Parity Games

Bucharest, May 2010

Hierarchy

Reactivity: Muller, Parity 4. 3. Recurrence: Büchi Persistence: co-Büchi Obligation: Staiger-Wagner, Weak-Parity 2. Safety Reachability 1.

Parity Games

A Parity game is a pair (G, p), where

- $G = (S, S_0, E)$ is a game graph and
- ▶ $p: S \to \{0, ..., k\}$ is a priority function mapping every state in S to a number in $\{0, ..., k\}$.

A play ρ is winning for Player 0 iff the minimum priority visited infinitely often in ρ is even: $\min_{s \in \text{Inf}(\rho)} p(s)$ is even.

Parity Games

Theorem

- Parity games are determined (i.e., each state belongs to W₀ or W₁), and the winner from a given state has a positional winning strategy.
- 2. Over finite graphs, the winning regions and winning strategies of the two players can be computed in (at most) exponential time in the number of vertices of the game graph.

Overview

We will show two proofs:

- ▶ One for general (even infinite) game graph
- ▶ One for finite game graphs to establish the complexity bounds

Proof 1

Given $G = (S, S_0, E)$ with priority function $p: S \to \{0, \dots, k\}$. We proceed by induction on the number of priorities.

▶ Basis case: we either have an even or an odd priority

Proof 1

Given $G = (S, S_0, E)$ with priority function $p : S \to \{0, ..., k\}$. We proceed by induction on the number of priorities

- ▶ Basis case: we either have an even or an odd priority
- ▶ Induction step: we assume that the minimum priority k is even (otherwise switch the roles of players 0 and 1 below).

Let P1 be the set of vertices from which player 1 has a positional winning strategy.

Show that from each vertex in $S \setminus P1$, player 0 has a positional winning strategy.

Proof 1: Induction step

Consider the subgame with vertex set $S \setminus P1$

- Case 1: S \ P1 does not reach the minimal priority k. Then, S \ P1 defines a subgame. Why? Induction hypothesis applies.
- ▶ Case 2: $S \setminus P1$ contains vertices of minimal (even) priority. Then, $S \setminus P1 \setminus \text{Attr}_0(C_k \setminus P1)$ is a subgame

Proof 1: Induction step

Player 0 can guarantee that starting from a vertex in $S \setminus P1$ the play remains there.

Either the play stays in $(S \setminus P1) \setminus \text{Attr}_0(C_k \setminus P1)$ or it visits $\text{Attr}_0(C_k \setminus P1)$ infinitely often.

In the first case player 0 wins by induction hypothesis with a positional strategy, in the second case by infinitely many visits to the lowest (even) priority, also with a positional strategy.

Altogether: Player 0 wins from each vertex in $S \setminus P1$ with a positional strategy.

Proof 2

Given $G = (S, S_0, E)$ with priority function $p : S \to \{0, ..., k\}$. We proceed by induction on the number of states denoted by n.

- ▶ Basis case: we either have one Player-0 or Player-1 state with a selfloop (Note that every state in a game has at least one outgoing edge). Then the priority of the state determines if $S = W_0$ or $S = W_1$.
- ▶ Induction step: Let $P_i = \{s \mid p(s) = i\}$ be the set of states with priority i. Assume $P_0 \neq \emptyset$, otherwise assume $P_1 \neq \emptyset$ and switch the roles of Players 0 and 1 below. Finally, if $P_0 = P_1 = \emptyset$ decrease every priority by 2.

Proof (induction step cont.)

Choose $s \in P_0$ and let $X = \text{Attr}_0(\{s\})$. Note that $S \setminus X$ is a subgame with < n states.

The induction hypothesis gives a partition of $S \setminus X$ into winning regions U_0 and U_1 for Player 0 and 1, respectively, and corresponding positional winning strategies.

▶ Case 1: Player 0 can guarantee a transition from s to $U_0 \cup X$, i.e., if $s \in S_0$, then there exists $s' \in U_0 \cup X$ such that $(s, s') \in E$ or if $s \in S_1$, then for all $(s, s') \in E$, $s' \in U_0 \cup X$ holds. Claim:

(i) $U_0 \cup X \subseteq W_0$

(ii)
$$U_1 \subseteq W_1$$
.

Proof (Case 1 cont.)

The positional strategy for Player 0 on $U_0 \cup X$ is:

- 1. On U_0 play according to the positional strategy given by the induction hypothesis
- 2. On X (= Attr₀({s})) play according to the attractor strategy. Then eventually reach s
- 3. From s "move back" to $U_0 \cup X$.

For Player 1 use the positional strategy on U_1 given by the induction hypothesis.

Proof of claim: (ii) is clear, since starting in U_1 Player 1 can guarantee that the play remains in U_1 (see picture). For (i), the play remains in $U_0 \cup X$ if the strategy for state s is followed. If the play eventually remains in U_0 , then Player 0 wins by induction hypothesis, otherwise the play passes through s infinitely often, which is winning as well.

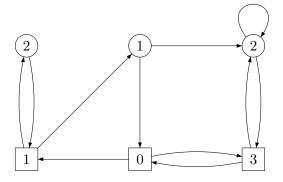
Proof (Case 2)

Case 2: Player 1 can guarantee a transition to U_1 from s, i.e., if $s \in S_0$, then all edges $(s, s') \in E$ lead to U_1 $(s' \in U_1)$, and if $s \in S_1$, then there exists $s' \in U_1$ such that $(s, s') \in E$. Let $Y = \operatorname{Attr}_1(U_1)$, then $s \in Y$ and $S \setminus Y$ is a subgame with < n states. The induction hypothesis gives winning region V_0 and V_1 and corresponding positional winning strategies.

Claim:

- (i) $V_0 \subseteq W_0$
- (ii) $V_1 \cup Y \subseteq W_1$.

Proof of claim: (i) is clear, since Player 0 can guarantee to stay within V_0 . For (ii), for all states in Y, Player 1 can guarantee to move to U_1 and remind there. From $t \in V_1$ Player 0 can either move to Y or stay in V_1 . Both choices are winning for Player 1.



Complexity

$$Solve(G) = T(n)$$

1. Pick
$$s + (U_0, U_1) = \text{Solve}(G \setminus \text{Attr}_*(\{s\}))$$
 $O(m) + T(n-1)$

2.a If s has edge to $U_* \cup \text{Attr}_*(\{s\})$ then DONE

2.b else Solve(
$$G \setminus \text{Attr}_*(U_*)$$

$$T(n-1)$$

Recurrence relation for time complexity:

$$T(n) \le O(m) + 2 \cdot T(n-1)$$

Hence, $T(n) = O(m \cdot 2^n)$.

A more careful analysis give: $T(n) = O((\frac{n}{d})^d)$

Note that the exact complexity class of parity games is still an open question.

Next, we show that parity games are in NP \cap co-NP.

Uniform Positional Strategies

Theorem

Given a parity game over $G = (S, S_0, E)$, there is a single positional strategy f such that from each $s \in W_0$ the strategy f is a winning strategy for Player 0 from s.

Proof.

Number the states by natural numbers. Denote by s_i the state with number i. For $s_i \in W_0$ choose a corresponding positional winning strategy f_i . Let F_i be the set of reachable states by plays from s_i according to f_i (Note: $F_i \subseteq W_0$ and $s_i \in F_i$)

Merging Strategies

Define f on W_0 as follows: $f(s) = f_i(s)$ for the smallest i such that $s \in F_i$.

Show that f is a winning strategy from any $s \in W_0$.

Applying f during a play means to apply strategies f_i where i is weakly decreasing. From some point k onwards, index i stays constant (at the latest when i=0), i.e. the f-values coincide with the f_i -values. The lowest priority occurring infinitely often in the play is thus determined by the fixed strategy f_i .

Since f_i is a winning strategy, Player 0 wins the play.

Parity Games are in NP \cap co-NP

Given a game (G, p) with $G = (S, S_0, E)$ and $p : S \to \{0, \dots d\}$, decide if $s \in W_0$.

- ▶ First, guess a uniform strategy f for Player 0 (= a set of Player-0 edges \rightarrow polynomial size)
- \triangleright Restrict the game to f
- Check if f is a winning strategy from s. This can be done in polynomial time as follows: for all odd $i \in \{0, ..., d\}$, consider the graph with the states $\bigcup_{j=i...d} P_j$, compute the SCC and check if there exists a SCC C s.t. $C \cap P_i \neq \emptyset$ (meaning that there exists a strategy for Player 1 to force a cycle with an odd minimal priority $\rightarrow f$ is not winning).

Related Games

Games in the same complexity class with unknown exact complexity: mean-payoff games, discounted payoff games, and simple stochastic games.

There are polynomial time reductions of

- parity to mean payoff games
- mean payoff to discounted payoff games
- discounted payoff to simple stochastic games

Mean and Discount Payoff Games

- ▶ Game graph for 2 players (S, S_0, E)
- ▶ Reward function $r: E \to [0, ..., k]$
- Mean payoff of a play $\rho = s_0 s_1 \dots$

$$MP(\rho) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} r(s_{i-1}, s_i)$$

▶ Discounted payoff of a play $\rho = s_0 s_1 \dots$ with discount factor 0 < d < 1

$$DP(\rho) = (1 - d) \sum_{i=1}^{\infty} d^{i} \cdot r(s_{i-1}, s_{i})$$

▶ Aim of Player 0: maximize $MP(\rho)$ or $DP(\rho)$

Simple Stochastic Games [Condon]

- ▶ Game graph for 2 1/2 players $(S, (S_0, S_P), E)$, where S_P is the set of probabilistic states. Each state $s \in S_P$ has exactly two outgoing edges, each taken with probability 0.5.
- ▶ There is a designated initial state s_I and two special states called 0-sink and 1-sink.
- ▶ The game is played by moving a token, the game ends if the token reaches a sink state.
- ▶ Player 0 wins if the token reaches the 1-sink, otherwise Player 1 wins (if the token reaches the 0-sink or the play does not end)
- ► The value of a state is the probability that Player 0 wins if both players play optimal.

Classification using Games

Number of Players	Name	Complexity
$\frac{1}{2}$	Markov chains	P
1	Automata	P
$1\frac{1}{2}$	Markov decision processes	P
2	Two-player games	P/unknown
$2\frac{1}{2}$	Stochastic games	unknown

Small Parity Progress Measure Algorithm

▶ Idea: for each state count how many visits Player 1 can force to an odd priority, without visiting a lower even priority.

► Notation:

- we will use tuples $\vec{v} \in \mathbb{N}^d$ of natural numbers as our counters, each component represents one priority.
- ▶ Given two tuples \vec{v} and \vec{w} , we use the lexicographic order for the comparision symbols $<, \le, =, \ne, \ge, >,$ e.g., (1,0,3) < (1,1,4).
- ▶ We will also use truncated versions $<_i, \le_i, =_i, \ne_i, \ge_i, >_i$, they denote the lexicographic ordering on \mathbb{N}^i applied to the first i components, e.g., $(2,3,0)>_2(2,2,4)$ but $(2,3,0)=_0(2,2,4)$.

Definition

Let $((S, S_0, E), p)$ be a parity game with $p: S \to \{0, \dots, d-1\}$. A function $g: S \to \mathbb{N}^d$ is a parity progress measure if for all $(s, s') \in E$,

- $ightharpoonup g(s) \ge_{p(s)} g(s')$ and
- $g(s) >_{p(s)} g(s')$ if p(s) is odd, holds.

Remark: If there is a parity progress measure for a parity graph G then all cycles in G have an even minimal priority.

Proof of remark: Let $g: S \to \mathbb{N}^d$ be a parity progress measure for G. Suppose that there is an odd cycle s_1, s_2, \ldots, s_l in G, and let $i = p(s_1)$ be the smallest priority on this cycle. Then, by the definition of progress measure we have $g(s_1) >_i g(s_2) \geq_i \cdots \geq_i g(s_l) \geq_i g(s_1)$, and hence $g(s_1) >_i g(s_1)$ contradicting the assumption.

Let (G, p) be a parity game and let $P_i = \{s \in S \mid p(s) = i\}$ be the set of states with priority $i \in \{0, \dots, d-1\}$.

We define $M_G \subset \mathbb{N}^d$ as

$$M_G = \{0,1\} \times \{0,1,\dots |P_1|+1\} \times \{0,1\} \times \dots \times \{0,1,\dots |P_{d-1}|+1\}$$

Theorem

If all cycles in a parity graph G are even then there is a parity progress measure solving $g: S \to M_G$ for G.

Proof.

We prove the theorem by induction on |S|. (In order to be successful with an inductive proof, we add the claim that if p(s) is odd, then $g(s) >_{p(s)} (0, \dots, 0).$

▶ Base case: if |S| = 1, the theorem holds trivially

► Induction step:

- Assume $P_0 \neq \emptyset$. By induction hypothesis there is a parity progress measure $g: S \setminus P_0 \to M_G$ for the game graph with states $S \setminus P_0$. Setting $g(s) = (0, ..., 0) \in M_G$, for all $s \in P_0$, we get a parity progress measure for G.
- Assume $P_0 = \emptyset$ and $P_1 \neq \emptyset$. We claim that is a non-trivial partition (W_1, W_2) of S, s.t. there is no edges from W_1 to W_2 . Let $u \in P_1$ and define $U \subseteq S$ be the states to which there is a non-trivial path from u. If $U = \emptyset$, then $W_1 = \{u\}$ and $W_2 = S \setminus \{u\}$ is a desired partition, otherwise let $W_1 = U$ and $W_2 = S \setminus U$. W_2 is not empty because $u \notin U$ (otherwise there would be an odd cycle).

- ▶ (Cont.) By induction we get the parity progress measures g_1 and g_2 for the subgraph $S \cap W_1$ and $S \cap W_2$. From $|P_i| = |P_i \cap W_1| + |P_i \cap W_2|$ and the additional claim, it follows that $g = g_1 \cup (g_2 + (0, |P_1 \cap W_1|, 0, |P_3 \cap W_1|, \dots)$ is a desire progress measure.
- ▶ Assume $P_0 = P_1 = \emptyset$, reduce all priorities by 2.

Game Parity Progress Measure

Let M_G^T be the set $M_G \cup \{\top\}$, in which \top is defined to be the largest element in the lexicographic order. We denote by M(g, s, s') the least $m \in M_G^T$ such that

- $ightharpoonup m \ge_{p(s)} g(s')$ and
- $ightharpoonup m >_{p(s)} g(s') \text{ if } p(s) \text{ is odd or } m = g(s') = \top$

Definition

A function $g: S \to M_G^{\top}$ is a game parity progress measure if for all $s \in S$, we have

- ▶ if $s \in S_0$, then there exists $(s, s') \in E$ s.t. $g(s) \ge_{p(s)} M(g, s, s')$,
- ▶ if $s \in S_1$, then for all $(s, s') \in E$, we have $g(s) \ge_{p(s)} M(g, s, s')$.

We denote by ||g|| the set $\{s \in S \mid g(s) \neq \top\}$.

For every game parity progress measure g, we define a strategy $\tilde{g}: S_0 \to S$ for Player 0 by setting $\tilde{g}(s)$ to be a successor s' with a minimal g(s').

Theorem

If g is a game parity progress measure then \tilde{g} is a winning strategy for Player 0 from ||g||.

Proof.

Note g is a parity progress measure on ||g||. Hence, all simple cycles in $S \cap ||g||$ are even. It also follows from definition of a game parity progress measure that \tilde{g} refers only to states in ||g||.

Theorem

There is a game progress measure $g: S \to M_G^{\top}$ such that ||g|| is the winning region W_0 of Player 0.

Proof.

We know that there is a winning strategy f for Player 0 from her winning region, s.t. all cycles in G_f are even, hence, there is a parity progress measure $g:W_0\to M_G$ on the game graph with state W_0 . It follows that setting $g(s)=\top$ for all $s\in S\setminus W_0$ makes g a game parity progress measure.

First, we define an ordering and a family of $\text{Lift}(\cdot, s)$ operators on the set of functions $S \to M_G^{\top}$. Given two functions $g, g' : S \to M_G^{\top}$, we define $g \leq g'$ if $g(s) \leq s(s')$ for all $s \in S$ and g < g' if $g \leq g'$ and $g \neq g'$. (The order defines a complete lattice).

$$Lift(g, s)(t) = \begin{cases} g(t) & \text{if } s \neq t \\ \max\{g(s), \min_{(s, s') \in E} M(g, s, s')\} & \text{if } s = t \in S_0 \\ \max\{g(s), \max_{(s, s') \in E} M(g, s, s')\} & \text{if } s = t \in S_1 \end{cases}$$

Note that the following propositions follow immediately from the definitions of game parity progress measure.

- (1) For every $s \in S$, the operator Lift (\cdot, s) is \leq -monotone.
- (2) A function $g: S \to M_G^{\top}$ is a game parity progess measure iff Lift(q,s) < q for all $s \in S$.

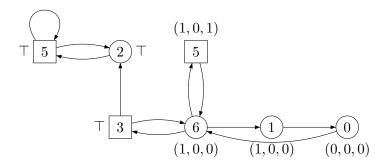
Finally, a simple fixpoint algorithm:

$$g:=\lambda s\in S.(0,\dots,0)$$
 while $g<\mathrm{Lift}(g,s)$ for some $s\in S$ do
$$g:=\mathrm{Lift}(g,s)$$

Complexity [Jurdzinski 2000]:

The algorithm runs in O(dn) space and $O(dm \cdot (\frac{n}{floor(d/2)})^{floor(d/2)})$ time.

Example+Final Progress Measure



Strategy Improvement

Preparation:

Recall, if players 0 and 1 fix positional strategies f and g, then from each state s a play $G_{f,g}$ is fixed and the winner depends on values in the loop.

Idea: Determine a value v(s) based on $G_{f,g}$

Here v is a valuation function $v:S\to D$ into some value domain D, which is ordered by a preference order.

Format of Strategy Improvement

Given: Priority game graph G, valuation function v

- 1. Pick two strategies f, g for Players 0 and 1
- 2. Determine the values v(s) for all $s \in S$, referring to the plays $G_{f,g}$
- 3. Change strategy f of Player 0 by local improvement: For each S_0 -state, choose the out-edge leading to the neighbour states with highest value (by preference order)
- 4. Given the new f find the optimal response strategy of Player 1 and use it as new strategy g
- 5. If the new strategies coincide with the previous strategies, then stop; otherwise go back to 2.

Play Profiles (Vöge, Jurdzinski)

Assumption: The states are numbered, and the numbers are the priorities.

Preference order \prec for states $0, \ldots, 8$:

$$1 \prec 3 \prec 5 \prec 7 \prec 8 \prec 6 \prec 4 \prec 2 \prec 0$$

Terminology: The most relevant state of $G_{f,g}$ is the state with the lowest priority in the loop of $G_{f,g}$.

The play profile of $G_{f,q}$ starting from s is the triple (r, P, d) with

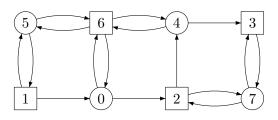
- ▶ r is the most relevant state of $G_{f,g}$
- ▶ P is the set of lower valued states on the path from s to (and excluding) r
- ightharpoonup d is the distance between s and r on this path

Comparison of Play Profiles

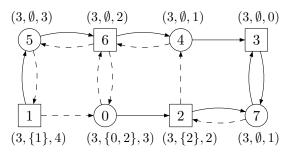
The Preference order is extended from states to play profiles:

$$(r, P, d) \prec (r', P', d')$$
 iff

- 1. $r \prec r'$, or
- 2. r = r' and the lowest state in the symmetric difference of P, P' is even and belongs to P', or it is odd and belongs to P, or
- 3. r = r' and P = P' and d < d' if r is odd, or d' < d if r is even.

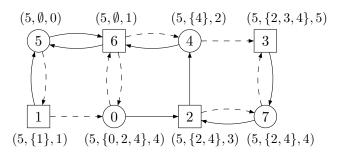


$$f_0, g_0: 1 \to 5, 5 \to 6, 6 \to 4, 4 \to 3, 3 \to 7, 7 \to 3, 0 \to 2, 2 \to 7$$



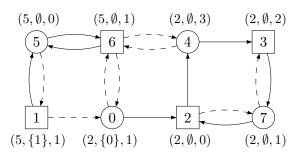
Improve $f: 4 \to 6$ and $7 \to 2$

Best counterstrategy: $1 \rightarrow 5, 6 \rightarrow 5, 2 \rightarrow 4, 3 \rightarrow 7$.



Improve: $4 \rightarrow 3$

Best counterstrategy does not change.



$$W_0 = \{0, 2, 3, 4, 7\}$$

 $W_1 = \{1, 5, 6\}$

Theorem (Vöge, Jurdzinski)

With the valuation by play profiles, the strategy algorithm terminates producing strategies f and g for Players 0 and 1 such that

- ▶ $s \in W_0$ ($s \in W_1$) iff the play $G_{f,g}$ ends in a loop with even (respectively, odd) lowest state
- ▶ f and g are winning strategies for Player 0, respectively 1, from the states in W_0 , respectively W_1 .

Complexity Properties:

- ► Each improvement round costs polynomial time
- ► The number of improvement steps is bounded by the number of possible strategies
- ▶ Overall improvement steps?

