
BIP Language : Concrete Syntax

VERIMAG
Centre équation - 2, avenue de Vignate

38610 Gieres, FRANCE

June 11, 2007

1 Lexical tokens

An identifier consist of letters, digits and ’ ’, and begins with a letter.
The list of keyword is:behavior, class, complete, component, connector,
contains, data, delayable, do, eager, else, end, extern, from, if, include,
incomplete, init, initial, lazy, on, port, priority, provided, rename,
state, timed, to, trans, when .

A special directive starting with {# and ending with #} is provided to allow
an arbitrary piece of C code wrapped within this directive to be specified in the
BIP description.

Single line comment, starting with // as in C++, is allowed.

Files can be included within a BIP description using the directive include
followed by the file name between double quotes.

2 The BIP Model

A model defines the component hierarchy and in addition, optional global shared
data and C declarations (data types, functions).

model-decl ::=
{ model-item }∗

model-item ::=
component-def |
global-decl |
c-decl

A model should contain at least a component definition.

1

3 Components

A Component, which can be of either an Atom or a Compound, is defined as:

component-def ::=
component component-id [(formal-args)]

[{ atom-item }∗ | { compound-item }∗]
end

component-ref ::=
component-id { . component-id }∗

formal-args ::=
type-id arg-id { , type-id arg-id }∗

An atomic component define its ports, data and behavior, and an optional C
declaration.

atom-item ::=
c-decl |
data-decl |
port-decl |
behavior

4 Ports

port-decl ::=
port [complete | incomplete]

port-id { , port-id }∗

port-ref ::=
[component-ref .] port-id

5 Data

For data, basic C primitive types can be specified. Pointer types, aggregate
types or any arbitrary types or typedefs can be specified within a {#... #}
directive. If data are declared in a C section, and used in the BIP part, these
data must be declared in the BIP part with the reserved word extern. Data

2

declared with the reserved word timed are timed data used for timed guard ex-
pression. If the data is of type <T>, it must exist a function with the following
profile:
<T> <T> increment(<T> timeVal, int increment) ;

data-decl ::=
[extern] [timed] data type-id var-id { , var-id }∗

c-decl ::=
{# plain C/C++ decl #}

6 Behavior

A behavior is defined by a Petri net or an automaton. In both cases, it is a set
of states/places and transitions.
In the case of an automaton the keyword state is followed by a control state
and the list of outgoing transitions from this state. Each transition is labelled
by a port identifier followed by its guard, function (i.e. statement) and a target
state. The target state is either a simple state or a selected list of target states,
in this case all list elements must have a condition except the last one which
must be unconditional.
In the case of a Petri net, the keyword trans is followed by a port identifier, the
keyword from, the list of incoming places, its guard, function, and the target
places.
The target places are either a simple list of places or a selected list of couples
(condition, target places) followed by unconditional target places.

behavior ::=
behavior

[auto-behaviour | net-behaviour]
end

auto-behaviour ::=
auto-init-transition { auto-state }∗

auto-init-transition ::=
init
[do action-block]
to auto-target

auto-state ::=
state state-id

3

{ auto-transition }∗

auto-transition ::=
on port-id
[provided expression]
[when (expression, urgency)]
[do action-block]
to auto-target;

auto-target ::=
{ state-id if expression ; }∗
state-id

net-behaviour ::=
net-init-transition { net-transition }∗

net-init-transition ::=
init
[do action-block]
to net-target

net-transition ::=
trans port-id
from place-id { , place-id }∗
[provided expression]
[when (expression, urgency)]
[do action-block]
to net-target

net-target ::=
{ place-id { , place-id }∗ if expression ; }∗
place-id { , place-id }∗

urgency ::=
eager |
delayable|
lazy

A compound component defines new components from existing components
(atoms or compounds) by creating their instances, defining the connectors be-
tween the instances and defining the priorities between the interactions of the
connectors. The contents of a compound component is defined by:

compound-item ::=
c-decl |

4

data-decl |
subcomponent-decl |
connector-decl |
priority-decl

subcomponent-decl ::=
contains component-id [(actual-args)]

The instances can have parameters providing initial values to their variables
through positional association.

actual-args ::=
expression { , expression }∗

7 Connectors

A connector definition includes its set of ports followed by an optional com-
plete expression describing its minimal complete interactions. If the complete
expression is omitted, the connector is taken as maximally incomplete. A con-
nector may optionally belong to a predefined type specified by the keyword class
followed by the type name. Connectors may have a behavior specified similarly
as the behavior of transitions, by a set of guarded commands associated with
the feasible interactions.

connector-decl ::=
connector connector-id = interaction

[complete = expression]
[class class-id]
behavior
{ connector-transition }∗
end

connector-ref ::=
[component-ref .] connector-id

connector-transition ::=
[on interaction]
[provided expression]
[do action-block]

interaction ::=

5

port-ref { , port-ref }∗

class-id ::=
Singleton |
Handshake

8 Priorities

Given a system of interacting components, priorities are used to filter interac-
tions amongst the feasible ones depending on given conditions. The syntax for
priorities is the following:

priority-decl ::=
priority { priority-rule }∗

priority-rule ::=
priority-id [if expression]
interaction-set < [interaction-set | *]

interaction-set ::=
qualified-interaction |
{ qualified-interaction { ; qualified-interaction}∗ }

qualified-interaction ::=
[connector-ref] interaction

9 Expressions

Expressions are C-like expressions. All data involved in expressions must be
declared as BIP data. The BIP data whose type is user-defined may be followed
by the . or − > C operator and field or function expression as in usual C++.
In this case during code generation, the BIP tool reproduces the end of the
expression without any type check.
A state name may be used as a boolean expression which is true if the component
is in this state.

expression ::=
c-constant |
obj-ref |
c-op1 expression |
expression c-op2 expression |

6

(expression)

c-constant ::=
useful C constants

obj-ref ::=
[component-ref .] var-id |
func-id |
obj-ref . field-id |
obj-ref − > field-id |
obj-ref [expression] |
obj-ref ([expression { , expression }∗]) |
* obj-ref

c-op1 ::=
common C unary operator

c-op2 ::=
common C binary operator

10 Actions

An action is a C-like statement. The set of possible actions is a subset of C
statements.

action-block ::=
{ action | c-action }∗

action ::=
[obj-ref =] expression ; |
if (expression) { action-block }

[else { action-block }]

c-action ::=
{# plain C/C++ action #}

7

