The McNaughton Theorem



McNaughton Theorem

Theorem 1 Let > be an alphabet. Any recognizable subset of X% can be

recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset
construction to obtain a Rabin automaton equivalent to a given Buchi

automaton. The Safra algorithm is optimal 20(logn),

This proves that recognizable w-languages are closed under complement
(Biichi Theorem).



Oriented Trees

Let > be an alphabet of labels.

An oriented tree is a pair of partial functions ¢ = ([, s):
e [: N — X denotes the labels of the nodes

e s: N — N* gives the ordered list of children of each node

dom(l) = dom/(s) = dom(t)

< denotes the successor, and < the lexicographical ordering on tree

positions



Safra Trees

Let A= (S,I,T,F) be a Biichi automaton.

A Safra tree is a pair (t,m), where t is a finite oriented tree labeled with
non-empty subsets of S, and m C dom(t) is the set of marked positions,
such that:

e cach marked position is a leaf

e for each p € dom(t), the union of labels of its children is a strict
subset of t(p)

e for each p,q € dom(t), if p £ g and g £ p then t(p) Nt(q) =0
Proposition 1 A Safra tree has at most | S| nodes.

rip) = tip)\ |0

q<p

[dom@®)] = > 1< Y |rp)l<]S]

pedom(t) pedom(t)



Initial State

We build a Rabin automaton B = (Sg,ip,Tx,{2p), where:
e Sp is the set of all Safra trees (t,m) labeled with subsets of S

e ip = (t,m) is the Safra tree defined as either:
— dom(t) ={el,t(e)=Tandm=0if INEF =10
— dom(t) ={e},t(e) =T and m={e} if I C F
— dom(t) = {e,0t(e) =1, t(0) =INFand m={0}if INF #£ ()

Do F




Classical Subset Move

[Step 1] (t1,mq) is the tree with dom(t1) = dom(t), m; = 0, and
ti(p) ={s" | s = s, sct(p)}, for all p € dom(t)
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Spawn New Children

[Step 2] (to, mo) is the tree such that, for each p € dom(ty), if
t1(p) N F # () we add a new child to the right, identified by the first
available id, and labeled t1(p) N F', and ms is the set of all such children
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Horizontal Merge

[Step 3] (t3, m3) is the tree with dom(t3) = dom(tz), ms = ms, such that,
for all p € dom(ts), t3(p) = ta(p) \Uq-<pt2( )




Delete Empty Nodes

[Step 4] (t4,my4) is the tree such that dom(ty) = dom(t3) \ {p | t3(p) = 0}
and my =ms \ {p | t3(p) = 0}




Vertical Merge

[Step 5] (t5,ms5) is ms = mg UV, dom(ts) = dom(ts) \{q | p €V, p < q},
V =A{p € dom(ts) | talp) = U, ta(0)}
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Accepting Condition

The Rabin accepting condition is defined as
Qp ={(Ng: ) | ¢ € Uy imyes,, dom(t)}, where:

o Ny={{t;m) € Sp | q¢&dom(t)}

o P,={({t,m) e Sp|qgem}
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Op = {({Ri},{Ra}), {Rao}, {R1})}




Example




Correctness of Safra Construction

Lemma 1 For0<i<n-—1, S;41 CT(S;,a;+1). Moreover, for every

q € Sy, there is a path in A starting in some qg € Sy, ending in q and

visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path

in A (Konig’s Lemma))



Correctness of Safra Construction

Conversely, an infinite accepting path of A over u = agaias . ..
aQ o
™. o —q1 — q2 ...
corresponds to a unique infinite path of B:
ip=Ry~> R ~> Ry...

where each ¢; belongs to the root of R;

If the root is marked infinitely often, then u is accepted. Otherwise, let ng
be the largest number such that the root is marked in R,,. Let m > ng be

the smallest number such that g, is repeated infinitely often in 7.

Since q,, € F' it appears in a child of the root. If it appears always on the
same position p,,, then the path is accepting. Otherwise it appears to the
left of p,, from some n; on (step 3). This left switch can only occur a

finite number of times.



Complexity of the Safra Construction

Given a Biichi automaton with n states, how many states we need for an

equivalent Rabin automaton?

90(nlogn)

e The upper bound is states

e The lower bound is of at least n! states



Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree (t,m) can be uniquely described by the functions:

e S— {0,...,n} gives for each s € S the characteristic position
p € dom(t) such that s € t(p), and s does not appear below p

e {1,...,n} — {0,1} is the marking function
e {1,....,n} —{0,...,n} is the parent function

e {1,...,n} — {0,...,n} is the older brother function

Altogether we have at most (n 4 1)"-2" - (n+1)"- (n+ 1)* < (n + 1)*"

Safra trees, hence the upper bound is 20(nlogn).



The Language L,

a € Ly, if there exist i1,...,7, € {1,...,n} such that

.. .. ag...f
® «j = 11 is the first occurrence of ¢7; in o and g9 — ¢;,
e the pairs 7179,1913,...,1,%1 appear infinitely often in «.

Example 1
(3#324#21#1)¥ € Ls

(312#)“ & L3



The Language L,

Lemma 2 (Permutation) For each permutation iy,19,...,1, of
1,2,...,n, the infinite word (i1ia...in#)" & L.

Lemma 3 (Union) Let A = (S,4,T,82) be a Rabin automaton with
Q={(Ny,P1),...,(Ng, Px)} and p1, p2, p be runs of A such that

inf(p1) Uinf(p2) = inf(p)

If p1 and ps are not successful, then p is not successful either.



Proving the n! Lower Bound

Suppose that A recognizes L,,. We need to show that A has > n! states.

Let o = 11,29,...,7, and B8 = j1, 72, ..., Jn be two permutations of
1,2,...,n. Then the words (i1iz...in#)* and (j1J2 ... n#)“ are not

accepted.

Let po, pg be the non-accepting runs of A over o and (3, respectivelly.

Claim 1 inf(py) Ninf(pg) =0

Then A must have > n! states, since there are n! permutations.



Proving the n! Lower Bound

By contradiction, assume ¢ € inf(p,) Ninf(pg). Then we can build a run p

such that inf(p) = inf(p1) Uinf(p2) and «, 8 appear infinitely often. By
the union lemma, p is not accepting.

i1 eee Tk—1 Uk ka4 A B Y . in,
i - Jk=1 Jk Jk+1 oo Jr—1  Jr I £
Uk Ukl --- U =Jk Jk+ls  e- Jr—1 Jr =1k
The new word is accepted since the pairs txte 1,y JkJktls-- - Jr—1%k

occur infinitely often. Contradiction with the fact that p is not accepting.



Buchi Complementation Theorem



Biuchi Complementation Theorem

Theorem 2 For every Buchi automaton A there exists a Btchi
automaton B such that L(A) = L(B).

Already a consequence of McNaughton Theorem, since from A we can

build a Rabin automaton R, complement it to R, and build B from R.

Next we present a direct proof.



Congruences

Definition 1 An equivalence relation R C X* X X* is said to be a

left-congruence ff for all u,v,w € X* we have u = v = wu = wv.

Definition 2 An equivalence relation R C X* x X* is said to be a

right-congruence ff for all u,v,w € X* we have u R v = uw R vw.

Definition 3 An equivalence relation R C X* x X* is said to be a

congruence iff it is both a left- and a right-congruence.

Ex: the Myhill-Nerode equivalence ~7, is a right-congruence.



Congruences

Let A= (S,I,T,F) be a Biichi automaton and s,s" € S.

w

Wse ={weX*|s—s'}

For s.s' € S and w € 2*. we denote s =% s iff s = s’ visitine a state
b 9 w g

from F'.
sts,:{wez* s =i §')

For any two words u,v € ¥* we have v = v iff for all 5,5’ € S we have:
u.oo v
e s~ 5 < s— s, and

e s =g = s b4

The relation = is a congruence of finite index on X*



Congruences

Let |w]~ denote the equivalence class of w € ¥* w.r.t. =,

Lemma 4 For any w € ¥*, [w]|~ is the intersection of all sets of the form
Ws s, wk Ws s, WSFS,, containing w.

s,s”

Tw= () Wewn () Wi () Wean () WL,

F
’UJEWS,S/ wEWs,s/ wEWs,s’ wEWst/

We show that [w]~ =T,,.

“C” If u = w then clearly u € T,,.



Congruences

“O” Let u € T,

o if s = &, then w € Ws ¢, hence u € Wy o, then s = s as well.

o if s £ &, then w € Ws ¢, hence u € Wy o, then s £ s
Also,

o if s X s then w € W, hence u € Wt then s =L s’ as well.

s,s’? s,s’?

o if s A1 s then w € Wfs,, hence u € WSFS,, then s AL 5.

Then v = w.

This lemma gives us a way to compute the =-equivalence classes.



Outline of the proof

We prove that:
L(A) = ) vwe
VW@NL(A)AD

Y

where V, W are =-equivalence classes

Then we have
S9N\ L(A) = ) vwe
VIWeNL(A)=0

Finally we obtain an algorithm for complementation of Biichi automata



Saturation

Definition 4 A congruence relation R C X* x X* saturates an
w-language L iff for all R-equivalence classes V and W, if VIWW¥ N L # ()
then VW C L.

Lemma 5 The congruence relation = saturates L(A).



Every word belongs to some VW%

Let o € X% be an infinite word.

Since = is an equivalence relation, there exists a mapping ¢ : X7 — E;rg
such that p(u) = [u]/~, for all u € X7,

Then there exists a Ramseyan factorization of o = uvgvivs ... such that

p(v;) = [v] )~ for some v € X7 and for all i > 0.

Together with the saturation lemma, this proves

L(A) = ) vwe
VW@NL(A)AD



Complementation of Buichi Automata

Theorem 3 For any Brtichi automaton A there exists a Biicht automaton

A such that L(A) =X\ L(A).

L(A) = ) vwe
VIWeNL(A)AD

where V, W are =-equivalence classes

S9N\ L(A) = ) vwe
VWenL(A)=0



Ramseyan Factorizations



Ramsey Theorem

Theorem 4 Let X be some countably infinite set and colour the subsets
of X of size n in c different colours. Then there exists some infinite subset
M of X such that the size n subsets of M all have the same colour.



A Particular Case of Ramsey Theorem

Let o € X% be an infinite word.

A factorization of « is an infinite sequence {a;}:°, of finite words such

that a = g1 ...

Let E be a finite set of colors and ¢ : X7 — E. A factorization

a = uvgU1vs ... is said to be Ramseyan for o if there exists e € E such
that

for all ¢ < j.
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A Particular Case of Ramsey Theorem

Theorem 5 Let o : X7 — E be a map from X7 into a finite set E. Then

every infinite word of X% admits a Ramseyan factorization for .

Let {U;}:°, be an infinite sequence of infinite subsets of N defined as:

Up = N
Uz = {nelU;| ela(minU;,n)) =e¢e;}

where e; € F is chosen such that the set U;4; is infinite (show the

existence of e;)

Since FE is finite, there exists an infinite subsequence of integers ig, 71, ...

such that ¢;, =¢e;;, = ... =e.

Then v; = a(n;;,n4,41) is the required factorization.



A Particular Case of Ramsey Theorem
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A Particular Case of Ramsey Theorem
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A Particular Case of Ramsey Theorem

- \\
// \\\
- ~
-~
- \\ 60
- ~N
g N
g N
g N
g N
g - T N
// - \\\\ N
-
N
/ // \\ .
- \60
VR N \
h \
/, < .
/, N = \\\\ .
N T S -~ .
/// ~ // \ \\
/ 7 N e \ ~ . \
N\ - - .
17 €0 - \ [ - _ -
S A T T T T~ \ - - ~ <~
) - N - - - _ S
// A z -7 \\\ P \\\‘
lﬂ \l - - |
1 LN A n! n! A n:{
N
N\~ P 2 3 ,
- - , /
\\ 61 , /
AN ,
\\\ y /
- /
\\ \\ - ,
\ \\\ ///61 ,
\ -_——_ = ,
S 7/
> 7/
A Ve
> 7
7
N .7 €1
> 7~
> -~
~ -~
~



A Particular Case of Ramsey Theorem
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