Integer Arithmetic



Syntax and Semantics

The integer arithmetic (IA) is the first order theory of integer numbers.

The alphabet of the integer arithmetic consists of:
e function symbols +,-,.5 (S is the successor function n +— n + 1)

e constant symbol 0

The semantics of TA is defined in the structure 91 = (N, +,-,n — n + 1).



Examples

e The order relation is defined asz <y : dz x+y ==z
e The set of even numbers is defined by even(x) : dy . x =y +y
e The divisibility relation is defined as z|y : Jz .y = xz

e The set of prime numbers is defined by

prime(x) : Yyz .x=yz —- (y=1Vz=1)

e The Conjecture of Goldbach:
Ve .2 <z Aeven(x)— Jy,z . prime(y) A prime(z) N\e =y + z



Peano Arithmetic

An axiomatic theory is a set of formulae in which truth is derived from a
(possibly infinite) set of azioms, e.g. Euclid’s geometry is an axiomatic

theory.
1. 0# S(x)

2. 5(x) = S5(y) —x =y

3. x+0=ux

4. x+ S(y) = S(x +y)

5. z-0=0

6. z-S(y)=xz-y+uw

7. p(0) AVz . p(r) = @(S(z))] — Vo . ()

Notice that the last point defines an infinite number of axioms.



Presburger Arithmetic



Definition

PA is the additive theory of natural numbers (N, +)

The following relations are Presburger definable:

even(x

ne(x

)
<y
zer()
)
m Y

dy .
Jz .
Yy .
Jz .
Jz .

rT=Y+y

r+z=1Y

Ty

zero(z) Nz =2zAVy.y=zVe <y

r<yNy—x=mzVr>yNcr—y=mz



Quantifier Elimination in PA

1. Eliminate the negations Replace —(t] = t2) by t1 < to Vg < ty,
—l(tl < tg) by t1 =t2 Vio < t1, and —l(tl =m tg) by \/Z’i_ll t1 =m to + 1.
Then rewrite the formula into DNF, i.e. a disjunction of dx . 51 A ... A 3,

where each [3; is one of the following forms:

ner = u-—t
nr =, uU—1
nr < u-—1t

u—1t < nx



Quantifier Elimination in PA

2. Uniformize the coefficients of x Let p be the least common
multiple of the coeflicients of z. Multiply each atomic formula containing

nz by 2. In particular, nx =,, v — t becomes px =p,, 2(u —t).
n nitn



Quantifier Elimination in PA

Eliminate the coefficients of x Replace all over the formula px by «x

and add the new conjunct x =, 0

Special case If £ = u — ¢ occurs in the formula, eliminate directly x by

replacing it with v — t.



Quantifier Elimination in PA

Assume z = u —t does not occur. We have a formula of the form

k

n
dx . /\rj—sj<x A\ /\ac<t7;—uz- /\ /\xzmifui—wi
= i=1 i=1

Let M = |m;|_;. The formula is equivalent to:

\/ [/\m—si —S; +q/\/\ —5;)+q <t uz/\/\ —5;)+q =m,; Vi—w;
j=1¢=1 i=1 i—1



Decidability of PA

The result quantifier elimination in a Presburger formula is equivalent to a
disjunction of conjunctions of atomic propositions of the following forms:

n

Z a;rx; +b > 0
1=1
n

Z a;x; +b =, m
i=1

PA is decidable



One-dimensional Integer Sets



p-ary Expansions

Given n € N, its p-ary expansion is the word w € {0,1,...,p — 1}* such
that n = w(0)p* + w(1)p*~1 + ... +w(k)p®, denoted also by (n),.

Note that the most significant digit is w(0).

Conversely, to any word w € {0,1,...,p — 1}* corresponds its value
[w], = w(0)p* +w()p*~ ' + ... +w(k)p’.

Notice that [w]|, = [Ow], = [00w], = ..., i.e. the leading zeros don’t

change the value of a word.



p-automata

We consider one-dimensional sequences s : N — N.

1 2 4 8 16
p2 : 01 101 0 O0OT1TO0OO0OO0OO0OO0OO0OO0O 1T 0

Definition 1 Let p > 2 be an integer. A p-automaton is a complete DFA
A =(S,q0,T,A) over the alphabet {0,1,...,p — 1}, whose states are
labeled with numbers from N by a function A : S — N.

A p-automaton defines a function f:{0,1,...,p—1}* — N.

Notice that the final states of a p-automaton may be designated by A.



p-automata

Definition 2 A sequence s is said to be p-recognizable iff there exists a
p-automaton A = (S, qo, T, N) such that, for all n € N:

n)p
® go — ¢, and

e Alg) = s(n)

We will always assume that any p-automaton has a loop qq R q0-

po 18 2-recognizable.



p-definability

Consider the theory (N, +,V,), where p € N, and V,, : N — N is:
. V}?(O) =1,

e V,(x) is the greatest power of p dividing x.

P,(x) is true iff x is a power of p, i.e. Py(z) : V,(z) = x.

xr €,y ift x is a power of p and = occurs in the p-expansion of y with

coefficient j:

r€ipy ¢ Pplx)N[Fedt .y=z+j- 2+t AN z2<x A (2 <Vp(t)VE=0)]



p-definability

A sequence s : N — N is p-definable if, for each v € rng(s) there exists a

first-order formula ¢, of (N, +, V) such that:

s'(w) ={neN| = py(n)}
In other words:

s(n)=v <= @y(n).Vn €N

The sequence po is 2-definable:

s
|
—_
VY
—
N——"
|

{neN| EVa(n)=n}
p; (0) = {neN| EVy(n)+#n}



Multi-dimensional Integer Sets



p-recognizability and p-definability

Let (u,v) € ({0,1,..

D — 1}2)>k be a word, where u,v € {0,1,...,p— 1}*,
ul = Jvl.

A p-automaton is defined now over ({0,1,...,p —1}?)".

The definitions of p-recognizability and p-definability are easily adapted to
the m-dimensional case.



p-recognizability and p-definability

Consider ¢t : N> — {0, 1} defined as t(n,m) = 0 iff for some k > 0, we have
(n)2(k) = (m)2(k) =1, and t(n,m) = 1 otherwise.

Tm

1 00 0O0O0O0O0
1 1000000
1 0100000
1 1110000
1 0001000
1 1001100
1 0101010
1 11111115



p-recognizability and p-definability

Consider ¢t : N> — {0, 1} defined as t(n,m) = 0 iff for some k > 0, we have
(n)2(k) = (m)2(k) =1, and t(n,m) = 1 otherwise.

Tm

1 00 0 0 0 0 0

1 1 00 0 0 0 O

1 01 0 0 00 O
5)y = 1 0 0

1 1 11 0 0 0 O
(4 = 1 1 0

1 0 0 0 1 0 00

1 1 00 1 1 00

1 01 01 010

1 1111111 %



p-recognizability and p-definability

Consider ¢t : N> — {0, 1} defined as t(n,m) = 0 iff for some k > 0, we have
(n)2(k) = (m)2(k) =1, and t(n,m) = 1 otherwise.

Tm

1 00 0 0 0 0 0

1 1 0 0 0 0 0O

1 01 0 0 0 0 O
(4) = 1 0 0

1 1 1 1 00 0 O
3)2 = 0 1 1

1 0 0 01 0 00

1 1 0 0 1 1 00

1 01 01 010

1 11 11111 %



p-recognizability and p-definability

The sequence t is 2-recognizable.

The sequence t is 2-definable:

t710) : Fz.z€xNzEry
t7H(1) : Vz.-=(z€2)V (2 )



p-recognizability and p-definability

Theorem 1 Let M CN™, m>1 and p > 2. Then M 1is p-recognizable if
and only if M s p-definable.

From Automata to Formulae

o v c;,yiff xis a power of p and the coefficient of z in (y), is j:

rTE€ipy + Pyx)N|F2zF . y=z2+j- 2+t N 2z<x A (z<V,(t)Vt=0)]

e )\,(x) denotes the greatest power of p occurring in (x), and A\,(0) = 1.

Max)=y : (x=0Ay=1)V[P(y) Ny <z AVz.(P,(2)\y < z) — (x < 2)]



From Automata to Formulae

Let A = (S,qo,T,A) be a p-automaton, with A : S — {0, 1}.

Suppose S = {qo,q1,---,q_1} and replace w.l.o.g. qx by
er = (0,...,1,...,0) € {0,1}".

(N1, ..o ynm) € Mt (n1)p, ..., (Nm)p) € L(A) iff exists (y1,...,y):

¢ <(y1)p(0)7 R (yl)p(0)> — <17 0,... 7O>:

l
P1 - /\ L €g0(h)p ¥i
j=1



From Automata to Formulae

o ((y1)p(k),...,(y1)p(k)) is a final state of A, with
P = maxi<j<k Ap();

2 - \/ /\ZE (7). Yi

(q)=1j=1

o forall 0 < <k,

()p (i), -, () )y e oeolEndol iy 41y

03 Vt.Pp(t)/\t<z/\

, (Y)p(i+1)):

[

A [/\tE pyﬂ/\/\teap%ﬁ/\pte(y)pyy

T(q,(al,...,am)) / j 1 J 1

71=1



From Automata to Formulae

Gy 0 Fyp. .y Tz Pp(z) Az > 1I<nja%>;1)\p(:cj) ANe1(Yr, .-, y1) A

@2(y17"'7yl7z) /\903(x17"'7$may17"'7yl7z)

From Formulae to Automata

Build automata for the atomic formulae x +y = z and V,(x) = y, then

compose them with union, intersection, negation and projection.

Corollary 1 The theories (N,+) and (N, +,V,) are decidable.



The Cobham-Semenov Theorem



Base Dependence

Definition 3 Two integers p,q € N are said to be multiplicatively
dependent if there exist k,1 > 1 such that p* = ¢'.

Equivalently, p and ¢ are multiplicatively dependent iff there exists r > 2
and k,l > 1 such that p = r* and q = r'.



Base Dependence

Lemma 1 Let p,q > 2 be multiplicatively dependent integers. Let m > 1
and s : N — N be a sequence. Then s 1s p-recognizable iff it is

q-recognizable.
pt-definable = p-definable Let ¢(z,y) : Px(y) Ay < V,(z).
We have Vi (z) =y <= o(z,y) AVz . ¢(x,2) — 2 < .

We have to define P in (N, +,V}).



Base Dependence

Pu(z) : Pyx)AJy.xz—1=(p" —1)y

Indeed, if z = p®* then p* — 1|z — 1.

Conversely, if assume z is a power of p but not of p¥, i.e. x = p®*° for
some 0 < b < k.

Then z — 1= pb(pak — 1)+ (pb — 1), and since ph — 1|z — 1, we have
pk — Hpb — 1, contradiction.



Base Dependence

p-definable = pF-definable

Vo (2) = Vi (0 12) = V(@) = V(@)

Ve () = Ve (p"22)  — Vp(x) = pVi (2)

V() = Vip(pz)  —  Vy(z) = p* 2V (x)
else Vo(z) = p" 'V (2)

Theorem 2 (Cobham-Semenov) Let m > 1, and p,q > 2 be
multiplicatively independent integers. Let s : N — N be a sequence. If s

is p-recognizable and q-recognizable, then s is definable in (N, +).



Semilinear Sets



Definitions

LIC,P)={zxg4+x1+...+2m |20 € C, 21,...,2, € P} for some
C,PeN",

An element z € L(C, P) is of the form z = xg + >~ \ix;, where g € C,
Ai € Nand x; € P, for all 1 <7 <m.

A set M € N” is said to be linear if M = L(c, P) for ¢ € N and finite
P CN",

A set M € N" is said to be semilinear if M = L(C, P) for finite C, P C N".

A function f: N"® — N is said to be linear if for all z,y € N® we have

flx+y) = flz)+ f(y).



Preliminaries

If u=(up,...,up),v="_(v1,...,0,) € N* we define u < v iff u(i) < v(s)
for all 1 <17 <n.

Lemma 2 FEach set of pairwise incomparable elements of N" is finite. In

consequence, each set M C N™ has a finite number of minimal elements.

Lemma 3 Let M C N" be a semilinear set and f : N* — N be a linear

function. Then f(M) C N™ is a semilinear set.

Let w € Z", u;,v; € N" and a;,b; € Z,1 <1 <p, 1 <j <gq. Then there

exists finite number of minimal tuples (a1, ..., ap,b1,...,b,) such that:

w — Zaiui — ijvj

1=1 71=1



Closure Properties

Theorem 3 The class of semilinear subsets of N, n > 1 1is effectively

closed under union, intersection and projection.

Let
P q
A= {1y Ypr21se e 2g) | @0+ > yimi = ahy + Yzl
1=1 1=1

and
p q
B = {<y17"'7yp7217°'°7zq> ’ Zyzxz — Zzzxg}
i=1 i=1
Let f: NPT? — N” defined as f({Y1, .., Yp, 21, -+, 2q)) = D oq YiZi-

f is a linear function and X N X’ = zg + f(A). We prove that A is

semilinear.



Let C' and P be the sets of minimal elements of A and B\ 0P19,
respectively. We prove that A = L(C, P).

“TPy.zcA=3dy - eC.y - Z<y-z Lety" 2/ =y-z—y' -7

p

p
Z yiri = Z(yi — Yi) T
i=1

1=1

p p
/
— E Yl — E YiLi
i=1 i=1

Hence y” -z” € B. Prove that each element of B is a sum of elements of P.



Semilinear sets = Presburger-definable sets

Theorem 4 (Ginsburg-Spanier) The class of semilinear subsets of N"

coincides with the class of Presburger definable subsets of N™.

“C” Let M = L(C, P) C N*¥ be a semilinear set, with
C=1{ci,...,cn} CNFand P={p1,...,pm} C N

The Presburger formula defining M is:

¢($1,...,$k) : \//\xj—cz+zyzpz

1=175=1



Semilinear sets = Presburger-definable sets

“D” Let ¢(x1,...,7) be a Presburger formula, i.e. a disjunction of
conjunctions of atomic propositions of the following forms:

n

Z a;rx; +b > 0
1=1
n

Z a;x; +b =, m
i=1

Each atomic proposition describes a semilinear set, hence their

intersections and unions are again semilinear sets.

Semilinear sets are p-definable for any p > 2.



