BIP Language : Concrete Syntax

VERIMAG
Centre équation - 2, avenue de Vignate
38610 Gieres, FRANCE

June 11, 2007

1 Lexical tokens

An identifier consist of letters, digits and ’_’, and begins with a letter.

The list of keyword is:behavior, class, complete, component, connector,
contains, data, delayable, do, eager, else, end, extern, from, if, include,
incomplete, init, initial, lazy, on, port, priority, provided, rename,
state, timed, to, trans, when .

A special directive starting with {# and ending with #} is provided to allow
an arbitrary piece of C code wrapped within this directive to be specified in the
BIP description.

Single line comment, starting with // as in C++, is allowed.

Files can be included within a BIP description using the directive include
followed by the file name between double quotes.

2 The BIP Model

A model defines the component hierarchy and in addition, optional global shared
data and C declarations (data types, functions).

model-decl ::=
{ model-item }*

model-item ::=
component-def |
global-decl |
c-decl

A model should contain at least a component definition.

3 Components
A Component, which can be of either an Atom or a Compound, is defined as:

component-def ::=
component component-id | (formal-args) |
[{ atom-item }* | { compound-item }*]
end

component-ref ::=
component-id { . component-id }*

formal-args ::=
type-id arg-id { , type-id arg-id }*

An atomic component define its ports, data and behavior, and an optional C
declaration.

atom-item 1=
c-decl |
data-decl |
port-decl |
behavior

4 Ports

port-decl ::=
port [complete | incomplete |
port-id { , port-id }*

port-ref ::=
[component-ref . | port-id

5 Data

For data, basic C primitive types can be specified. Pointer types, aggregate
types or any arbitrary types or typedefs can be specified within a {#... #}
directive. If data are declared in a C section, and used in the BIP part, these
data must be declared in the BIP part with the reserved word extern. Data

declared with the reserved word timed are timed data used for timed guard ex-
pression. If the data is of type <T>, it must exist a function with the following
profile:

<T> <T>_increment(<T> timeVal, int increment) ;

data-decl =
[extern | [timed | data type-id var-id { , var-id }*

c-decl ::=

{# plain C/C++ decl #}

6 Behavior

A behavior is defined by a Petri net or an automaton. In both cases, it is a set
of states/places and transitions.

In the case of an automaton the keyword state is followed by a control state
and the list of outgoing transitions from this state. Each transition is labelled
by a port identifier followed by its guard, function (i.e. statement) and a target
state. The target state is either a simple state or a selected list of target states,
in this case all list elements must have a condition except the last one which
must be unconditional.

In the case of a Petri net, the keyword trans is followed by a port identifier, the
keyword from, the list of incoming places, its guard, function, and the target
places.

The target places are either a simple list of places or a selected list of couples
(condition, target places) followed by unconditional target places.

behavior ::=
behavior
[auto-behaviour | net-behaviour |
end

auto-behaviour ::=
auto-init-transition { auto-state }*

auto-init-transition ::=
init
[do action-block |
to auto-target

auto-state ::=
state state-id

{ auto-transition }*

auto-transition 1=
on port-id
[provided expression |
[when (expression, urgency) |
[do action-block |
to auto-target;

auto-target ::=
{ state-id if expression ; }*
state-id

net-behaviour ::=
net-init-transition { net-transition }*

net-init-transition ::=
init
[do action-block |
to net-target

net-transition ;1=
trans port-id
from place-id { , place-id }*
[provided expression |
[when (expression, urgency) |
[do action-block |
to net-target

net-target ::=
{ place-id { , place-id }* if expression ; }*
place-id { , place-id }*

urgency =
eager |
delayable|
lazy

A compound component defines new components from existing components
(atoms or compounds) by creating their instances, defining the connectors be-
tween the instances and defining the priorities between the interactions of the
connectors. The contents of a compound component is defined by:

compound-item 1=
c-decl |

data-decl |
subcomponent-decl |
connector-decl |
priority-decl

subcomponent-decl ::=
contains component-id | (actual-args) |

The instances can have parameters providing initial values to their variables
through positional association.

actual-args ::=
expression { , expression }*

7 Connectors

A connector definition includes its set of ports followed by an optional com-
plete expression describing its minimal complete interactions. If the complete
expression is omitted, the connector is taken as maximally incomplete. A con-
nector may optionally belong to a predefined type specified by the keyword class
followed by the type name. Connectors may have a behavior specified similarly
as the behavior of transitions, by a set of guarded commands associated with
the feasible interactions.

connector-decl ::=
connector connector-id = interaction
[complete = expression |
[class class-id |
behavior
{ connector-transition }*
end

connector-ref ::=
[component-ref . | connector-id

connector-transition ::=
[on interaction]
[provided expression |
[do action-block |

interaction 1=

port-ref { , port-ref }*

class-id ::=
Singleton |
Handshake

8 Priorities

Given a system of interacting components, priorities are used to filter interac-
tions amongst the feasible ones depending on given conditions. The syntax for
priorities is the following:

priority-decl ::=
priority { priority-rule }*

priority-rule ::=
priority-id [if expression]
interaction-set < [interaction-set | * |

1nteraction-set 1=
qualified-interaction |
{ qualified-interaction { ; qualified-interaction}* }

qualified-interaction ::=
[connector-ref | interaction

9 Expressions

Expressions are C-like expressions. All data involved in expressions must be
declared as BIP data. The BIP data whose type is user-defined may be followed
by the . or — > C operator and field or function expression as in usual C++.
In this case during code generation, the BIP tool reproduces the end of the
expression without any type check.

A state name may be used as a boolean expression which is true if the component
is in this state.

exTpression 1=
c-constant |
obj-ref |
c-opy expression |
ETPTeSSLON C-0P2 ETPTESSLON,

(expression)

c-constant 1=
useful C constants

obj-ref ::=
[component-ref . | var-id |
func-id |
obj-ref . field-id |
obj-ref — > field-id |
obj-ref | expression | |
obj-ref (| expression { , expression }* |) |
* obj-ref

c-opy =
common C unary operator

c-0pg =
common C binary operator

10 Actions

An action is a C-like statement. The set of possible actions is a subset of C
statements.

action-block ::=
{ action | c-action }*

action 1=
[obj-ref =] expression ; |
if (expression) { action-block }
[else { action-block } |

c-action 1=
{# plain C/C++ action #}

