Integer Arithmetic

The integer arithmetic (IA) is the first order theory of integer numbers.

The alphabet of the integer arithmetic consists of:

- function symbols $+, \cdot, S$ (S is the successor function $n \mapsto n+1$)
- constant symbol 0

The semantics of IA is defined in the structure $\mathfrak{N} = \langle \mathbb{N}, +, \cdot, n \mapsto n+1 \rangle$.

Examples

- The order relation is defined as $x \le y$: $\exists z \ .x + y = z$
- The set of even numbers is defined by even(x) : $\exists y \ . \ x = y + y$
- The divisibility relation is defined as x|y : $\exists z \, . \, y = xz$
- The set of prime numbers is defined by $prime(x) : \forall yz \ . \ x = yz \rightarrow (y = 1 \lor z = 1)$
- The Conjecture of Goldbach: $\forall x \ . \ 2 \leq x \land even(x) \rightarrow \exists y, z \ . \ prime(y) \land prime(z) \land x = y + z$

Peano Arithmetic

An *axiomatic theory* is a set of formulae in which truth is derived from a (possibly infinite) set of *axioms*, e.g. Euclid's geometry is an axiomatic theory.

1. $0 \neq S(x)$ 2. $S(x) = S(y) \rightarrow x = y$ 3. x + 0 = x4. x + S(y) = S(x + y)5. $x \cdot 0 = 0$ 6. $x \cdot S(y) = x \cdot y + x$ 7. $\varphi(0) \land \forall x . [\varphi(x) \rightarrow \varphi(S(x))] \rightarrow \forall x . \varphi(x)$

Notice that the last point defines an infinite number of axioms.

Presburger Arithmetic

Definition

PA is the additive theory of natural numbers $\langle \mathbb{N}, + \rangle$ The following relations are Presburger definable:

$$even(x) : \exists y . x = y + y$$

$$x \le y : \exists z . x + z = y$$

$$zero(x) : \forall y . x \le y$$

$$one(x) : \exists z . zero(z) \land \neg x = z \land \forall y . y = z \lor x \le y$$

$$x \equiv_m y : \exists z . x \le y \land y - x = mz \lor x > y \land x - y = mz$$

1. Eliminate the negations Replace $\neg(t_1 = t_2)$ by $t_1 < t_2 \lor t_2 < t_1$, $\neg(t_1 < t_2)$ by $t_1 = t_2 \lor t_2 < t_1$, and $\neg(t_1 \equiv_m t_2)$ by $\bigvee_{i=1}^{m-1} t_1 \equiv_m t_2 + i$. Then rewrite the formula into DNF, i.e. a disjunction of $\exists x \ \beta_1 \land \ldots \land \beta_n$, where each β_i is one of the following forms:

nx = u - t $nx \equiv_m u - t$ nx < u - tu - t < nx

2. Uniformize the coefficients of x Let p be the least common multiple of the coefficients of x. Multiply each atomic formula containing nx by $\frac{p}{n}$. In particular, $nx \equiv_m u - t$ becomes $px \equiv_{\frac{p}{n}m} \frac{p}{n}(u - t)$.

Eliminate the coefficients of x Replace all over the formula px by x and add the new conjunct $x \equiv_p 0$

Special case If x = u - t occurs in the formula, eliminate directly x by replacing it with u - t.

Quantifier Elimination in PA

Assume x = u - t does not occur. We have a formula of the form

$$\exists x \ . \ \bigwedge_{j=1}^{l} r_j - s_j < x \ \land \ \bigwedge_{i=1}^{k} x < t_i - u_i \ \land \ \bigwedge_{i=1}^{n} x \equiv_{m_i} v_i - w_i$$

Let $M = [m_i]_{i=1}^n$. The formula is equivalent to:

$$\bigvee_{j=1}^{l} \bigvee_{q=1}^{M} \left[\bigwedge_{i=1}^{l} r_i - s_i < (r_j - s_j) + q \land \bigwedge_{i=1}^{k} (r_j - s_j) + q < t_i - u_i \land \bigwedge_{i=1}^{n} (r_j - s_j) + q \equiv_{m_i} v_i - w_i \right]$$

Decidability of PA

The result quantifier elimination in a Presburger formula is equivalent to a disjunction of conjunctions of atomic propositions of the following forms:

$$\sum_{i=1}^{n} a_i x_i + b \ge 0$$
$$\sum_{i=1}^{n} a_i x_i + b \equiv_n m$$

PA is decidable

One-dimensional Integer Sets

p-ary Expansions

Given $n \in \mathbb{N}$, its *p*-ary expansion is the word $w \in \{0, 1, \dots, p-1\}^*$ such that $n = w(0)p^k + w(1)p^{k-1} + \dots + w(k)p^0$, denoted also by $(n)_p$.

Note that the most significant digit is w(0).

Conversely, to any word $w \in \{0, 1, \dots, p-1\}^*$ corresponds its value $[w]_p = w(0)p^k + w(1)p^{k-1} + \dots + w(k)p^0.$

Notice that $[w]_p = [0w]_p = [00w]_p = \dots$, i.e. the leading zeros don't change the value of a word.

p-automata

We consider one-dimensional sequences $s : \mathbb{N} \to \mathbb{N}$.

Definition 1 Let $p \ge 2$ be an integer. A p-automaton is a complete DFA $A = \langle S, q_0, T, \Lambda \rangle$ over the alphabet $\{0, 1, \ldots, p-1\}$, whose states are labeled with numbers from \mathbb{N} by a function $\Lambda : S \to \mathbb{N}$.

A p-automaton defines a function $f : \{0, 1, \dots, p-1\}^* \to \mathbb{N}$.

Notice that the final states of a *p*-automaton may be designated by Λ .

p-automata

Definition 2 A sequence s is said to be p-recognizable iff there exists a p-automaton $A = \langle S, q_0, T, \Lambda \rangle$ such that, for all $n \in \mathbb{N}$:

- $q_0 \xrightarrow{(n)_p} q$, and
- $\Lambda(q) = s(n)$

We will always assume that any *p*-automaton has a loop $q_0 \xrightarrow{0} q_0$.

 p_2 is 2-recognizable.

p-definability

Consider the theory $\langle \mathbb{N}, +, V_p \rangle$, where $p \in \mathbb{N}$, and $V_p : \mathbb{N} \to \mathbb{N}$ is:

- $V_p(0) = 1$,
- $V_p(x)$ is the greatest power of p dividing x.

 $P_p(x)$ is true iff x is a power of p, i.e. $P_p(x) : V_p(x) = x$.

 $x \in_p y$ iff x is a power of p and x occurs in the p-expansion of y with coefficient j:

$$x \in_{j,p} y : P_p(x) \land [\exists z \exists t . y = z + j \cdot x + t \land z < x \land (x < V_p(t) \lor t = 0)]$$

p-definability

A sequence $s : \mathbb{N} \to \mathbb{N}$ is *p*-definable if, for each $v \in rng(s)$ there exists a first-order formula φ_v of $\langle \mathbb{N}, +, V_p \rangle$ such that:

$$s^{-1}(v) = \{ n \in \mathbb{N} \mid \models \varphi_v(n) \}$$

In other words:

$$s(n) = v \iff \varphi_v(n) \ . \ \forall n \in \mathbb{N}$$

The sequence p_2 is 2-definable:

$$p_2^{-1}(1) = \{n \in \mathbb{N} \mid \models V_2(n) = n\}$$

$$p_2^{-1}(0) = \{n \in \mathbb{N} \mid \models V_2(n) \neq n\}$$

Multi-dimensional Integer Sets

Let $(u, v) \in (\{0, 1, \dots, p-1\}^2)^*$ be a word, where $u, v \in \{0, 1, \dots, p-1\}^*$, |u| = |v|.

A *p*-automaton is defined now over $(\{0, 1, \dots, p-1\}^2)^*$.

The definitions of p-recognizability and p-definability are easily adapted to the m-dimensional case.

Consider $t : \mathbb{N}^2 \to \{0, 1\}$ defined as t(n, m) = 0 iff for some $k \ge 0$, we have $(n)_2(k) = (m)_2(k) = 1$, and t(n, m) = 1 otherwise.

$\uparrow m$								
1	0	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	
1	1	1	1	0	0	0	0	
1	0	0	0	1	0	0	0	
1	1	0	0	1	1	0	0	
1	0	1	0	1	0	1	0	
1	1	1	1	1	1	1	1	\xrightarrow{n}

 $(5)_2 = 1 \ 0 \ 0$ $(4)_2 = 1 \ 1 \ 0$

Consider $t : \mathbb{N}^2 \to \{0, 1\}$ defined as t(n, m) = 0 iff for some $k \ge 0$, we have $(n)_2(k) = (m)_2(k) = 1$, and t(n, m) = 1 otherwise.

$\uparrow m$									
1	0	0	0	0	0	0	0		
1	1	0	0	0	0	0	0		
1	0	1	0	0	0	0	0		
1	1	1	1	0	0	0	0		
1	0	0	0	1	0	0	0		
1	1	0	0	1	1	0	0		
1	0	1	0	1	0	1	0		
1	1	1	1	1	1	1	1	\xrightarrow{n}	

Consider $t : \mathbb{N}^2 \to \{0, 1\}$ defined as t(n, m) = 0 iff for some $k \ge 0$, we have $(n)_2(k) = (m)_2(k) = 1$, and t(n, m) = 1 otherwise.

$\uparrow m$								
1	0	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	
1	1	1	1	0	0	0	0	
1	0	0	0	1	0	0	0	
1	1	0	0	1	1	0	0	
1	0	1	0	1	0	1	0	
1	1	1	1	1	1	1	1	\xrightarrow{n}

$$(4)_2 = 1 \ 0 \ 0$$

 $(3)_2 = 0 \ 1 \ 1$

The sequence t is 2-recognizable.

The sequence t is 2-definable:

$$t^{-1}(0) : \exists z \, . \, z \in_2 x \land z \in_2 y$$

$$t^{-1}(1) : \forall z \, . \, \neg(z \in_2 x) \lor \neg(z \in_2 y)$$

Theorem 1 Let $M \subseteq \mathbb{N}^m$, $m \ge 1$ and $p \ge 2$. Then M is p-recognizable if and only if M is p-definable.

From Automata to Formulae

• $x \in_{j,p} y$ iff x is a power of p and the coefficient of x in $(y)_p$ is j:

$$x \in_{j,p} y : P_p(x) \land [\exists z \exists t . y = z + j \cdot x + t \land z < x \land (x < V_p(t) \lor t = 0)]$$

• $\lambda_p(x)$ denotes the greatest power of p occurring in $(x)_p$ and $\lambda_p(0) = 1$. $\lambda_p(x) = y : (x = 0 \land y = 1) \lor [P_p(y) \land y \le x \land \forall z . (P_p(z) \land y < z) \to (x < z)]$

From Automata to Formulae

Let $A = \langle S, q_0, T, \Lambda \rangle$ be a *p*-automaton, with $\Lambda : S \to \{0, 1\}$.

Suppose $S = \{q_0, q_1, \dots, q_{l-1}\}$ and replace w.l.o.g. q_k by $e_k = \langle 0, \dots, 1, \dots, 0 \rangle \in \{0, 1\}^l$.

 $\langle n_1, \ldots, n_m \rangle \in M$ iff $\langle (n_1)_p, \ldots, (n_m)_p \rangle \in \mathcal{L}(A)$ iff exists $\langle y_1, \ldots, y_l \rangle$:

•
$$\langle (y_1)_p(0), \dots, (y_l)_p(0) \rangle = \langle 1, 0, \dots, 0 \rangle$$
:

$$\varphi_1 : \bigwedge_{j=1}^l 1 \in_{q_0(j), p} y_j$$

From Automata to Formulae

• $\langle (y_1)_p(k), \dots, (y_l)_p(k) \rangle$ is a final state of A, with $p^k \ge \max_{1 \le j \le k} \lambda_p(x_j)$:

$$\varphi_2 : \bigvee_{\Lambda(q)=1} \bigwedge_{j=1}^l z \in_{q(j),p} y_j$$

• for all
$$0 \leq i < k$$
,
 $\langle (y_1)_p(i), \dots, (y_l)_p(i) \rangle \xrightarrow{\langle (x_1)_p(i), \dots, (x_m)_p(i) \rangle} \langle (y_1)_p(i+1), \dots, (y_l)_p(i+1) \rangle$:
 $\varphi_3 : \forall t . P_p(t) \land t < z \land$
 $\bigwedge_{T(q,(a_1,\dots,a_m))=q'} \left[\bigwedge_{j=1}^l t \in_{q(j),p} y_j \land \bigwedge_{j=1}^m t \in_{a_j,p} x_j \to \bigwedge_{j=1}^l p \cdot t \in_{q'(j),p} y_j \right]$

From Automata to Formulae

$$\Phi_A : \exists y_1 \dots \exists y_l \exists z \ . \ P_p(z) \land z \ge \max_{1 \le j \le m} \lambda_p(x_j) \land \varphi_1(y_1, \dots, y_l) \land$$
$$\varphi_2(y_1, \dots, y_l, z) \land \varphi_3(x_1, \dots, x_m, y_1, \dots, y_l, z)$$

From Formulae to Automata

Build automata for the atomic formulae x + y = z and $V_p(x) = y$, then compose them with union, intersection, negation and projection.

Corollary 1 The theories $\langle \mathbb{N}, + \rangle$ and $\langle \mathbb{N}, +, V_p \rangle$ are decidable.

The Cobham-Semenov Theorem

Base Dependence

Definition 3 Two integers $p, q \in \mathbb{N}$ are said to be multiplicatively dependent if there exist $k, l \geq 1$ such that $p^k = q^l$.

Equivalently, p and q are multiplicatively dependent iff there exists $r \ge 2$ and $k, l \ge 1$ such that $p = r^k$ and $q = r^l$.

Base Dependence

Lemma 1 Let $p, q \ge 2$ be multiplicatively dependent integers. Let $m \ge 1$ and $s : \mathbb{N}^m \to \mathbb{N}$ be a sequence. Then s is p-recognizable iff it is q-recognizable.

 p^k -definable $\Rightarrow p$ -definable Let $\phi(x, y) : P_{p^k}(y) \land y \leq V_p(x).$

We have $V_{p^k}(x) = y \iff \phi(x, y) \land \forall z \ . \ \phi(x, z) \to z \le y.$

We have to define P_{p^k} in $\langle \mathbb{N}, +, V_p \rangle$.

$$P_{p^k}(x) : P_p(x) \land \exists y . x - 1 = (p^k - 1)y$$

Indeed, if $x = p^{ak}$ then $p^k - 1|x - 1$.

Conversely, if assume x is a power of p but not of p^k , i.e. $x = p^{ak+b}$, for some 0 < b < k.

Then $x - 1 = p^b(p^{ak} - 1) + (p^b - 1)$, and since $p^k - 1|x - 1$, we have $p^k - 1|p^b - 1$, contradiction.

p-definable $\Rightarrow p^k$ -definable

$$V_{p^{k}}(x) = V_{p^{k}}(p^{k-1}x) \rightarrow V_{p}(x) = V_{p^{k}}(x)$$
$$V_{p^{k}}(x) = V_{p^{k}}(p^{k-2}x) \rightarrow V_{p}(x) = pV_{p^{k}}(x)$$

$$V_{p^k}(x) = V_{p^k}(px) \quad \rightarrow \quad V_p(x) = p^{k-2}V_{p^k}(x)$$
else
$$V_p(x) = p^{k-1}V_{p^k}(x)$$

• • •

Theorem 2 (Cobham-Semenov) Let $m \ge 1$, and $p, q \ge 2$ be multiplicatively independent integers. Let $s : \mathbb{N}^m \to \mathbb{N}$ be a sequence. If s is p-recognizable and q-recognizable, then s is definable in $(\mathbb{N}, +)$.

Semilinear Sets

Definitions

 $L(C, P) = \{x_0 + x_1 + \ldots + x_m \mid x_0 \in C, x_1, \ldots, x_n \in P\}$ for some $C, P \in \mathbb{N}^n$,

An element $x \in L(C, P)$ is of the form $x = x_0 + \sum_{i=1}^m \lambda_i x_i$, where $x_0 \in C$, $\lambda_i \in \mathbb{N}$ and $x_i \in P$, for all $1 \le i \le m$.

A set $M \in \mathbb{N}^n$ is said to be *linear* if M = L(c, P) for $c \in \mathbb{N}^n$ and finite $P \subseteq \mathbb{N}^n$.

A set $M \in \mathbb{N}^n$ is said to be *semilinear* if M = L(C, P) for finite $C, P \subseteq \mathbb{N}^n$.

A function $f : \mathbb{N}^n \to \mathbb{N}^m$ is said to be *linear* if for all $x, y \in \mathbb{N}^n$ we have f(x+y) = f(x) + f(y).

Preliminaries

If $u = \langle u_1, \ldots, u_n \rangle$, $v = \langle v_1, \ldots, v_n \rangle \in \mathbb{N}^n$, we define $u \leq v$ iff $u(i) \leq v(i)$ for all $1 \leq i \leq n$.

Lemma 2 Each set of pairwise incomparable elements of \mathbb{N}^n is finite. In consequence, each set $M \subseteq \mathbb{N}^n$ has a finite number of minimal elements.

Lemma 3 Let $M \subseteq \mathbb{N}^n$ be a semilinear set and $f : \mathbb{N}^n \to \mathbb{N}^m$ be a linear function. Then $f(M) \subseteq \mathbb{N}^m$ is a semilinear set.

Let $w \in \mathbb{Z}^n$, $u_i, v_j \in \mathbb{N}^n$ and $a_i, b_j \in \mathbb{Z}$, $1 \le i \le p, 1 \le j \le q$. Then there exists finite number of *minimal* tuples $\langle a_1, \ldots, a_p, b_1, \ldots, b_q \rangle$ such that:

$$w = \sum_{i=1}^{p} a_i u_i - \sum_{j=1}^{q} b_j v_j$$

Closure Properties

Theorem 3 The class of semilinear subsets of \mathbb{N}^n , $n \ge 1$ is effectively closed under union, intersection and projection.

Let

$$A = \{ \langle y_1, \dots, y_p, z_1, \dots, z_q \rangle \mid x_0 + \sum_{i=1}^p y_i x_i = x'_0 + \sum_{i=1}^q z_i x'_i \}$$

and

$$B = \{ \langle y_1, \dots, y_p, z_1, \dots, z_q \rangle \mid \sum_{i=1}^p y_i x_i = \sum_{i=1}^q z_i x_i' \}$$

Let $f : \mathbb{N}^{p+q} \to \mathbb{N}^n$ defined as $f(\langle y_1, \dots, y_p, z_1, \dots, z_q \rangle) = \sum_{i=1}^p y_i x_i.$

f is a linear function and $X \cap X' = x_0 + f(A)$. We prove that A is semilinear.

Let C and P be the sets of minimal elements of A and $B \setminus 0^{p+q}$, respectively. We prove that A = L(C, P).

"\C_ $\mathbf{y} \cdot \mathbf{z} \in A \Rightarrow \exists \mathbf{y}' \cdot \mathbf{z}' \in C \ . \ \mathbf{y}' \cdot \mathbf{z}' \leq \mathbf{y} \cdot \mathbf{z}.$ Let $\mathbf{y}'' \cdot \mathbf{z}'' = \mathbf{y} \cdot \mathbf{z} - \mathbf{y}' \cdot \mathbf{z}'$

$$\sum_{i=1}^{p} y_i'' x_i = \sum_{i=1}^{p} (y_i - y_i') x_i$$

$$= \sum_{i=1}^{p} y_i x_i - \sum_{i=1}^{p} y_i' x_i$$

$$= (x_0' - x_0) + \sum_{i=1}^{q} z_i x_i' - [(x_0' - x_0) + \sum_{i=1}^{q} z_i' x_i']$$

$$= \sum_{i=1}^{q} (z_i - z_i') x_i'$$

$$= \sum_{i=1}^{q} z_i'' x_i'$$

Hence $\mathbf{y}'' \cdot \mathbf{z}'' \in B$. Prove that each element of B is a sum of elements of P.

Semilinear sets = Presburger-definable sets

Theorem 4 (Ginsburg-Spanier) The class of semilinear subsets of \mathbb{N}^n coincides with the class of Presburger definable subsets of \mathbb{N}^n .

"\sum "\sum " Let
$$M = L(C, P) \subseteq \mathbb{N}^k$$
 be a semilinear set, with $C = \{c_1, \ldots, c_n\} \subset \mathbb{N}^k$ and $P = \{p_1, \ldots, p_m\} \subset \mathbb{N}^k$.

The Presburger formula defining M is:

$$\phi(x_1,\ldots,x_k) : \exists y_1 \ldots \exists y_m . \bigvee_{i=1}^n \bigwedge_{j=1}^k x_j = c_i + \sum_{j=1}^m y_j p_j$$

$Semilinear \ sets = Presburger-definable \ sets$

" \supseteq " Let $\phi(x_1, \ldots, x_k)$ be a Presburger formula, i.e. a disjunction of conjunctions of atomic propositions of the following forms:

$$\sum_{i=1}^{n} a_i x_i + b \ge 0$$
$$\sum_{i=1}^{n} a_i x_i + b \equiv_n m$$

Each atomic proposition describes a semilinear set, hence their intersections and unions are again semilinear sets.

Semilinear sets are *p*-definable for any $p \ge 2$.