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Once Upon a Time in Linear Semigroups . . .

Theorem (Markov 1947)

There is a fixed set of 6× 6 integer matrices
M1, . . . ,Mk such that the Membership
Problem “M ∈ 〈M1, . . . ,Mk〉?” is
undecidable.

Mortality Problem: Is the zero matrix contained in the semigroup
generated by a given set of n × n matrices with integer entries?

Theorem (Paterson 1970)

The Mortality Problem is undecidable for 3× 3
matrices.
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Finiteness is Decidable



The Commutative Case

Theorem (Babai, Beals, Cai, Ivanyos, Luks 1996)

The semigroup membership problem “M ∈ 〈M1, . . . ,Mk〉?” is
decidable for commuting matrices M1, . . . ,Mk and M.

Theorem (Kannan, Lipton 1986)

The membership problem “M ∈ 〈M1〉?” is polynomial-time
decidable.

Proof Sketch. Reduce to finding multiplicative relations:

αn1
1 · · ·αnk

k = β n1, . . . , nk ∈ Z

for given algebraic numbers α1, . . . , αk , β.
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Orbit Problems

Consider orbit O := 〈M1, . . . ,Mk〉x :

Reachability: Does the orbit meet
a target set (point, hyperplane,
polyhedron, . . . )?

Invariance: Can the orbit be
separated from the target?

Termination: Does every orbit
escape a given set?
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A Fundamental Orbit Problem . . .

Orbit O := 〈A〉x reaches hyperplane normal to y iff the sequence
〈y>Anx : n ∈ N〉 contains a zero.



. . . that is not Easy

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

Skolem’s Problem “ ∃n .un = 0 ?” is decidable for LRS (un) of
order at most 4.

Theorem (Ouaknine, W. 2013)

The Positivity Problem “ ∀n .un ≥ 0 ?” is decidable for LRS (un)
of order at most 5.

Theorem (Ouaknine, W. 2014)

The Ultimate Positivity Problem “∃N ∀n ≥ N .un ≥ 0 ?” is
decidable for simple LRS (un) at all orders.
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This Tutorial

1 Polynomial invariants:

Compute the Zariski closure of the orbit of a point under a
matrix semigroup

2 Termination of linear loops:

Decide whether all orbits escape a polyhedron?

3 Continuous Skolem Problem:

Decide whether the orbit of a point under a one-parameter
semigroup reaches a hyperplane.
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Part I: Polynomial Invariants



Programming in the Jurassic

Robert W. Floyd, Assigning Meanings to Programs, 1967



Polynomial Invariants

x := 1; ; y := 0;
while true do(

x
y

)
:=

(
1 1
1 0

)(
x
y

)
;

Polynomial invariant: x4 + y4 − 2x3y − x2y2 + 2xy3 − 1 = 0
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transition
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Why Invariants?

I
S

BAD!

The classical approach to the verification of temporal
safety properties of programs requires the construction of
inductive invariants [...]. Automation of this
construction is the main challenge in program
verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Equivalence of Deterministic Top-Down Tree-to-String
Transducers Is Decidable

HELMUT SEIDL, Technical University of Munich
SEBASTIAN MANETH, Universität of Bremen
GREGOR KEMPER, Technical University of Munich

We prove that equivalence of deterministic top-down tree-to-string transducers is decidable, thus solving a
long-standing open problem in formal language theory. We also present efficient algorithms for subclasses:
for linear transducers or total transducers with unary output alphabet (over a given top-down regular domain
language), as well as for transducers with the single-use restriction. These results are obtained using tech-
niques from multi-linear algebra. For our main result, we introduce polynomial transducers and prove that
for these, validity of a polynomial invariant can be certified by means of an inductive invariant of polynomial
ideals. This allows us to construct two semi-algorithms, one searching for a certificate of the invariant and
one searching for a witness of its violation. Via a translation into polynomial transducers, we thus obtain
that equivalence of general ydt transducers is decidable. In fact, our translation also shows that equivalence
is decidable when the output is not in a free monoid but in a free group.

CCS Concepts: • Theory of computation → Tree languages; Transducers;

Additional Key Words and Phrases: Tree-to-string transducer, macro tree transducer, equivalence problem,
decidability, polynomial ideals

ACM Reference format:
Helmut Seidl, Sebastian Maneth, and Gregor Kemper. 2018. Equivalence of Deterministic Top-Down Tree-to-
string Transducers Is Decidable. J. ACM 65, 4, Article 21 (April 2018), 30 pages.
https://doi.org/10.1145/3182653

1 INTRODUCTION
Transformations of structured data are at the heart of functional programming (Wadler 1990;
Marlow and Wadler 1993; Voigtländer and Kühnemann 2004; Voigtländer 2005; Matsuda et al.
2012) and also application areas such as compiling (Fülöp and Vogler 1998), document process-
ing (W3C 1999; Boag et al. 2010; Maneth and Neven 1999; Engelfriet and Maneth 2003a; Maneth
et al. 2005, 2007; Hakuta et al. 2014), automatic translation of natural languages (Liu et al. 2006,
2007; Maletti et al. 2009; Braune et al. 2013), or even cryptographic protocols (Küsters and Wilke
2007). The most fundamental model of such transformations is given by (finite-state tree) transduc-
ers (Maneth 2003; Fülöp and Vogler 1998). Transducers traverse the input by means of finitely many
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“ [. . . ] we introduce polynomial transducers and prove
that for these, equivalence can be certified by means of
an inductive polynomial invariant. This allows us to
construct two semi-algorithms, one searching for an
invariant and the other for a witness of non-equivalence
[. . . ]”
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DECIDABLE AND UNDECIDABLE PROBLEMS
ABOUT QUANTUM AUTOMATA∗

VINCENT D. BLONDEL† , EMMANUEL JEANDEL‡ , PASCAL KOIRAN‡ , AND

NATACHA PORTIER‡

Abstract. We study the following decision problem: is the language recognized by a quantum
finite automaton empty or nonempty? We prove that this problem is decidable or undecidable
depending on whether recognition is defined by strict or nonstrict thresholds. This result is in
contrast with the corresponding situation for probabilistic finite automata, for which it is known
that strict and nonstrict thresholds both lead to undecidable problems.

Key words. quantum automata, probabilistic automata, undecidable problems, algebraic
groups

AMS subject classifications. 81P68, 68Q45

DOI. 10.1137/S0097539703425861

1. Introduction. In this paper, we provide decidability and undecidability
proofs for two problems associated with quantum finite automata. Quantum finite
automata (QFA) were introduced by Moore and Crutchfield [MC00]; they are to quan-
tum computers what finite automata are to Turing machines. Quantum automata are
also analogous to the probabilistic finite automata introduced in the 1960s by Rabin
that accept words with a certain probability (see [Rab63], [Rab67]; see also [Paz71] for
a book-length treatment). A quantum automaton A assigns real values ValA(w) to
input words w (see below for a precise description of how these values are computed).
ValA(w) can be interpreted as the probability that on any given run of A on the input
word w, w is accepted by A. Nonisolated cut-point recognition will be considered in
this article: we do not ask for a gap between the set of ValA(w) for accepted words
w and the set of ValA(w) for rejected words w. Associated to a real threshold λ, the
languages recognized by the automaton A with nonstrict and strict threshold λ are

L≥ = {w : ValA(w) ≥ λ} and L> = {w : ValA(w) > λ}.

Many properties of these languages are known in the case of probabilistic and quantum
automata. For instance, it is known that the class of languages recognized by quantum
automata is strictly contained in the class of languages recognized by probabilistic
finite automata [BP02]. For probabilistic automata it is also known that the problem
of determining if L≥ is empty and the problem of determining if L> is empty are
undecidable (see [Paz71, Thm. 6.17, p. 90]). This is true even for automata of fixed
dimensions [BC03]. Decidability problems on QFA were first studied in the paper
by Amano and Iwama [AI99]: is the language recognized by a 1.5-way quantum
automaton empty? The undecidability of this problem was proven, even in the case
of isolated cut-point.

∗Received by the editors April 9, 2003; accepted for publication (in revised form) December 11,
2004; published electronically August 17, 2005.

http://www.siam.org/journals/sicomp/34-6/42586.html
†Department of Mathematical Engineering, Université Catholique de Louvain (blondel@inma.ucl.

ac.be).
‡Laboratoire de l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon (Emmanuel.

Jeandel@ens-lyon.fr, Pascal.Koiran@ens-lyon.fr, Natacha.Portier@ens-lyon.fr).

1464

Theorem (Blondel, Jeandel, Koiran, Portier 2005)

The strict threshold problem is decidable for quantum automata.



The Strongest Algebraic Invariant of an Orbit

O = 〈M1, . . . ,Mk〉x0

Compute ideal of polynomial relations satisfied by the orbit O
(determines the Zariski closure O ⊆ Rd)

Yields an inductive invariant:

Mi (O) ⊆ MiO ⊆ O

Idea is to compute Zariski closure of 〈M1, . . . ,Mk〉 ⊆ Rd×d ,
generalising [Mandel and Simon 77]
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Polynomial Programs (Muller-Olm and Seidl 2004)
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Integer variables with polynomial assignments

Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location
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Undecidability

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 20)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

Simulate reset VAS by polynomial program:

Represent VAS configuration (a, b) “projectively” as
(az , bz , z), z 6= 0:

f (x , y , z) = ((x − z)x , yx , zx)

VAS is bounded iff the Zariski closure has dimension ≤ 1
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Affine Invariants for Affine Programs

Theorem (Karr 76)

There is an algorithm that computes, for any given affine program
over Q, its strongest affine inductive invariant.



Polynomial Invariants for Affine Programs

Theorem (ICALP 2004)

There is an algorithm that computes, for any given affine program
over Q, all its polynomial invariants up to any fixed degree d .
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Zariski Closure of Linear Semigroups
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Theorem (Hrushovski, Ouaknine, Pouly, W. 18)

There is an algorithm that computes 〈M1, . . . ,Mk〉 (represented as
the zero set of a list of polynomials p1, . . . , pm ∈ Z[x1,1, . . . , xd ,d ]).

Corollary

There is an algorithm that computes the set of all polynomial
invariants of an affine program.
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Main Ingredients for the Group Case

Theorem (Masser 1988)

Given algebraic numbers λ1, . . . , λk , there is a
procedure to compute the set of
multiplicative relations{

(n1, . . . , nk) ∈ Zk : λn11 · · ·λnkk = 1
}
.

Theorem (Schur 1911)

Every finitely generated periodic subgroup of
GLn(C) is finite.
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Polynomial Invariants: One-Generator Case

x := 1; ; y := 0;
while true do(

x
y

)
:=

(
1 1
1 0

)(
x
y

)
;

Polynomial invariant: x4 + y4 − 2x3y − x2y2 + 2xy3 − 1 = 0



The One-Generator Case

Consider A :=

(
1 1
1 0

)
:

eigenvalues φ1 := 1+
√
5

2 , φ2 := 1−
√
5

2

{An : n ∈ Z} =

{
P−1

(
φn1 0
0 φn2

)
P : n ∈ Z

}

= P−1
{(

φn1 0
0 φn2

)
: n ∈ Z

}
P

= P−1
{(

x 0
0 y

)
:

x , y ∈ R,
(xy − 1)(xy + 1) = 0

}
P

Closure determined by multiplicative relation φ21φ
2
2 = 1.

Two irreducible components, which are cosets.
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The General Algorithm

Input: A1, . . . ,Ak ∈ GLn(C)

Output: 〈A1, . . . ,Ak〉

S := ∅
H := {I}
for A ∈ 〈A1, . . . ,Ak〉 do

S := S ∪ {A}
H := H · 〈A〉Id
repeat

H := H ·H · A1HA−11 · · ·AkHA−1k

until H stabilizes

end

H irreducible & H / 〈A1, . . . ,Ak〉H
Eventually 〈A1, . . . ,Ak〉H/H is periodic.
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Motivating Example for the Semigroup Case

Define G := 〈S ,T ,E 〉, where

S :=

(
0 −1
1 0

)
, T :=

(
1 1
0 1

)
, E :=

(
1 0
0 0

)
.

Then G = {M ∈ M2(R) : det(M) ∈ {0, 1}}.

Indeed, since

{M ∈ G : rank(M) = 2} = 〈S ,T 〉 = SL2(Z) = SL2(R) ,

we have that {M ∈ G : rank(M) < 2} is generated by

{MEM ′,ME ,EM : M,M ′ ∈ SL2(R)} .
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From Groups to Groupoids

Algebraic semigroup S ⊆ Mn(R):

Sr := {A ∈ S : rank(A) = r} .

Consider Sr as a category:

U U ′

U ′′

A

A′

Object U ⊆ Cn, dim(U) = r

Arrow U → V : A ∈ Sr s.t. A(U) = V
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Polynomial Invariants for Affine Programs, LICS 2018

Theorem (Hrushovksi, Ouaknine, Pouly, W. 18)

Given a finite set of rational square matrices of the same
dimension, we can compute the Zariski closure of the semigroup
that they generate.

Corollary

Given an affine program, we can compute for each location the
ideal of all polynomial relations that hold at that location.



From Affine Programs to Hybrid Automata

x

y

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy

vx = c

x = tc

v2y + 2g(y − h) = 0
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Hybrid Automata

OPEN

I CLOSED IR

R

VR

VR

Q

C

V

İ = 0

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

open

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

closed
I := 1

R (V−VC )

IR := 1
R (V−VC )

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC



A Challenge in Program Analysis

[. . . ] use inequality relationships to determine at
compile time whether the value of an expression is within
a specified range. This includes compile-time overflow,
integer subrange, and array bound checking.

Compute inductive invariants determined by linear and polynomial
inequalities?
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Semi-Algebraic Invariant Synthesis

Computing Semi-Algebraic Invariants

Given S = 〈A1, . . . ,Ak〉, x ∈ Qn, and semi-algebraic T ⊆ Rn,
decide whether there exists semi-algebraic I ⊆ Rd such that:

x ∈ I

SI ⊆ I

I ∩ T = ∅

I
Sx

T
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Example

Anx =

2n cos nθ
2n sin nθ

5n



Definable over-approximation:
t log 2x
t log 2y
t log 5

 :
t ≥ 0,
x2 + y2 = 1



Key Observation:

Every semi-algebraic invariant I must contain the
entire cone from some height onwards.
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Definable Invariants

Every invertible matrix A ∈ Qd×d admits a decomposition

A = Ar︸︷︷︸
exp(L)

·Au

such that

all eigenvalues of Ar are positive real

all eigenvalues of Au have absolute value one

Ar and Au commute

Given t0 ∈ R,

Ct0 := {exp(Lt)Bx : t ≥ t0,B ∈ 〈Au〉}

is an inductive invariant, definable in Rexp = 〈R,+,×, exp〉.
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Minimal Families of Invariants

Proposition

Given A and x , there is a family of sets Ct ⊆ Rn, t ≥ 0, uniformly
definable in Rexp s.t.

1 Ct is an inductive invariant, containing {Anx : n ≥ t}.
2 Every semialgebraic invariant I contains some Ct .

3 For semialgebraic T , the truth of ∃t · Ct ∩ T = ∅ can be
decided unconditionally.

Theorem (Almagor, Chistikov, Ouaknine, W. 18)

The semi-algebraic synthesis problem is decidable for a single
matrix.
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The Monniaux Problem

P. Cousot N. Halbwachs D. Monniaux

“Forty years of research on convex polyhedral invariants have
focused, on the one hand, on identifying “easier” subclasses, on
the other hand on heuristics for finding general convex polyhedra.
These heuristics are however not guaranteed to find polyhedral
inductive invariants when they exist. To our best knowledge, the
existence of polyhedral inductive invariants has never been proved
to be undecidable.”

– David Monniaux, Acta Inf. 2019



Part II: Loop Termination



Termination of Linear Loops

Single-path linear loop:

x := a
while Ax ≥ b do

x := B · x + c

Termination Problem (R)

Instance: 〈 A, B, b, c, 〉
Question: Does the loop terminate for all a ∈ R?

Consider R = R,Q,Z, . . .
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History of the Problem

Termination of linear constraint loops [Sohn and Gelder’91]

R = {(x , y) ∈ Rn × Rn : Ax + By ≤ c}.

Termination of linear loops over R [Tiwari’04]

Termination of linear loops over Q [Braverman’06]

Termination over Z conjectured decidable [Tiwari’04,
Braverman’06]
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Termination Depends on the Numerical Domain

Loop that is terminating over Q but not R:

while 4x + y > 0

do

(
x
y

)
←
(
−2 4
4 0

)(
x
y

)

Eigenvalues −1−
√

17 and −1 +
√

17.

Eigenvectors

(
−1−

√
17

4

)
and

(
−1 +

√
17

4

)
.
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Termination vs Positivity

while x5 − x6 ≥ 0

do



x1
x2
x3
x4
x5
x6

←


−19
25 −114

125
114
125

19
25 1 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

2





x1
x2
x3
x4
x5
x6



Classify a ∈ R6 as terminating, non-terminating, eventually
non-terminating

E.g., if a = (. . .), then

e>5 A
na := 33

8 + λn1 + λn1 + 2λn2 + 2λn2,

where λ1 = −3+4i
5 and λ2 = −7+24i
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Taking the Closure

Define fa : T2 → R by

fa(z1, z2) = 33
8 + z1 + z1 + 2z2 + 2z2 .

Then e>5 A
na = fa(λn1, λ

n
2).

By Kronecker’s Theorem on simultaneous Diophantine
approximation:

Cl{(λn1, λn2) : n ∈ N} = {(z1, z2) ∈ T2 : z21 z2 = 1}︸ ︷︷ ︸
S
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Critical Points

inf
(z1,z2)∈S

fa(z1, z2) < 0 ⇒ a is terminating

inf
(z1,z2)∈S

fa(z1, z2) > 0 ⇒ a is eventually non-terminating.

inf
(z1,z2)∈S

fa(z1, z2) = 0 ⇒ a

Theorem (Ouaknine, Sousa-Pinto, W. 15)

If the update matrix is diagonalisable or has dimension at most 5
then every rational critical point is eventually non-terminating.

Proposition

The set of points that are either critical or eventually
non-terminating is effectively semi-algebraic.
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Flatness Theorem

Given convex C ⊆ Rd , define

width(C ) := inf
v∈Zd\{0}

sup
x ,y∈C

v>(x − y) .

Lemma (Flatness Theorem)

If C is semi-algebraic and full dimensional then there exists W > 0
(depending on description of C ) such that if width(C ) >W then
C contains an integer point.

L

How does the lattice width
vary as a function of L?

Kronecker’s Theorem is
instrumental again!
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Hilbert’s Tenth Problem for Convex Sets

Theorem (Khachiyan, Porkolab’97)

It is decidable whether a given semi-algebraic set C ⊆ Rn contains
an integer point.

Assume C does not have an integer point:

If C is not full dimensional, eliminiate a variable

If C is not “fat”, eliminate a variable
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Handling Critical Points

Proposition

Suppose a ∈ Rn is critical. Then:

1 Aa,A2a,A3a, . . . are all critical.

2 Every point in the relative interior of Conv({a,Aa,A2a, . . .})
is eventually non-terminating.

Proposition

For all a ∈ Zn, Conv({a,Aa,A2a, . . .}) contains an integer point.

Theorem (Hosseini, Ouaknine, W. 19)

Termination of linear while loops over the integers is decidable.
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Theorem (Hosseini, Ouaknine, W. 19)

Termination of linear while loops over the integers is decidable.



Part III: Orbits in Continuous-Time



Reachability for Continuous-Time Markov Chains
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0.2

0.4

0.02

0.005

Distribution P(t) at time t satisfies P ′(t) = P(t)Q, where

Q =

−0.025 0.02 0.005
0.3 −0.5 0.2

0.02 0.4 −0.42


is the rate matrix.
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Distribution P(t) at time t satisfies P ′(t) = P(t)Q, where

Q =

−0.025 0.02 0.005
0.3 −0.5 0.2

0.02 0.4 −0.42


is the rate matrix.

“Is it ever more likely to be a Bear market than a Bull market?”

∃t (P(t)Bear ≥ P(t)Bull)



Hitting a Hyperplane

x : R≥0 → Rk

ẋ = Ax

⇒ x(t) = exp(At)x(0)
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f (t)
def
= uT exp(At)x(0)
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ẋ = Ax
⇒ x(t) = exp(At)x(0)

u

f (t)
def
= uT exp(At)x(0)



Exponential Polynomials

Function f is an exponential polynomial:

f (t)
def
= uT exp(At)x(0)

=
m∑
j=1

Pj(t)eλj t

Equivalently, f satisfies a linear differential equation:

f (k)(t) + ak−1f
(k−1)(t) + . . .+ a1f

′(t) + a0f (t) = 0

Dimension = Order = k
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Zero Problems for Exponential Polynomials

Let f : R≥0 → R be given as above, with all coefficients algebraic.

Bounded Zero Problem

Instance: f and bounded interval [a, b]
Question: Is there t ∈ [a, b] such that f (t) = 0?

Zero Problem

Instance: f
Question: Is there t ∈ R≥0 such that f (t) = 0?

Infinite Zeros Problem

Instance: f
Question: Does f have infinitely many zeros in R≥0?

• Decidability open! [Bell, Delvenne, Jungers, Blondel 2010]
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Our Results

Theorem (Chonev, Ouaknine, W. 2015)

1 Assuming Schanuel’s Conjecture, Bounded Zero is decidable
at all orders.

2 At order at most 8, Zero reduces to Bounded Zero.

3 At order at most 8, Infinite Zeros is decidable.

4 At order 9, if Infinite Zeros is decidable then the Lagrange
constant of any real algebraic number is computable.

Schanuel’s Conjecture

If z1, . . . , zn ∈ C are linearly independent over
Q, then the field Q(z1, . . . , zn, e

z1 , . . . , ezn)
has transcendence degree at least n over Q.
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The Bounded Zero Problem

Example

Let f (t) := e(2+i)t + e(2−i)t − te−t . Then f (t) = P(t, et , e it),
where

P(x , y , z) = y2z + y2z−1 − xy−1

Laurent-Polynomial Representation

Any exponential polynomial f (t) can be written

f (t) = P(t, ea1t , . . . , eamt , e ib1t , . . . , e ibnt)

with
P ∈ C[x , y±11 , . . . , y±1m , z±11 , . . . , z±1n ]

and {a1, . . . , am} and {b1, . . . , bn} sets of real algebraic numbers
linearly independent over Q. WLOG P is irreducible.
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Applying Schanuel

Write

f (t) = P(t, ea1t , . . . , eamt , e ib1t , . . . , e ibnt), P irreducible

f (t) = Q(t, ea1t , . . . , eamt , e ib1t , . . . , e ibnt), Q irreducible

Two cases:

1 If P and Q are not associates then f has no real zeros by
Schanuel’s Conjecture.

2 If P and Q are associates, then complex zeros of f come in
conjugate pairs. Real zeros are simple by Schanuel.
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Bounded Zero Problem - An Argument Argument

Let N = number of zeros of f inside closed contour C . Then∫
C

f ′(z)

f (z)
dz = 2πiN

T

Refine until N is odd or 0 for each square.



Diophantine Approximation

The Lagrange constant of x ∈ R is

L∞(x) = lim inf
n→∞

n ‖nx‖

We have 0 ≤ L∞(x) ≤ 1√
5

for all x ∈ R.

“Is there a real algebraic number α of degree
greater than two with L(α) = 0? Do all such
numbers have L(α) = 0?”

R. K. Guy 2004 (paraphrased)
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A Hard Case at Order 9

For α irrational, algebraic and c rational, define

f1(t) = et(1− cos(t)) + t(1− cos(αt))− c sin(αt)

f2(t) = et(1− cos(t)) + t(1− cos(αt)) + c sin(αt)

f (t) = min{f1(t), f2(t)}

Proposition

1 L∞(α) < c
2π2 implies f has infinitely many zeros

2 L∞(α) > c
2π2 implies f has finitely many zeros

Theorem

If the Zero Problem is decidable at order 9 then for any real
algebraic number α, L∞(α) is computable.
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Decidability Results at Low Order

Theorem

At order at most 8, Zero reduces to Bounded Zero, and Infinite
Zeros is decidable.

Proof in a single picture:

Give procedure to decide whether f has infinitely many zeros and,
if not, output T such that f (t) 6= 0 for all t > T .
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Shrinking-Target Problem (I)

Let a, b ∈ R be algebraic and linearly independent over Q:

f (t) := cos2(at − ψ1) + cos2(bt − ψ2)− e−t

Γt :=
{

(θ1, θ2) ∈ [0, 2π]2 : cos2(θ1 − ψ1) + cos2(θ2 − ψ2) ≤ e−t
}

∃∞t (at, bt) ∈ Γt ?
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Shrinking-Target Problem (II)

Let a, b ∈ R be algebraic and linearly independent over Q:
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Shrinking-Target Problem (II)

Let a, b ∈ R be algebraic and linearly independent over Q:

f (t) := (cos(at) + 2 cos(bt))2 − e−t

Γt :=
{

(θ1, θ2) ∈ [0, 2π]2 : (cos(θ1) + 2 cos(θ2))2 ≤ e−t
}

∃∞t (at, bt) ∈ Γt ?



A Landscape of Orbit Problems: Summary

Part I: Invariants. Compute all polynomial invariants of the orbit
of a point under a finitely generated matrix semigroup.

Part II: Termination. Do all (integer) orbits under a single matrix
escape a polyhedron?

Part III: Reachability. Does the orbit of a point under a
one-parameter matrix semigroup reach a halfspace?

Tools: Kronecker, Masser, Baker, . . .


