1. Untyped lambda calculus
 (a) Syntax
 (b) Evaluation: Beta, eta-reduction
 (c) Examples, church-encoding numbers, booleans, Y-combinator/loops

2. Simply typed lambda calculus
 (a) The type system
 (b) Examples: type checking some small programs

3. Curry-howard correspondence
 (a) Programs are proofs
 (b) Example: encoding modus-ponens and its proof
 (c) Limitations of simply typed calculus as proof language

4. Polymorphism
 (a) Forall types, let-polymorphism(ML), and first-class polymorphism
 (b) Type-checking polymorphism: the type rules
 (c) Example type-checking of a polymorphic function and application

5. Back to Curry-Howard isomorphism with polymorphic types
 (a) Polymorphic logic: "forall" theorems and proof terms - generalizing the modus ponens, why typechecking is proof-checking