Introduction to the lambda calculus

Polyvios.Pratikakis@imag.fr

Based on slides by Jeff Foster, UMD
History

- Formal mathematical system
- Simplest programming language
- Intended for studying functions, recursion
- Invented in 1936 by Alonzo Church (1903-1995)
 - Church’s Thesis:
 - “Every effectively calculable function (effectively decidable predicate) is general recursive”
 - i.e. can be computed by lambda calculus
 - Church’s Theorem:
 - First order logic is undecidable
Syntax

Simple syntax:

\[e ::= x \quad \text{Variables} \]
| \(\lambda x.e \) \(\text{Functions} \)
| \(e e \) \(\text{Function applications} \)

Pure lambda calculus: only functions

- Arguments are functions
- Returned value is function
- A function on functions is *higher-order*
Semantics

Evaluating function application: \((\lambda x. e_1) \ e_2\)
- Replace every \(x\) in \(e_1\) with \(e_2\)
- Evaluate the resulting term
- Return the result of the evaluation

Formally: “\(\beta\)-reduction”
- \((\lambda x.e_1) \ e_2 \rightarrow_{\beta} e_1[e_2/x]\)
- A term that can be \(\beta\)-reduced is a redex
- We omit \(\beta\) when obvious
Convenient assumptions

- Syntactic sugar for declarations
 - let \(x = e_1 \) in \(e_2 \)

- Scope of \(\lambda \) extends as far to the right as possible
 - \(\lambda x.\lambda y.x \; y \) is \(\lambda x.\left(\lambda y.(x \; y) \right) \)

- Function application is left-associative
 - \(x \; y \; z \) means \((x \; y) \; z \)
Scoping and parameter passing

- \(\beta \)-reduction is not yet well-defined:
 \[(\lambda x.e_1) \ e_2 \rightarrow e_1[e_2/x] \]
 There might be many \(x \) defined in \(e_1 \)

- Example
 Consider the program
 let \(x = a \) in
 let \(y = \lambda z.x \) in
 let \(x = b \) in
 \(y \ x \)
 Which \(x \) is bound to \(a \), and which to \(b \)?
Lexical scoping

- Variable refers to closest definition
- We can rename variables to avoid confusion:

 \[
 \begin{align*}
 &\text{let } x = a \text{ in} \\
 &\text{let } y = \lambda z. x \text{ in} \\
 &\text{let } w = b \text{ in} \\
 & y \ w
 \end{align*}
 \]
Free/bound variables

- The set of free variables of a term is

\[
FV(x) = x \\
FV(\lambda x. e) = FV(e) \setminus \{x\} \\
FV(e_1 e_2) = FV(e_1) \cup FV(e_2)
\]

- A term \(e \) is closed if \(FV(e) = \emptyset \)

- A variable that is not free is bound
\(\alpha\)-conversion

- Terms are equivalent up to renaming of bound variables
 \[\lambda x.e = \lambda y. e[y/x] \text{ if } y \notin \text{FV}(e) \]
- Renaming of bound variables is called \(\alpha\)-conversion
- Used to avoid having duplicate variables, capturing during substitution
Substitution

Formal definition

\[x[e/x] = e \]
\[y[e/x] = y \quad \text{when } x \neq y \]
\[(e_1 e_2)[e/x] = (e_1[e/x] e_2[e/x]) \]
\[(\lambda y.e_1)[e/x] = \lambda y.(e_1[e/x]) \quad \text{when } y \neq x \text{ and } y \notin FV(e) \]

Example

- \((\lambda x.y \ x) \ x =_\alpha (\lambda w.y \ w) \ x \rightarrow_\beta y \ x \)
- We omit writing \(\alpha \)-conversion
Functions with many arguments

We can’t yet write functions with many arguments

- For example, two arguments: $\lambda(x, y).e$

Solution: take the arguments, one at a time

- $\lambda x.\lambda y.e$
- A function that takes x and returns another function that takes y and returns e
- $(\lambda x.\lambda y.e)\ a\ b \rightarrow (\lambda y.e[a/x])\ b \rightarrow e[a/x][b/y]$
- This is called Currying
- Can represent any number of arguments
Representing booleans

- true = \lambda x. \lambda y. x
- false = \lambda x. \lambda y. y
- if a then b else c = a \ b \ c

For example:
- if true then b else c \rightarrow (\lambda x. \lambda y. x) \ b \ c \rightarrow (\lambda y. b) \ c \rightarrow b
- if false then b else c \rightarrow (\lambda x. \lambda y. y) \ b \ c \rightarrow (\lambda y. y) \ c \rightarrow c
Combinators

- Any closed term is also called a *combinator*
- True and false are combinators

Other popular combinators:

- \(I = \lambda x. x \)
- \(K = \lambda x. \lambda y. x \)
- \(S = \lambda x. \lambda y. \lambda z. x\, z\, (y\, z) \)

- We can define calculi in terms of combinators
 - The SKI-calculus
 - SKI-calculus is also Turing-complete
Encoding pairs

- \((a, b) = \lambda x. \text{if } x \text{ then } a \text{ else } b\)
- \(\text{fst} = \lambda p.p \text{ true}\)
- \(\text{snd} = \lambda p.p \text{ false}\)

Then

- \(\text{fst} (a, b) \rightarrow \ldots \rightarrow a\)
- \(\text{snd} (a, b) \rightarrow \ldots \rightarrow b\)
Natural numbers (Church)

- $0 = \lambda x.\lambda y.y$
- $1 = \lambda x.\lambda y.x y$
- $2 = \lambda x.\lambda y.x (x y)$
- i.e. $n = \lambda x.\lambda y.\langle\text{apply } x \text{ n times to } y\rangle$
- $\text{succ} = \lambda z.\lambda x.\lambda y.x (z x y)$
- $\text{iszero} = \lambda z.z (\lambda y.\text{false}) \text{ true}$
Natural numbers (Scott)

\[0 = \lambda x.\lambda y.x \]
\[1 = \lambda x.\lambda y.y\ 0 \]
\[2 = \lambda x.\lambda y.y\ 1 \]

i.e. \(n = \lambda x.\lambda y.y\ (n - 1) \)

\[\text{succ} = \lambda z.\lambda x.\lambda y.yz \]
\[\text{pred} = \lambda z.z\ 0\ (\lambda x.x) \]
\[\text{iszero} = \lambda z.z\ \text{true}\ (\lambda x.\text{false}) \]
Nondeterministic semantics

\[
(\lambda x. e_1) e_2 \rightarrow e_1[e_2/x] \quad e \rightarrow e' \\
(\lambda x. e) \rightarrow (\lambda x. e')
\]

\[
e_1 \rightarrow e'_1 \\
\]

\[
e_1 e_2 \rightarrow e'_1 e_2
e_2 \rightarrow e'_2
e_1 e_2 \rightarrow e_1 e'_2
\]

Question: why is this semantics non-deterministic?
Example

- We can apply reduction anywhere in the term
 - $(\lambda x. (\lambda y. y) \ x \ ((\lambda z. w) \ x)) \rightarrow \lambda x. (x \ ((\lambda z. w) \ x)) \rightarrow \lambda x. x \ w$
 - $(\lambda x. (\lambda y. y) \ x \ ((\lambda z. w) \ x)) \rightarrow \lambda x. (\lambda y. y) \ x \ w \rightarrow \lambda x. x \ w$

- Does the order of evaluation matter?
The Church-Rosser Theorem

Lemma (The Diamond Property):
- If $a \rightarrow b$ and $a \rightarrow c$, then there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$

Church-Rosser theorem:
- If $a \rightarrow^* b$ and $a \rightarrow^* c$, then there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$

- Proof by diamond property
- Church-Rosser also called confluence
Normal form

- A term is in *normal form* if it cannot be reduced
 - Examples: $\lambda x.x$, $\lambda x.\lambda y.z$

- By the Church-Rosser theorem, every term reduces to at most one normal form
 - Only for pure lambda calculus with non-deterministic evaluation

- Notice that for function application, the argument need not be in normal form
\[\textbf{\(\beta\)-equivalence}\]

- Let \(\equiv_\beta\) be the reflexive, symmetric, transitive closure of \(\rightarrow\).
 - E.g., \((\lambda x.x)\ y \rightarrow y \leftarrow (\lambda z.\lambda w.z)\ y\ y\) so all three are \(\beta\)-equivalent.
- If \(a \equiv_\beta b\), then there exists \(c\) such that \(a \rightarrow^* c\) and \(b \rightarrow^* c\).
 - Follows from Church-Rosser theorem.
- In particular, if \(a \equiv_\beta b\) and both are normal forms, then they are equal.
Not every term has a normal form

Consider

\[\Delta = \lambda x.x \ x \]

Then \(\Delta \ \Delta \rightarrow \Delta \ \Delta \rightarrow \cdots \)

In general, *self application* leads to loops

\(\ldots \) which is good if we want recursion
Fixpoint combinator

- Also called a paradoxical combinator
 - \[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]
 - There are many versions of the \(Y \) combinator

Then, \(Y F \equiv_\beta F (Y F) \)

\[
Y F = (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F \\
\rightarrow (\lambda x. F (x x)) (\lambda x. F (x x)) \\
\rightarrow F ((\lambda x. F (x x)) (\lambda x. F (x x))) \\
\leftarrow F (Y F)
\]
Example

- \(\text{fact}(n) = \text{if } (n = 0) \text{ then } 1 \text{ else } n \times \text{fact}(n - 1) \)
- Let \(G = \lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1) \)
- \(Y \ G \ 1 = \beta \ G \ (Y \ G) \ 1 \)
 - =\(\beta \ (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1)) \ (Y \ G) \ 1 \)
 - =\(\beta \ \text{if } (1 = 0) \text{ then } 1 \text{ else } 1 \times ((Y \ G) \ 0) \)
 - =\(\beta \ \text{if } (1 = 0) \text{ then } 1 \text{ else } 1 \times (G \ (Y \ G) \ 0) \)
 - =\(\beta \ \text{if } (1 = 0) \text{ then } 1 \text{ else } 1 \times (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1)) \ (Y \ G) \ 0) \)
 - =\(\beta \ \text{if } (1 = 0) \text{ then } 1 \text{ else } 1 \times (\text{if } (0 = 0) \text{ then } 1 \text{ else } 0 \times ((Y \ G) \ 0)) \)
 - =\(\beta \ 1 \times 1 = 1 \)
In other words

- The Y combinator “unrolls” or “unfolds” its argument an infinite number of times

 $Y\ G = G\ (Y\ G) = G\ (G\ (Y\ G)) = G\ (G\ (G\ (Y\ G))) = \ldots$

- G needs to have a “base case” to ensure termination

But, only works because we follow call-by-name

- Different combinator(s) for call-by-value

 $Z = \lambda f. (\lambda x. f\ (\lambda y. x\ x\ y))\ (\lambda x. f\ (\lambda y. x\ x\ y))$

- Why is this a fixed-point combinator? How does its difference from Y work for call-by-value?
Why encodings

- It’s fun!
- Shows that the language is expressive
- In practice, we add constructs as languages primitives
 - More efficient
 - Much easier to analyze the program, avoid mistakes
 - Our encodings of 0 and true are the same, we may want to avoid mixing them, for clarity
Lazy and eager evaluation

Our non-deterministic reduction rule is fine for theory, but awkward to implement

Two deterministic strategies:

Lazy: Given \((\lambda x.e_1)\) \(e_2\), do not evaluate \(e_2\) if \(e_1\) does not need \(x\) anywhere

Also called left-most, call-by-name, call-by-need, applicative, normal-order evaluation (with slightly different meanings)

Eager: Given \((\lambda x.e_1)\) \(e_2\), always evaluate \(e_2\) to a normal form, before applying the function

Also called call-by-value
The rules are deterministic, \textit{big-step}

\textbullet{} The right-hand side is reduced “all the way”

\textbullet{} The rules do not reduce under \(\lambda \)

\textbullet{} The rules are normalizing:

\textbullet{} If \(a \) is closed and there is a normal form \(b \) such that \(a \to^* b \), then \(a \to^l d \) for some \(d \)
Eager (big-step) semantics

\[
\begin{align*}
(\lambda x. e_1) &\rightarrow^e (\lambda x. e_1) \\
\hline
\end{align*}
\]

\[
\begin{align*}
e_1 &\rightarrow^e \lambda x. e \\
e_2 &\rightarrow^e e' \\
e[e'/x] &\rightarrow^e e'' \\
\hline
\end{align*}
\]

\[
e_1 e_2 &\rightarrow^e e''
\]

- This big-step semantics is also deterministic and does not reduce under \(\lambda\)
- But is not normalizing!

Example: let \(x = \Delta \Delta\) in \((\lambda y.y)\)
Lazy vs eager in practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell

- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side-effects
 - Main examples: Most languages (C, Java, ML, ...)

Introduction to lambda calculus – p. 30/3
The λ calculus is a prototypical functional programming language
- Higher-order functions (lots!)
- No side-effects

In practice, many functional programming languages are not “pure”: they permit side-effects
- But you’re supposed to avoid them...
Functional programming today

- Two main camps
 - Haskell – Pure, lazy functional language; no side-effects
 - ML (SML, OCaml) – Call-by-value, with side-effects

- Old, still around: Lisp, Scheme
 - Disadvantage/feature: no static typing
Influence of functional programming

- Functional ideas move to other languages
 - Garbage collection was designed for Lisp; now most new languages use GC
 - Generics in C++/Java come from ML polymorphism, or Haskell type classes
 - Higher-order functions and closures (used in Ruby, exist in C#, proposed to be in Java soon) are everywhere in functional languages
 - Many object-oriented abstraction principles come from ML’s module system
- ...