
Integer Arithmetic



Syntax and Semantics

The integer arithmetic (IA) is the first order theory of integer numbers.

The alphabet of the integer arithmetic consists of:

• function symbols +, ·, S (S is the successor function n 7→ n + 1)

• constant symbol 0

The semantics of IA is defined in the structure N = 〈N,+, ·, n 7→ n + 1〉.



Examples

• The order relation is defined as x ≤ y : ∃z .x + y = z

• The set of even numbers is defined by even(x) : ∃y . x = y + y

• The divisibility relation is defined as x|y : ∃z . y = xz

• The set of prime numbers is defined by

prime(x) : ∀yz . x = yz → (y = 1 ∨ z = 1)

• The Conjecture of Goldbach:

∀x . 2 ≤ x ∧ even(x) → ∃y, z . prime(y) ∧ prime(z) ∧ x = y + z



Peano Arithmetic

An axiomatic theory is a set of formulae in which truth is derived from a

(possibly infinite) set of axioms, e.g. Euclid’s geometry is an axiomatic

theory.

1. 0 6= S(x)

2. S(x) = S(y) → x = y

3. x + 0 = x

4. x + S(y) = S(x + y)

5. x · 0 = 0

6. x · S(y) = x · y + x

7. ϕ(0) ∧ ∀x . [ϕ(x) → ϕ(S(x))] → ∀x . ϕ(x)

Notice that the last point defines an infinite number of axioms.



Presburger Arithmetic



Definition

PA is the additive theory of natural numbers 〈N,+〉

The following relations are Presburger definable:

even(x) : ∃y . x = y + y

x ≤ y : ∃z . x + z = y

zero(x) : ∀y . x ≤ y

one(x) : ∃z . zero(z) ∧ ¬x = z ∧ ∀y . y = z ∨ x ≤ y

x ≡m y : ∃z . x ≤ y ∧ y − x = mz ∨ x > y ∧ x − y = mz



Quantifier Elimination in PA

1. Eliminate the negations Replace ¬(t1 = t2) by t1 < t2 ∨ t2 < t1,

¬(t1 < t2) by t1 = t2 ∨ t2 < t1, and ¬(t1 ≡m t2) by
∨m−1

i=1 t1 ≡m t2 + i.

Then rewrite the formula into DNF, i.e. a disjunction of ∃x . β1 ∧ . . .∧ βn,

where each βi is one of the following forms:

nx = u − t

nx ≡m u − t

nx < u − t

u − t < nx



Quantifier Elimination in PA

2. Uniformize the coefficients of x Let p be the least common

multiple of the coefficients of x. Multiply each atomic formula containing

nx by p
n
. In particular, nx ≡m u − t becomes px ≡ p

n
m

p
n
(u − t).



Quantifier Elimination in PA

Eliminate the coefficients of x Replace all over the formula px by x

and add the new conjunct x ≡p 0

Special case If x = u − t occurs in the formula, eliminate directly x by

replacing it with u − t.



Quantifier Elimination in PA

Assume x = u − t does not occur. We have a formula of the form

∃x .

l
∧

j=1

rj − sj < x ∧
k

∧

i=1

x < ti − ui ∧
n
∧

i=1

x ≡mi
vi − wi

Let M = [mi]
n
i=1. The formula is equivalent to:

l
∨

j=1

M
∨

q=1

[

l
∧

i=1

ri−si < (rj−sj)+q ∧

k
∧

i=1

(rj−sj)+q < ti−ui ∧

n
∧

i=1

(rj−sj)+q ≡mi
vi−wi

]



Decidability of PA

The result quantifier elimination in a Presburger formula is equivalent to a

disjunction of conjunctions of atomic propositions of the following forms:

n
∑

i=1

aixi + b ≥ 0

n
∑

i=1

aixi + b ≡n m

PA is decidable



One-dimensional Integer Sets



p-ary Expansions

Given n ∈ N, its p-ary expansion is the word w ∈ {0, 1, . . . , p − 1}∗ such

that n = w(0)pk + w(1)pk−1 + . . . + w(k)p0, denoted also by (n)p.

Note that the most significant digit is w(0).

Conversely, to any word w ∈ {0, 1, . . . , p − 1}∗ corresponds its value

[w]p = w(0)pk + w(1)pk−1 + . . . + w(k)p0.

Notice that [w]p = [0w]p = [00w]p = . . ., i.e. the leading zeros don’t

change the value of a word.



p-automata

We consider one-dimensional sequences s : N → N.

1 2 4 8 16

p2 : 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 . . .

Definition 1 Let p ≥ 2 be an integer. A p-automaton is a complete DFA

A = 〈S, q0, T,Λ〉 over the alphabet {0, 1, . . . , p − 1}, whose states are

labeled with numbers from N by a function Λ : S → N.

A p-automaton defines a function f : {0, 1, . . . , p − 1}∗ → N.

Notice that the final states of a p-automaton may be designated by Λ.



p-automata

Definition 2 A sequence s is said to be p-recognizable iff there exists a

p-automaton A = 〈S, q0, T,Λ〉 such that, for all n ∈ N:

• q0
(n)p
−−→ q, and

• Λ(q) = s(n)

We will always assume that any p-automaton has a loop q0
0
−→ q0.

p2 is 2-recognizable.



p-definability

Consider the theory 〈N,+, Vp〉, where p ∈ N, and Vp : N → N is:

• Vp(0) = 1,

• Vp(x) is the greatest power of p dividing x.

Pp(x) is true iff x is a power of p, i.e. Pp(x) : Vp(x) = x.

x ∈p y iff x is a power of p and x occurs in the p-expansion of y with

coefficient j:

x ∈j,p y : Pp(x) ∧ [∃z∃t . y = z + j · x + t ∧ z < x ∧ (x < Vp(t) ∨ t = 0)]



p-definability

A sequence s : N → N is p-definable if, for each v ∈ rng(s) there exists a

first-order formula ϕv of 〈N,+, Vp〉 such that:

s−1(v) = {n ∈ N | |= ϕv(n)}

In other words:

s(n) = v ⇐⇒ ϕv(n) . ∀n ∈ N

The sequence p2 is 2-definable:

p−1
2 (1) = {n ∈ N | |= V2(n) = n}

p−1
2 (0) = {n ∈ N | |= V2(n) 6= n}



Multi-dimensional Integer Sets



p-recognizability and p-definability

Let (u, v) ∈
(

{0, 1, . . . , p − 1}2
)∗

be a word, where u, v ∈ {0, 1, . . . , p − 1}∗,

|u| = |v|.

A p-automaton is defined now over
(

{0, 1, . . . , p − 1}2
)∗

.

The definitions of p-recognizability and p-definability are easily adapted to

the m-dimensional case.



p-recognizability and p-definability

Consider t : N
2 → {0, 1} defined as t(n,m) = 0 iff for some k ≥ 0, we have

(n)2(k) = (m)2(k) = 1, and t(n,m) = 1 otherwise.

↑ m

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
n
−→



p-recognizability and p-definability

Consider t : N
2 → {0, 1} defined as t(n,m) = 0 iff for some k ≥ 0, we have

(n)2(k) = (m)2(k) = 1, and t(n,m) = 1 otherwise.

(5)2 = 1 0 0

(4)2 = 1 1 0

↑ m

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
n
−→



p-recognizability and p-definability

Consider t : N
2 → {0, 1} defined as t(n,m) = 0 iff for some k ≥ 0, we have

(n)2(k) = (m)2(k) = 1, and t(n,m) = 1 otherwise.

(4)2 = 1 0 0

(3)2 = 0 1 1

↑ m

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
n
−→



p-recognizability and p-definability

The sequence t is 2-recognizable.

The sequence t is 2-definable:

t−1(0) : ∃z . z ∈2 x ∧ z ∈2 y

t−1(1) : ∀z . ¬(z ∈2 x) ∨ ¬(z ∈2 y)



p-recognizability and p-definability

Theorem 1 Let M ⊆ N
m, m ≥ 1 and p ≥ 2. Then M is p-recognizable if

and only if M is p-definable.

From Automata to Formulae

• x ∈j,p y iff x is a power of p and the coefficient of x in (y)p is j:

x ∈j,p y : Pp(x)∧ [∃z∃t . y = z+j ·x+t ∧ z < x ∧ (x < Vp(t)∨t = 0)]

• λp(x) denotes the greatest power of p occurring in (x)p and λp(0) = 1.

λp(x) = y : (x = 0∧y = 1)∨[Pp(y) ∧ y ≤ x ∧ ∀z . (Pp(z)∧y < z) → (x < z)]



From Automata to Formulae

Let A = 〈S, q0, T,Λ〉 be a p-automaton, with Λ : S → {0, 1}.

Suppose S = {q0, q1, . . . , ql−1} and replace w.l.o.g. qk by

ek = 〈0, . . . , 1, . . . , 0〉 ∈ {0, 1}l.

〈n1, . . . , nm〉 ∈ M iff 〈(n1)p, . . . , (nm)p〉 ∈ L(A) iff exists 〈y1, . . . , yl〉:

• 〈(y1)p(0), . . . , (yl)p(0)〉 = 〈1, 0, . . . , 0〉:

ϕ1 :
l

∧

j=1

1 ∈q0(j),p yj



From Automata to Formulae

• 〈(y1)p(k), . . . , (yl)p(k)〉 is a final state of A, with

pk ≥ max1≤j≤k λp(xj):

ϕ2 :
∨

Λ(q)=1

l
∧

j=1

z ∈q(j),p yj

• for all 0 ≤ i < k,

〈(y1)p(i), . . . , (yl)p(i)〉
〈(x1)p(i),...,(xm)p(i)〉
−−−−−−−−−−−−−→ 〈(y1)p(i + 1), . . . , (yl)p(i + 1)〉:

ϕ3 : ∀t . Pp(t) ∧ t < z ∧

∧

T (q,(a1,...,am))=q′

[

l
∧

j=1

t ∈q(j),p yj ∧

m
∧

j=1

t ∈aj ,p xj →

l
∧

j=1

p · t ∈q′(j),p yj

]



From Automata to Formulae

ΦA : ∃y1 . . . ∃yl∃z . Pp(z) ∧ z ≥ max
1≤j≤m

λp(xj) ∧ ϕ1(y1, . . . , yl) ∧

ϕ2(y1, . . . , yl, z) ∧ ϕ3(x1, . . . , xm, y1, . . . , yl, z)

From Formulae to Automata

Build automata for the atomic formulae x + y = z and Vp(x) = y, then

compose them with union, intersection, negation and projection.

Corollary 1 The theories 〈N,+〉 and 〈N,+, Vp〉 are decidable.



The Cobham-Semenov Theorem



Base Dependence

Definition 3 Two integers p, q ∈ N are said to be multiplicatively

dependent if there exist k, l ≥ 1 such that pk = ql.

Equivalently, p and q are multiplicatively dependent iff there exists r ≥ 2

and k, l ≥ 1 such that p = rk and q = rl.



Base Dependence

Lemma 1 Let p, q ≥ 2 be multiplicatively dependent integers. Let m ≥ 1

and s : N
m → N be a sequence. Then s is p-recognizable iff it is

q-recognizable.

pk-definable ⇒ p-definable Let φ(x, y) : Ppk(y) ∧ y ≤ Vp(x).

We have Vpk(x) = y ⇐⇒ φ(x, y) ∧ ∀z . φ(x, z) → z ≤ y.

We have to define Ppk in 〈N,+, Vp〉.



Base Dependence

Ppk(x) : Pp(x) ∧ ∃y . x − 1 = (pk − 1)y

Indeed, if x = pak then pk − 1|x − 1.

Conversely, if assume x is a power of p but not of pk, i.e. x = pak+b, for

some 0 < b < k.

Then x − 1 = pb(pak − 1) + (pb − 1), and since pk − 1|x − 1, we have

pk − 1|pb − 1, contradiction.



Base Dependence

p-definable ⇒ pk-definable

Vpk(x) = Vpk(pk−1x) → Vp(x) = Vpk(x)

Vpk(x) = Vpk(pk−2x) → Vp(x) = pVpk(x)

. . .

Vpk(x) = Vpk(px) → Vp(x) = pk−2Vpk(x)

else Vp(x) = pk−1Vpk(x)

Theorem 2 (Cobham-Semenov) Let m ≥ 1, and p, q ≥ 2 be

multiplicatively independent integers. Let s : N
m → N be a sequence. If s

is p-recognizable and q-recognizable, then s is definable in 〈N,+〉.



Semilinear Sets



Definitions

L(C,P ) = {x0 + x1 + . . . + xm | x0 ∈ C, x1, . . . , xn ∈ P} for some

C,P ∈ N
n,

An element x ∈ L(C,P ) is of the form x = x0 +
∑m

i=1 λixi, where x0 ∈ C,

λi ∈ N and xi ∈ P , for all 1 ≤ i ≤ m.

A set M ∈ N
n is said to be linear if M = L(c, P ) for c ∈ N

n and finite

P ⊆ N
n.

A set M ∈ N
n is said to be semilinear if M = L(C,P ) for finite C,P ⊆ N

n.

A function f : N
n → N

m is said to be linear if for all x, y ∈ N
n we have

f(x + y) = f(x) + f(y).



Preliminaries

If u = 〈u1, . . . , un〉, v = 〈v1, . . . , vn〉 ∈ N
n, we define u ≤ v iff u(i) ≤ v(i)

for all 1 ≤ i ≤ n.

Lemma 2 Each set of pairwise incomparable elements of N
n is finite. In

consequence, each set M ⊆ N
n has a finite number of minimal elements.

Lemma 3 Let M ⊆ N
n be a semilinear set and f : N

n → N
m be a linear

function. Then f(M) ⊆ N
m is a semilinear set.

Let w ∈ Z
n, ui, vj ∈ N

n and ai, bj ∈ Z, 1 ≤ i ≤ p, 1 ≤ j ≤ q. Then there

exists finite number of minimal tuples 〈a1, . . . , ap, b1, . . . , bq〉 such that:

w =

p
∑

i=1

aiui −

q
∑

j=1

bjvj



Closure Properties

Theorem 3 The class of semilinear subsets of N
n, n ≥ 1 is effectively

closed under union, intersection and projection.

Let

A = {〈y1, . . . , yp, z1, . . . , zq〉 | x0 +

p
∑

i=1

yixi = x′
0 +

q
∑

i=1

zix
′
i}

and

B = {〈y1, . . . , yp, z1, . . . , zq〉 |

p
∑

i=1

yixi =

q
∑

i=1

zix
′
i}

Let f : N
p+q → N

n defined as f(〈y1, . . . , yp, z1, . . . , zq〉) =
∑p

i=1 yixi.

f is a linear function and X ∩ X ′ = x0 + f(A). We prove that A is

semilinear.



Let C and P be the sets of minimal elements of A and B \ 0p+q,

respectively. We prove that A = L(C,P ).

“⊆” y · z ∈ A ⇒ ∃y′ · z′ ∈ C . y′ · z′ ≤ y · z. Let y′′ · z′′ = y · z − y′ · z′

p
∑

i=1

y′′i xi =

p
∑

i=1

(yi − y′i)xi

=

p
∑

i=1

yixi −

p
∑

i=1

y′ixi

= (x′
0 − x0) +

q
∑

i=1

zix
′
i −

[

(x′
0 − x0) +

q
∑

i=1

z′ix
′
i

]

=

q
∑

i=1

(zi − z′i)x
′
i

=

q
∑

i=1

z′′i x′
i

Hence y′′ · z′′ ∈ B. Prove that each element of B is a sum of elements of P .



Semilinear sets = Presburger-definable sets

Theorem 4 (Ginsburg-Spanier) The class of semilinear subsets of N
n

coincides with the class of Presburger definable subsets of N
n.

“⊆” Let M = L(C,P ) ⊆ N
k be a semilinear set, with

C = {c1, . . . , cn} ⊂ N
k and P = {p1, . . . , pm} ⊂ N

k.

The Presburger formula defining M is:

φ(x1, . . . , xk) : ∃y1 . . . ∃ym .

n
∨

i=1

k
∧

j=1

xj = ci +

m
∑

j=1

yipi



Semilinear sets = Presburger-definable sets

“⊇” Let φ(x1, . . . , xk) be a Presburger formula, i.e. a disjunction of

conjunctions of atomic propositions of the following forms:

n
∑

i=1

aixi + b ≥ 0

n
∑

i=1

aixi + b ≡n m

Each atomic proposition describes a semilinear set, hence their

intersections and unions are again semilinear sets.

Semilinear sets are p-definable for any p ≥ 2.


