Orbit Problems for Linear Dynamical Systems

James Worrell

Department of Computer Science
Oxford University

MOVEP 2020, VERIMAG


James Worrell


A Landscape of Orbit Problems

Orbit problems for
matrix semigroups




Once Upon a Time in Linear Semigroups ...

Theorem (Markov 1947)

There is a fixed set of 6 X 6 integer matrices
My, ..., My such that the Membership
Problem “M e (My,...,My)?" is
undecidable.




Once Upon a Time in Linear Semigroups ...

Theorem (Markov 1947)

There is a fixed set of 6 X 6 integer matrices
My, ..., My such that the Membership
Problem “M e (My,...,My)?" is
undecidable.

Mortality Problem: Is the zero matrix contained in the semigroup
generated by a given set of n x n matrices with integer entries?



Once Upon a Time in Linear Semigroups ...

Theorem (Markov 1947)

There is a fixed set of 6 X 6 integer matrices
My, ..., My such that the Membership
Problem “M e (My,...,My)?" is
undecidable.

Mortality Problem: Is the zero matrix contained in the semigroup
generated by a given set of n x n matrices with integer entries?

Theorem (Paterson 1970)

The Mortality Problem is undecidable for 3 x 3
matrices.




Finiteness is Decidable

Theoretical Computer Science 5 (1977) 101-111.
© No:th-Holland Publishing Company

ON FINITE SEMIGROUPS OF MATRICES*

Arnaldo MANDEL' and Imre SIMON®
Instituto de M gtica e Estatistica, Universidade de Sao Paulo, 05508 Sdo Paulo, SP, Brasil

‘Communicated by M. Nivat
Received February 1977

Absinnl. Finite semlgroups of n by n matrices over the naturals are characterized both by

! and thods. Next we show that the cardinality of a finite semigroup § of

n by n matrices over a field is bounded by a function depending only on n, the number of

of S and the i dinality of its sub Asa q given n and k,

there exls(, up to 1wmorph|sm, only a finite number of finitc semigro.ps of n by n matrices over

the d by at most k Among other applications to Automaton Theory,
we show that it is decidable whethei the behavior of a given N— X automaton is bounded.

1. Introduction

The results in this paper originated from the investigation of the following
question in Automaton Theory: Is it decidable whether the behavior of a given
N- 3 automaton is bounded? This is answered affirmatively and it leads to the
study of finite semigroups cf matrices over the naturals. After obtaining effective
characterizations of these semigroups, we investigate finite semigroups of matrices
ove. a field. This enables us to generalize, to matrices over the rationals, one of the
results obtained earlier. ’
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The Commutative Case

Theorem (Babai, Beals, Cai, lvanyos, Luks 1996)

The semigroup membership problem “M € (M, ..., My)?" is
decidable for commuting matrices My, ..., My and M.

Theorem (Kannan, Lipton 1986)

The membership problem “M € (M) ?” is polynomial-time
decidable.

Proof Sketch. Reduce to finding multiplicative relations:
af*-ak=p n,...,nx €7

for given algebraic numbers ag, ..., ak, 5.
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Orbit Problems

Consider orbit O := (My,..., My)x:

@ Reachability: Does the orbit meet
a target set (point, hyperplane,
polyhedron, ...)?

o Invariance: Can the orbit be
separated from the target?

o Termination: Does every orbit
escape a given set?
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A Fundamental Orbit Problem ...

Orbit O := (A)x reaches hyperplane normal to y iff the sequence
(y"A"x : n € N) contains a zero.
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Skolem’s Problem “3n.u, =0 ?” is decidable for LRS (up) of
order at most 4.




...that is not Easy

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

Skolem’s Problem “3n.u, =0 ?” is decidable for LRS (up) of
order at most 4.

Theorem (Ouaknine, W. 2013)

The Positivity Problem “¥n.u, >0 ?” is decidable for LRS (up)
of order at most 5.




...that is not Easy

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

Skolem’s Problem “3n.u, =0 ?” is decidable for LRS (uy,) of
order at most 4.

Theorem (Ouaknine, W. 2013)

The Positivity Problem “¥n.u, >0 ?” is decidable for LRS (up)
of order at most 5.

Theorem (Ouaknine, W. 2014)

The Ultimate Positivity Problem “INVYn> N.u, >0 ?" is
decidable for simple LRS (up) at all orders.
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This Tutorial

© Polynomial invariants:

e Compute the Zariski closure of the orbit of a point under a
matrix semigroup

@ Termination of linear loops:
o Decide whether all orbits escape a polyhedron?

© Continuous Skolem Problem:

e Decide whether the orbit of a point under a one-parameter
semigroup reaches a hyperplane.



Part I: Polynomial Invariants



Programming in the Jurassic

destination (or origin) is v. An interpretation I of a flowchart is a mapping
of its edges on propositions. Some, but not necessarily all, of the free
variables of these propositions may be variabl ipulated by the

nEJ* (J* is the set of positive integers)
ned*Ai=1

nEJPAI=1AS=0
-1

nEJ*AIEJ Aisn+IAS= L
J=1

i=1 "
———n€J Ai=n4+1AS= Y a;ie, S=Ta;
=1 J=1

-1
———————— neEJtANIEJTAisnAS= T g
J=1
i
________ neJ ANi€EJ T NisnAS=Ta;
=1

i-1

———————— ne.l*/\;e.l*/\zgignﬂ/\s-zla,
~

FiGURE 1. Flowchart of program to compute S = 3= a; (n 2 0)

Robert W. Floyd, Assigning Meanings to Programs, 1967
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Polynomial Invariants

x:=1;;y:=0;
while true do

0)=060)0) 6B G EEE)6)

\

Polynomial invariant: x* + y* — 2x3y — x?y? 4 2xy® — 1 =0
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition




Why Invariants?

BAD!

The classical approach to the verification of temporal
safety properties of programs requires the construction of
inductive invariants [...]. Automation of this
construction is the main challenge in program
verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007



Automata-Theoretic Applications

Equivalence of Deterministic Top-Down Tree-to-String
Transducers Is Decidable

HELMUT SEIDL, Technical University of Munich
SEBASTIAN MANETH, Universitit of Bremen
GREGOR KEMPER, Technical University of Munich

“[..] we introduce polynomial transducers and prove
that for these, equivalence can be certified by means of
an inductive polynomial invariant. This allows us to
construct two semi-algorithms, one searching for an
invariant and the other for a witness of non-equivalence

[..]



Automata-Theoretic Applications

DECIDABLE AND UNDECIDABLE PROBLEMS
ABOUT QUANTUM AUTOMATA*

VINCENT D. BLONDEL', EMMANUEL JEANDEL?!, PASCAL KOIRAN?, AND
NATACHA PORTIER?

Abstract. We study the following decision problem: is the language recognized by a quantum
finite automaton empty or nonempty? We prove that this problem is decidable or undecidable
depending on whether recognition is defined by strict or nonstrict thresholds. This result is in
contrast with the corresponding situation for probabilistic finite automata, for which it is known
that strict and nonstrict thresholds both lead to undecidable problems.

Theorem (Blondel, Jeandel, Koiran, Portier 2005)

The strict threshold problem is decidable for quantum automata.
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The Strongest Algebraic Invariant of an Orbit

0= <M17"'7Mk>XO

Lo —

@ Compute ideal of polynomial relations satisfied by the orbit O
(determines the Zariski closure O C RY)

@ Yields an inductive invariant:

M;(0) € M;O0 C O

o Idea is to compute Zariski closure of (M, ..., M) C R9*d,
generalising [Mandel and Simon 77]



The Group Case

Available online at www.sciencedirect.com

.c.m“@m“m- Journal of

Symbolic
Computation

ELSEVIER Joumal of Symbolic Computation 39 (2005) 357-371

elsevier.com/locate/jsc

Quantum automata and algebraic groups

Harm Derksen®, Emmanuel Jeandel®, Pascal Koiran®™*

ADepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
bLaboratoire de I'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 69364, France

Received 15 September 2003; accepted 1 November 2004

Abstract

We show that several problems which are known to be undecidable for probabilistic automata
become decidable for quantum finite automata. Our main tool is an algebraic result of independent
interest: we give an algorithm which, given a finite number of invertible matrices, computes the
Zariski closure of the group generated by these matrices.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Quantum ; Probabilistic y: Algebraic groups: Algebraic geometry
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Motivation: A Problem in Program Analysis

Polynomial Programs (Muller-Olm and Seidl 2004)

x 1= 3x%y — Ty
f3

Nondeterministic branching (no guards)
Integer variables with polynomial assignments
Compute all valid polynomial relations at each location

Represents the Zariski closure of the reachable set at each
location



Finding all polynomial invariants

Available online at www.sciencedirect.com
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Computing polynomial program invariants

Markus Miiller-Olm *!, Helmut Seid1®

2 FernUni itdt Hagen, LG Praktische Inf ik 5, 58084 Hagen, Germany
b TU Miinchen, Inf ik, 12, 85748 Miinchen, Germany

Received 16 October 2003; received in revised form 20 April 2004
Available online 19 June 2004
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Computing polynomial program invariants

Markus Miiller-Olm *!, Helmut Seid1®

2 FernUni itdt Hagen, LG Praktische Inf ik 5, 58084 Hagen, Germany
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It is a challenging open prob_lem whether or not the
set of all valid polynomial relations can be computed
not just the ones of some given form. It is not
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Geometric Picture

x,y,z range over Z (or Q)

(h, h, 13) is an inductive invariant
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Undecidability

Theorem (Dufourd, Finkel, Schnoebelen 1998)

The boundedness problem for reset vector addition systems is
undecidable.

Theorem (Hrushovski, Ouaknine, Pouly, W. 20)

There is no algorithm that computes the Zariski closure of the
reachable set of a polynomial program.

@ Simulate reset VAS by polynomial program:

@ Represent VAS configuration (a, b) “projectively” as
(az, bz, z), z # 0:

f(x,y,z) = ((x — 2)x, yx, zx)

@ VAS is bounded iff the Zariski closure has dimension <1



Affine Invariants for Affine Programs

Affine Relationships Among Variables of a Program™*
Michael Karr

Received May 8, 1974

Summary. Several optimizations of programs can be performed when in certain
regions of a program equality relationships hold between a linear combination of the
variables of the program and a constant. This paper presents a practical approach to
detecting these relationships by considering the problem from the viewpoint of linear
algebra. Key to the practicality of this approach is an algorithm for the calculation of
the ““sum” of linear subspaces.

Theorem (Karr 76)

There is an algorithm that computes, for any given affine program
over Q, its strongest affine inductive invariant.




Polynomial Invariants for Affine Programs

A Note on Karr’s Algorithm

Markus Miiller-Olm'* and Helmut Seidl”

Abstract. We give a simple formulation of Karr’s algorithm for computing all
affine relationships in affine programs. This simplified algorithm runs in time
O(nk®) where n is the program size and k is the number of program variables
assuming unit cost for arithmetic operations. This improves upon the original
formulation by a factor of k. Moreover, our re-formulation avoids exponential
growth of the lengths of intermediately occurring numbers (in binary representa-
tion) and uses less complicated elementary operations. We also describe a gener-
alization that determines all polynomial relations up to degree d in time O (nk>?).

Theorem (ICALP 2004)

There is an algorithm that computes, for any given affine program
over Q, all its polynomial invariants up to any fixed degree d.
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each M; € Q9*d
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Zariski Closure of Linear Semigroups

M,
oMl,...,MkEQdXd M,
o Linear semigroup (My,..., M) C Q9> Q Ms
o Zariski closure (My, ..., M) C R9*d M5 UM4
Theorem (Hrushovski, Ouaknine, Pouly, W. 18)
There is an algorithm that computes (l\/ll,—,l\/lk> (represented as
the zero set of a list of polynomials p1,...,pm € Z[x11,- ., Xd.d])-

Corollary

There is an algorithm that computes the set of all polynomial
invariants of an affine program.
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Main Ingredients for the Group Case

Theorem (Masser 1988)

Given algebraic numbers A1, ..., A, there is a
procedure to compute the set of
multiplicative relations

{(nl)..-ynk)EZk:)\;1...)\?(:1}'

Theorem (Schur 1911)

Every finitely generated periodic subgroup of
GL,(C) is finite.




Polynomial Invariants: One-Generator Case

x:=1;;y:=0;
while true do

()= 5)0);

\

Polynomial invariant: x* 4+ y* — 2x3y — x2y? 4+ 2xy® —1 =0



The One-Generator Case
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The One-Generator Case

Consider A := ( > eigenvalues ¢1 1= 1+2‘/§, P2 1= 1—2\/5
{An:neZ} {P1< ¢n>P:nEZ}
2
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The One-Generator Case

Consider A := ( ) eigenvalues ¢1 = 1+2\@, o = 1_2\/5
{A nezly = {P1<¢1 0n>P:nEZ}
0 ¢
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The One-Generator Case

Consider A := (1 0) eigenvalues ¢1 := =15

{An:necZ} = {P1<n £g>P:neZ}
— P1{<¢é’ %):neZ}P
N Pl{(g 3>: ?;)}//—eﬁ’(nyrl):O}P

@ Closure determined by multiplicative relation qﬁ%qﬁ% = 1.

e Two irreducible components, which are cosets.
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The General Algorithm

Input: Ap,..., Ax € GL,(C)
Output: (Ag,..., Ax)

S=90

H = {l}

for Ae (Aq,...,Ax) do
S:=SU{A}
H:=H- (A),
repeat

H:=H H-AHA™ - AHA'
until H stabilizes
end

e H irreducible & H < (A;,...,Ax)H
e Eventually (A1,..., Ax)H/H is periodic.
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Motivating Example for the Semigroup Case

Define G := (S, T, E ), where

() T )

Then G = {M € My(R) : det(M) € {0,1}}.

Indeed, since

{M € G : rank(M) =2} = (5, T) = SLy(Z) = SL,(R),
we have that {M € G : rank(M) < 2} is generated by

{MEM', ME,EM : M, M’ € SLy(R)} .
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From Groups to Groupoids

Algebraic semigroup S C M,(R):
Sri={Ae S:rank(A)=r}.

Consider S, as a category:

U//

Object U C C", dim(U) = r
Arrow U — V : Ae S, st A(U) =V

A/

Y
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Properties of S,

e Each non-trivial SCC is a groupoid.

@ The number of non-trivial SCCs is at most ('r’)

Roughly Speaking . ..

Construct Zariski closure by induction on the rank. Generalise the
algorithm of Derksen et al. from groups to groupoids.




Polynomial Invariants for Affine Programs, LICS 2018

Theorem (Hrushovksi, Ouaknine, Pouly, W. 18)

Given a finite set of rational square matrices of the same

dimension, we can compute the Zariski closure of the semigroup
that they generate.

Given an affine program, we can compute for each location the
ideal of all polynomial relations that hold at that location.




From Affine Programs to Hybrid Automata

y
> X

Vy = —Vy

oo (1

x:=0 X = Vx




From Affine Programs to Hybrid Automata

y
> X
Vy:—Vy
o [ i
x=0 )‘(:VX Vy = C
y—h _)'/:Vy X = ftc
— ) % =0 vy +2g(y—h) = 0
Vx .= C Vy_—g
vy =0 t =1
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Compute inductive invariants determined by linear and polynomial
inequalities?
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such that
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@ all eigenvalues of A, have absolute value one
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Definable Invariants

Every invertible matrix A € Q9*9 admits a decomposition

A= A A,
~—
exp(L)

such that
@ all eigenvalues of A, are positive real
@ all eigenvalues of A, have absolute value one

@ A, and A, commute

Given tg € R,

Ct, = {exp(Lt)Bx : t > tg, B € (Au)}

is an inductive invariant, definable in Reyp, = (R, +, X, exp).
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Minimal Families of Invariants

Given A and x, there is a family of sets C; C R”, t > 0, uniformly
definable in Rexp S.t.

@ C; is an inductive invariant, containing {A"x : n > t}.
@ Every semialgebraic invariant | contains some C;.

© For semialgebraic T, the truth of 3t - C; N T = 0 can be
decided unconditionally.

A\

Theorem (Almagor, Chistikov, Ouaknine, W. 18)

The semi-algebraic synthesis problem is decidable for a single
matrix.




The Monniaux Problem

P. Cousot N. Halbwachs D. Monniaux

“Forty years of research on convex polyhedral invariants have
focused, on the one hand, on identifying “easier” subclasses, on
the other hand on heuristics for finding general convex polyhedra.
These heuristics are however not guaranteed to find polyhedral
inductive invariants when they exist. To our best knowledge, the
existence of polyhedral inductive invariants has never been proved
to be undecidable.”

— David Monniaux, Acta Inf. 2019
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Termination of Linear Loops

Single-path linear loop:

X:=a
while Ax > b do
x=B-x+c¢

Termination Problem (R)

Instance: ( A, B, b, c,)
Question: Does the loop terminate for all a € R?

Consider R=R,Q,7Z,...
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History of the Problem

Termination of linear constraint loops [Sohn and Gelder'91]

o R={(x,y) €R"xR": Ax + By < c}.

Termination of linear loops over R [Tiwari'04]

Termination of linear loops over Q [Braverman'06]

@ Termination over Z conjectured decidable [Tiwari'04,
Braverman'06]
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Termination Depends on the Numerical Domain

Loop that is terminating over Q but not R:

while 4x+y >0
X -2 4 X
@ ()< (3 0)0)

e Eigenvalues —1 — /17 and —1 + /17.

. -1-+17 —14+ 17
e Eigenvectors 4 and 4 .



Termination vs Positivity

while x5 — x>0

X1 -5 15 1 o 1 0 [x
% 1 0 0 000|[x
X3 0 1 0 0 00|]|x
o 1l lo o 1 000||x
x5 0 0 0 10 0]]|x
X6 0 0 0 0 0 3/ \x
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while x5 — x5 >0

X1 —% —% 171?; % 1 0 X1
X0 1 0 0 0 0 0] [x
X3 0 1 0 0 0 0] |xs
o 1l 1o o 1 00o0|]lx
X5 0 0 0 1 0 0] |xs
X6 0 0 0 0 0 %) \x

Classify a € R® as terminating, non-terminating, eventually
non-terminating

Eg,ifa={(...), then
es A"a =32 + \] + \] +2\] + 27\,

where \; = # and Ay = #524".



Taking the Closure

Define f, : T2 — R by
fa(z1.2) =L +n+7+22+27.

Then e A"a = £,(A7, A2).




Taking the Closure

Define f, : T2 — R by
f(Zl,ZQ) 33 +z214+7214+ 22+ 2.

Then e A"a = £,(A7, A2).

By Kronecker’s Theorem on simultaneous Diophantine
approximation:

CHA\],AS) : n €N} = {(z1,2) € T? 2122_1}
S
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Critical Points

inf  fa(z1,22) <0 = a is terminating
(z1,22)€S

inf  fa(z1,z2) >0 = a is eventually non-terminating.
(Zl,ZQ)ES

inf  fa(z1,22) =0 = a is critical
(21,22)65

Theorem (Ouaknine, Sousa-Pinto, W. 15)

If the update matrix is diagonalisable or has dimension at most 5
then every rational critical point is eventually non-terminating.

Proposition

The set of points that are either critical or eventually
non-terminating is effectively semi-algebraic.
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Flatness Theorem

Given convex C C RY, define

idth(C) := inf T(x—y).
width(C) VeZN (0} xyec (x=)

Lemma (Flatness Theorem)

If C is semi-algebraic and full dimensional then there exists W > 0
(depending on description of C) such that if width(C) > W then
C contains an integer point.

How does the lattice width
vary as a function of L7

Kronecker's Theorem is
instrumental again!
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Hilbert's Tenth Problem for Convex Sets

Theorem (Khachiyan, Porkolab'97)

It is decidable whether a given semi-algebraic set C C R" contains
an integer point.

@ Assume C does not have an integer point:
e If C is not full dimensional, eliminiate a variable

o If C is not “fat”, eliminate a variable
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Handling Critical Points

Proposition

Suppose a € R" is critical. Then:
Q@ Aa, A’a,Ada, ... are all critical.

@ Every point in the relative interior of Conv({a, Aa, A%a,...})
is eventually non-terminating.

Proposition
For all a € 7", Conv({a, Aa, A%a, ...}) contains an integer point.

Theorem (Hosseini, Ouaknine, W. 19)
Termination of linear while loops over the integers is decidable.




Part I1l: Orbits in Continuous-Time
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Stagnant
market

03

v

Distribution P(t) at time t satisfies P'(t) = P(t)Q, where

—0.025 0.02 0.005
Q= 0.3 -05 0.2
0.02 0.4 —-0.42

is the rate matrix.

“Is it ever more likely to be a Bear market than a Bull market?”

Ht(P(t)Bear > P(t)Bull)
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x:Rsg — Rk
x = Ax
= x(t) = exp(At)x(0)

F(t) 2 uT exp(At)x(0)
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Exponential Polynomials

Function f is an exponential polynomial:

m

f(t) def u’ exp(At)x(0) = Z pj(t)ekjt

Equivalently, f satisfies a linear differential equation:

FN () + a1 FED() + . 4 ar F/(t) + aof (t) = 0

Dimension = Order = k
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Zero Problems for Exponential Polynomials

Let f : R>o — R be given as above, with all coefficients algebraic.

Bounded Zero Problem

Instance: f and bounded interval [a, b]
Question: Is there t € [a, b] such that f(t) = 07?

| \

Zero Problem

Instance: f
Question: Is there t € R>q such that f(t) = 07

| \

Infinite Zeros Problem

Instance: f
Question: Does f have infinitely many zeros in R>q?

e Decidability open! [Bell, Delvenne, Jungers, Blondel 2010]
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Our Results

Theorem (Chonev, Ouaknine, W. 2015)

@ Assuming Schanuel’s Conjecture, Bounded Zero is decidable
at all orders.

@ At order at most 8, Zero reduces to Bounded Zero.
© At order at most 8, Infinite Zeros is decidable.

@ At order 9, if Infinite Zeros is decidable then the Lagrange
constant of any real algebraic number is computable.

Schanuel’s Conjecture

If z1,...,2, € C are linearly independent over
Q, then the field Q(z, ..., z,, €%, ..., ™)
has transcendence degree at least n over Q.
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The Bounded Zero Problem

Let £(t) := e(FNt 4 (2=t _ te=t Then f(t) = P(t, e, '),
where

P(x,y,z) =y’z+y?z ' —xy~!

Laurent-Polynomial Representation

Any exponential polynomial 7(t) can be written
f(t) = P(t,e™t, ..., et et elbnt)

with
+1 +1 _+1 el
PeClx,y1 s i ¥m 121 5 s 2

ren

and {a1,...,am} and {b1,..., by} sets of real algebraic numbers
linearly independent over Q. WLOG P is irreducible.
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Applying Schanuel

Write
f(t) = P(t, ealt,...,eamt,eiblt,...,eib"t), P irreducible
f(t) = Q(t, e .. .7e‘°'”t,e"blt,...,e"b”t)7 Q irreducible
Two cases:

Q If P and @ are not associates then f has no real zeros by
Schanuel’'s Conjecture.

@ If P and @ are associates, then complex zeros of f come in
conjugate pairs. Real zeros are simple by Schanuel.



Bounded Zero Problem - An Argument Argument

Let N = number of zeros of f inside closed contour C. Then

f(2) = 27i
/C ) dz = 2xwiN

B

A
B

Y

Y

Y
\'

Refine until N is odd or 0 for each square.
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Diophantine Approximation

The Lagrange constant of x € R is

Loo(x) = Iinn_1>ior;f n || nx||

We have 0 < L(x) < 15 for all x € R.

S

“Is there a real algebraic number o of degree
greater than two with L(«) = 07 Do all such
numbers have L(a) = 07"

R. K. Guy 2004 (paraphrased)
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A Hard Case at Order 9

For « irrational, algebraic and c rational, define
fi(t) = e'(1—cos(t))+ t(1 — cos(at)) — csin(at)
f(t) = e'(1—cos(t))+ t(1 — cos(at))+ csin(at)
f(t) = min{f(t), (1)}

QO L(a) < 55 implies f has infinitely many zeros

Q@ L.(a) > 55 implies f has finitely many zeros

If the Zero Problem is decidable at order 9 then for any real
algebraic number o, Loo() is computable.
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Decidability Results at Low Order

At order at most 8, Zero reduces to Bounded Zero, and Infinite
Zeros is decidable.

Proof in a single picture:

Give procedure to decide whether f has infinitely many zeros and,
if not, output T such that f(t) #0 forall t > T.
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A Landscape of Orbit Problems: Summary

Part I: Invariants. Compute all polynomial invariants of the orbit
of a point under a finitely generated matrix semigroup.

Part Il: Termination. Do all (integer) orbits under a single matrix
escape a polyhedron?

Part lll: Reachability. Does the orbit of a point under a
one-parameter matrix semigroup reach a halfspace?

Tools: Kronecker, Masser, Baker, ...



