior of a system is described by the A operator, and weights with theoperator. The

a non-empty set of concurrent WTS sharing the same vari-  only problem is to enforce the synchronization on sta-
ables. Each WTS is an interpreted automaton, where tran- ble states; we notey, s, stable stateg,, ¢, transient

sitions are labelled by qualitative and stochastic constraints, states angy , ¢ any states, so:
as presented in the sequel.
fins f1
= (s1,82) o (a1,42) iff 515-(a1) and32—>(q2)

w1 *xWs2

Nodes. The set ofcontrol-states is divided intostable
states anttansientstates:) = Q,wQ,. The initial control
state is a particular stable statec Q..

fl/\f2

w1 W2

= (i, t2) — (1, q2) iff t1*>((h) andt2*>(q2)
— (s1,t2)— f2 (s1,q2) iff tQi(qg), and symmetri-
Weights. Weights are positive numerical functions of the cally for Z‘tl 52). wa
uncontrollable variables?V : ¥; x ¥, — QU {cco}. More ’
concretely, they are given as numerical expressions made
of inputs, previous variables, classical operators or ad hoc.
computable functions. Theo value is introduced to ex
press a sound notion of mandatory choice: a transition With
the infinite weight has priority on any finite weighted transi-
tion. There is a single notion of infinite weight: two feasible
transitions with infinite weight have the same probability.
In order to express relative probabilities between manda-
tory choices, it is necessary to detail the control structure
by introducing transient states.

The second kind of "product” (as shown in Figure 1c)

is a little bit tricky: the idea is to introduce, for each com-
ponent, an additionatartingtransient staté and an addi-
tional waiting transient stat& for each stable state The
global state space is then defined as the Cartesian product
over the extended component state spaces. The definition
of initial and stable global states does not change. The tran-
sitions are defined in such a way that each component per-
forms its reaction in turn. We only give the rules where the
first component starts, the other case is similar:

Transitions. The set of transitions is a relatiofi: C () x o from a global stable state, the first component may start

F x W x Q, and we notej%q’ € T atransition fromy to while the other waits(s, s2) (1, 82),

q' labelled by the formulg and the weightv. , o »
e the starting component performs its first transition:

f1 f1
Transitional loops. We do not try to give sense to infinite (81, 82)-(q1, 52) iff 51721,
loops of transient states: models containing such combina-
tional loops are statically rejected. ¢ the starting component is not yet in a stable state, and
it performs another tran5|t|on(t1,32) i (q1,52) iff
2.3 Operational Semantics . A
1ﬁQ1,

The WTS are defined in such a way that their operational .
semantics is straightforward. In some sense, theyeree ¢ the starting component has reached a stable state, and
cutableby definition. We give here the main lines of the the Waltmg one starts its reactiofsy, 52) f2 (sl, q2)

simulation algorithm.
iff so Eﬂb,

Product. First of all, the behavior which is in general ex-
pressed as a a set of concurrent automata, is semantically
equivalent to the one of a singfgoduct automaton Two reaches a stable state; t2) ~(s1, o) iff t2*Q2
different products are defined, depending on the semantics

chosen for weights composition (Figure 1). The simplest N the sequel, we suppose that we have a single automa-
one is almost a classicaynchronous product ton, obtained with one of the product operations defined

above. Note that, in the concrete implementation, the global
e the global state space is the Cartesian product of theproduct is not statically built: local products are simply
component state spaces; the global initial state is thebuild on the flyto avoid space state explosion.

e the second component performs transitions until it



Execution. An WTS executigraccording to a given input
history (v™),,>0 is a sequence of pairs made of a stable state
and a valuation(s™,0"),,>0 € N — @), x %, such that:

e 5" is the initial control state and) is the default map
of the variables,

and for eaclk:

e oF = V¥ (the valuation history meets the input history)

o ofp = ok*1 (the current-part of the valuation meets

the previous-part of the next valuation)

o (5% 0k oF)os.or sk is a feasible, fair reaction ac-
cording to the control structure. We detail in the sequel

the algorithm for finding such a reaction.

Reaction. Intuitively, a step in an execution is done by
drawing, according to weight directives and current values
of uncontrollable variables, a path in the automaton from
the current (stable) state to a next stable state. More for-
mally, lets = ¢o be the current control-state,, the cur-
rent data-state ang; the current inputs. For all, we note

O, = {qk%»q} the set of transitions leaving,, and we
use the notatiom . to denote the weight attached to a tran-
sition 7. According to the current data context, the sum of
weightsW, = > o w-(0p,0;) is @ numerical constant.

If there exist some transition from g, to g1, the prob-
ability to complete a patkqo, ¢1, ..., g ) With gx1 is then:
w,(0p, 0;)/Wy. This process is repeated until a stable node

g, = s'is reached:siqlﬁqg . ~-qn,1ﬁ>s’, where all
L w1 w2 Wn,
g1, - qn_1 are transient.
The conjunction of all formulas labelling the drawn path

is the elected formulaf = k&f’“' We substitute iry input

and previous variablesf(;,,,), and solve it. A valuation

of output and local variables for the current step is obtained
by performing a fair toss among the solutions of that for-

mula. If f,.,, is unsatisfiable, another path is drawn. If no

satisfiable path can be drawn, the machine stops.

As it is presented, this algorithm is quite ineffective, and,
moreover it may diverge if no particular precaution is taken
to avoid trying several times the same unfeasible path. In
the actual implementatidnunfeasible paths are detected as
soon as possible, and they are marked to avoid divergence.

2.4 Example
Figure 2 shows a WTS that simulates the temperature in

a room containing a heater and a window which is opened
from times to times. Input variables are a Boolgan,

2The tool, at

www-verimag.imag.fr/

lucky , is available,
~synchron/tools.html

which is true if the heater in on, and a ratiorfal which
indicates the temperature outside the room. The only out-
put variable is a rationdl indicating the temperature inside
the room. Local variables are the ratioalwhich is used

to compute the new temperature, and the intggevhich

is used to count the number of steps the window remains
open. Previous variables as¢ andej. Stable states are
denoted bys,n,, sof, ands,pe,. The other unnamed states
are transient. The initial node is,,.

If the heater is initially on (resp. off), only 2 transitions
are possible among the 3 output transitionsf, since the
transition labelled by-On (resp.On) is unsatisfiable. The
first possible transition has weight 100, and the other one
has weight 1.

e The first transition will therefore be drawn with a prob-
ability of 100/101. It leads to a transient state which
has only one output transition leading back 49,
(resp. sop); the elected formula is therefofe< ¢ <
0.2 At = ot + 4. It states that the local variabdewill
be uniformly drawn betweefi and 0.2 (resp. —0.1
and 0), and thad is then used to increase the tempera-
ture. This is intended to model that, when the heater is
on (resp. off), the temperature slightly increases (resp.
decreases).

The second transition will be drawn with a probability
of 1/101. After two transient states, the only stable
node that is reachable ig,.,,, and the elected formula

is thereforetrue A 10 < j < 15 At = LTt
states that the local integer variableis drawn uni-
formly between 10 and 15, and defines how the new
temperature is computed. This is intended to model
that, whenever the window is open, the temperature
become closer from the temperature outside.

For the next step, from,,.,,, 3 transitions are possible,
but they are labelled by formulas that can not be true
at the same time (they form a partition): as longjas

is greater than 0, the window will remain openjs
decremented at each step, and when it reaches 0, the
control gets back to eithey,, or s,gz, depending on

the variableOn.

3 Alanguage for describing WTS

As it is defined, the WTS model is more an abstract ma-
chine model than a user-friendly description language. The
idea is then to define high-level programming languages
that can be compiled into WTS. A possible solution is to
define a graphical languagda StateChart$3, 1] based on
the same notion of automata, but with high-level features
like hierarchy and refinement.



the important notion oempty behavior(zero loop)
which is precisely studied in the sequel.

The actual language provides more statements. For in-
stanceassert f in s means that the constrainimust
remain satisfied while the systesris active.

Probabilistic issues. Non-determinism appears both on
data (when choosing a particular solution satisfying a for-
mula) and on control (choices and loops). Like in WTS,
there is no feature to influence the selection of data: we sup-
pose the existence of a constraint solver which guarantees
a relative fairness in the choice of the solution. The only
oj =0A—-On way to influence the probabilities is attached to the control

V; ={On, T}, V, = {t}, Vi = {5,j}, V, = {ot, ej}, structure, as explained below.
Qs = {Son7 Soﬁ7 Sopen}v qo = Son-

] ] Weighted choices. For the non-deterministic choice,
Figure 2. A WTS that simulates the tempera- Lutin provides a mechanism of relative weights similar
ture in a room with a heater and a window. to the one of WTS: each case in a choice can be com-

pleted by a numerical information representing its relative
Another solution is to propose a different style for ex- chance to be chosen. For the time being, this weight is
pressing the control. In [16], we have presented such a lan-a constant, but this notion can be easily extended (like
guage, called Lutin, where the control structure is based onin WTS) to numerical expression over previous and input
regular expressions instead of automata. We briefly presenvariables. The default weight is, hence, for example
here the principles of this language, and define its compila-{s1 weight 2 | s2 } means that, whenever bo#i
tion into WTS. ands?2 are possible, the first one is chosen with a probabil-
ity of 2/3.
3.1 Overview of the language

_ _ ~ Weighted loops. For loops, the user can also use a
Data. For the data aspects, the language is compliant withweight to express how "continue” is relatively more prob-
WTS: a system is declared with a set of variables (inputs, able than "stop” (the weight of "stop” i$ by definition):
outputs, locals), and the constraints on atomic reaction aréloop weight 99 s pool means that, whenever it is
defined as relations between the previous and current valhoth possible to stop or to continue, continue is chosen at
ues of those variables. Concretely, a constraint is a Booleargg percent.
expression made of logical and numerical operators and ref- A loop without any probabilistic information has a spe-
erences to variables, where the previous value of a variablecial meaning: it has implicitly annfinite weight which
v is denoted bypre v . Those Boolean expressions are means that the loop is performed as long as possible.
calledformulasin the sequel.

Iteration laws. Another interesting way of controlling
Basic control operators. In the body of a Lutin program, |ogps is to reason in terms of iterations number. Unfortu-
formulas (representing a single instant) are combined with nately, with simple static weights, it is impossible to control
temporal statements which are basically the regular operathe repartition of this numb#r Describing complex reparti-
tors: tions is possible by using dynamic weights, depending typ-
ically on the number of already made iterations. However,
this solution maybe quite complex, even for simple and in-
tuitive repartition. This is why the language provides two

e the sequencel fby s2 states that the program first
behaves asl, and then, if and whesl stops, as2,

e the n-ary non-deterministic choicésl | ... | predefined repartition mechanism: uniform interval loops
sn} means that the system behaves as onglof..., and Gaussian average loops.
sn.

3The actual shape of the repartition induced by static weights is quite
. hard to define, since it depends on the fact that looping is sometimes
e the looploop s pool means that the behavisris mandatory or impossible, but roughly speaking, it follows a kind of trun-
repeated zero or more times. This operator introduce cated, decreasing exponential law.



For uniform loops, the user specifies minimum and max- e it may obey aoff command, which is as probable
imum numbers of loopstoop [100,150] means that (weight100),
the number of iterations must be between 100 and 150, and ) ) o
that any particular value within this interval has the same ® OF itmay ignore any command, which is less probable
probability than another one. (implicit weight1).

An example of Gaussian loop lsop "1000:200 ,
which means that the average number of iterations is 1000
with a standard deviation of 200.

Note that those definitions must be understooadulo system Temp(on, off: bool)
the fact that looping is sometimes mandatory/impossible, retumns(t: real);

depending on the constraints attached to the loop entry and ' ngr';’;j”g  bool; dt - real;

the loop exit. (* GLOBAL INVARIANTS *)
assert (dt = (t - pre t))
. and (dt > -0.1) and (dt < 0.2)
Empty behaviors and well founded loops. In terms of and (running => (dt > 0.0))
set of behaviors, those operators are exactly the classical and (not running => (dt < 0.0))

; ; ; i ) in
ones, in particular théop is equw_alent to the Kleene’s . (* INITIAL STATE ¥)
star operator. However, for simulation purpose, the classic (ot running and

Then the systerbreaks dowrand stays on the not running
'mode forever (implicit infinite weight).

Kleene's star rises problems: consider a statenwort t > 10.0 and t < 17.0)
[100,150] s pool , Wwheres can generate the empty foy

behavior. One one hand, this construct suggests that some- I(;o\p/)VQEJISIO’\(l)C';‘lO%IC_:)H{AVIOR )

thing must be made at least 100 times. On the other hand, (on and running) weight 100
sinces can do nothing at each step, the loop statement can | (off and not running) weight 100
generate the empty behavior. In our opinion, this is counter- | (running = pre running)
intuitive, and not well adapted for simulation. This is why %b)'i’oo'

we have adopted the notionwEll founded loopswhen the (* BREAKDOWN BEHAVIOR *)

loop statement takes the control it can decide to generate the loop { not running } pool
empty behavior, but, if the statement decides to loop, each !
iteration must generate a non-empty behavior.
In terms of language, our operator must be interpreted as3-3 Compilation
"¢+ (s\ €)T". Once again, this igjualitativelyequivalent
to the classic Kleene’s star, and the difference only appears We present the translation of a Lutin description into

in simulation. WTS. We consider only the core language, and use the
following abstract syntax: a Lutin regular expression is ei-
3.2 Example ther a formulaf, a sequencé; - E,, a weighted choice

(Ey : wy + -+ E, : wy,) or a well-founded loopZ°,
where theo-power is either a single weight, a uniform

Here is a simple example inspired by a heater, but )
b P P y law [Z, k] or a Gaussian law m : s.

slightly different from the one in Section 2.4: we do not take
into account the opened window, but just focus on the heater _ _ .
behavior and its possible defaults. The systdinip) is The classic approach. Translating regular expressions
controlling the numerical value, according to the com-  into non-deterministic automata is quite a classical prob-

mandson andoff . It uses two local variablesunning lem. The most elegant and efficient algorithms are based
indicates the state of the system (increasing or decreasing)®n the Thompson's idea [18] which consists in using
anddt represents the discrete slopet of transitions (or equivalently transient states). With this trick,

Global invariantsstate thatit is the slope and itis com-  the translation is fully modular and has a linear cost with
prised between-0.1 and0.2, it is positive when the system  respect to the size of the regular expression. The counter-
is running and negative otherwise. The main regular expres-Partis that those-transitions may introduceombinational
sion expresses the temporal behavior. Initiitéal state, the ~ cycles when some sub-expression of the fofin is such
system is not running artdis betweeri0 and17. Then,the  thatE contains the empty string.
system enters theorking behaviourwhere, for an average One solution to avoid such combinational cycles is to

number ofL0000 iterations, it works (almost) correctly: perform a pre-processing on the regular expression which
replaces all sub-expressions of the fok by some equiv-

e it may obey aon command, which is probable (weight alentF* such that ¢ F' [15]. Unfortunately this kind of
100), solution cannot be used in our case: it strongly modifies the



structure of the expression, which is incompatible with the  In order to simplify the drawings, we always use the

probabilistic mechanism. same topology for the states: top-left i, bottom-left for
Hence, we propose a adapted version of the classic al-I., top-right for Oz and bottom-right forO.. Moreover,

gorithm which separates actual paths (taking time) from in- we put weights under the transitions (default is 1), and con-

stantaneous paths: intuitively, this algorithm guarantees bystraints over the transitions (defaultige).

construction that any cycle contains an actual path.

Sequence. The translation of the sequence is the simplest
one: the automaton fdf; - F» is obtained by confounding
pairwise their outputs/inputs states. The inductive proper-
ties are trivially preserved.

Principles of the modular translation. The classic algo-
rithm recursively associates with each sub-expresgian
sub-automaton\/g with a single initial state and a single

final state.

The semantics is classically defined in terms of language @~ - - - - - - ~m——— =
recognizers, but the adaptation to generators is straightfor- CP QP CP
ward; the semantics is even simpler since, in a generator, I Mp, Mg, I
only one state can have the control. The classic generative Q L Q _____ @

semantics is the following: the control reaches the final state

if and only if a behavior inF’ (empty or not) has been gen-

erated since the control has been passed to the initial state.Formula.  The formula is the only expression which takes
We slightly modify this principle in order to separate time: whatever be the entry poin®): is reached after the

the generation of empty and non-empty behaviors: the sub-generation of an atomic behavior satisfying the formula (if

automaton)M y associated td has two initial states, and such a behavior exists). Note ti@¢ is stable (filled circle),

two final states, as shown in the figure beside. and thatO. is unreachable.

Inuitively, this machine is intended to be used in a prefix Choice. The union operator trivially distributes on the de-

context which gives the control to/ via one of its initial ; . . - .
g o sired inductive properties. Moreover, the weight seman-

states. If the control is given vig, it means thaf\/y must . L
consider that the prefix has already generated a non—empt;&ICS of Lutin is exactly the same as the one of WTS. The

behavior. If the control is given vid., it means that the schematic translation oy : wy + ... + By : wn IS pre-
prefix has not yet generated a non-empty behavior. Acc:ord—Sented beside.
ing to this information (and, of course, the definition/o,
Mg will pass the control t@s if itself or its prefix-context
have generated a non-empty behavior, and it will pass the
control to O, if neither itself or the context have generated
a hon-empty behavior.
The key point of this intuitive definition, it that it guaran-
tees that any path leading from tlheto Oz state is neces-
sarily a non-instantaneous path. The soundness of the trans-
lation will be based on the fact that any cycle must traverse
such a path.

The main inductive property. The intuitive semantics | o5 e consider the most general case of well-founded
can be formalized in term of languages. We identify each ¢ \vhere dynamic weights are necessary. The idea is
state with its corresponding control Ianguage, and we note ) introduce a new local variablein the memory of the
¢ the language reduced to the empty behavior: WTS. This variable is constrained in such a way that, af-
(1) Oc=I--EUL-(E\e¢) (2) O.=1I.-(ENe) ter each ite_ratior_nc contgins exactly_ the r_lumber of already
performed iterations. This variable is defined as stable (Sec-
We will demonstrate, when it is not trivial, that the transla- tion 2.2.1), which means that it keeps its value when it is not
tion inductively satisfies those properties. constrained.



We also have to introduce two pairs of weights. The first
pair is for the very first choice: the loop takes the control
and must chose between no iteratians) or at least one
iteration (). The second pair is used when at least one

iteration has been made: the choice is between performing4

another iteratiom.) or not (we).

The inductive property (1) is less trivial here, so here
are some hints of the proof. We not&, I£ the two in-
put states of the sub-automatdfy;, andO£ its top-output

e Gaussian repartition characterized kym : s: any
number of iteration is (virtually) feasible. The weights
are always computed in terms of the functiBy) (n)
which gives the probability for a Gaussian variable to
be greater tham. It is well know that this function
(bell curve integral) has no analytic form. We clas-
sically use a procedure which approximate this inte-
gral via a table of sampled values. With such a pro-
cedureG(m, s,n), we have: ws; = G(m,s,0) and
ws =1—G(m,s,0)
we = G(m, s,ec) andwz = 1 — G(m, s, ec)

Conclusion

Our aim was to propose a way poogram and simulate
non-deterministic, stochastic reactive systems.

state. The outermost states are denoted as usual. We have \\e have defined an operational model (WTS), with the

by construction’Z = () (unreachable), hence, by induction
on property (1):0F = IF . (E\ ¢). By construction we
also havel? = OF U Iz U I, so,0F satisfies a recursive
equation whose solution is:

OF = (IzUl.) (E\e)" = (IlzUL)- (E*\¢)

by construction we hav@: = I U OEE (transitions leading
to the outermost top-right state), hence:

O = LU((IzUL)-(E*\¢))
= - (cU(E"\e) UL - (E"\¢)
= L-E*UL-(E*\¢)

At last, let us define the weights involved in the translation,
depending on the probabilistic profile:

e Weighted loop characterized hy: the local variable
c is useless. We simply havay, = w, = w and
Wz = Weg = 1.

Uniform law characterized by, z]: the initial case de-
pends on the lower bound. If= 0, then performing
zero loop, is, by definition, as probable as performing
any other value in the intervalo; = 1 andw, = h. If

l # 0, performing no loop is forbiddenw; = 0 and

we = 1.

The other weights are used when> 1; as long asc
is less thar, looping is mandatory; whes is within
[ andh, the probability to stop is 1 ovér — [; at last
onceh is reached, the iterations must stop.

‘oc<l‘l§oc§h‘h<oc‘

We

We 1 h — ec 0

main objective to have a compromise between a good ex-
pressive power to describe lots of realistic behaviors, and
a straightforward operational semantics allowing efficient
simulation. We have also shown how such an abstract ma-
chine model can be targeted by an higher-level program-
ming language, Lutin, which is based on regular operators.

Both the low-level abstract machine simulatiucky )
and the high-level programming language compiler
(lutin ) are implemented and available on the’n@hose
tools are, in particular, the main components of the new ver-
sion of Lurette [17, 9], an automated testing tool dedicated
to the Lustre language [7].

Some interesting problems are remaining in this frame-
work. The weight mechanism allows to express which con-
straint are more likely to be tried, but once a constraint is
elected, there is no way to act upon the choice of a partic-
ular solution. This problem is particularly evident with nu-
merical values: for the time being we guarantee a uniform
choice within the set of solutions. It could be interesting to
define more sophisticated repartition mechanisms.

The design of high-level languages that can be com-
piled into WTS is also interesting. For the time being, we
have a language where sequential statements are inspired
by regular operators. An appealing solution would be to de-
fine a language inspired by the Esterel language [4]: this
language propose a notion imfstantaneousequence and
loops which is different to the ones of regular expressions.
Moreover, it provides a set of high-level, useful control
structures like local parallelism, watch-dogs and traps. An-
other solution would be to design a graphical language
la StateChartsbased on hierarchical concurrent automata;
in this case, the statements of the synchronous language
SynchCharts [1] are certainly the best example to follow.

4“www-verimag.imag.fr/ ~synchron/tools.html
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