From Philosophical to Industrial Logic

Moshe Y. Vardi

Rice University
Entscheidungsproblem (The Decision Problem) [Hilbert-Ackermann, 1928]: Decide if a given first-order sentence is valid (dually, Satisfiable).

Church-Turing Theorem, 1936: The Decision Problem is unsolvable.

Classification Project: Identify decidable fragments of first-order logic.
- Monadic Class
- Bernays-Schönfinkel Class
- Ackermann Class
- Gödel Class (w/o =)
Monadic Logic

Monadic Class: First-order logic with \(= \) and monadic predicates – captures *syllogisms*.

- \((\forall x) P(x), (\forall x) (P(x) \rightarrow Q(x)) \models (\forall x) Q(x)\)

[Łowenheim, 1915]: The Monadic Class is decidable.

- **Proof**: Bounded-model property – if a sentence is satisfiable, it is satisfiable in a structure of bounded size.
- **Proof technique**: quantifier elimination.

Monadic Second-Order Logic: Allow second-order quantification on monadic predicates.

[Skolem, 1919]: Monadic Second-Order Logic is decidable – via bounded-model property and quantifier elimination.

Question: What about \(<\)?
Thread II: Logic and Automata

Two paradigms in logic:

• **Paradigm I: Logic** – declarative formalism
 – Specify properties of mathematical objects, e.g., \((\forall x, y, z)(\text{mult}(x, y, z) \leftrightarrow \text{mult}(y, x, z)) \) – commutativity.

• **Paradigm II: Machines** – imperative formalism
 – Specify computations, e.g., Turing machines, finite-state machines, etc.

Surprising Phenomenon: Intimate connection between logic and machines
Nondeterministic Finite Automata

\[A = (\Sigma, S, S_0, \rho, F) \]

- **Alphabet**: \(\Sigma \)
- **States**: \(S \)
- **Initial states**: \(S_0 \subseteq S \)
- **Nondeterministic transition function**: \(\rho : S \times \Sigma \rightarrow 2^S \)
- **Accepting states**: \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots, a_{n-1} \)

Run: \(s_0, s_1, \ldots, s_n \)
- \(s_0 \in S_0 \)
- \(s_{i+1} \in \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(s_n \in F \)

Recognition: \(L(A) \) – words accepted by \(A \).

Example: \(\bullet \quad 1 \quad \bullet \quad 0 \quad 0 \quad 1 \) – ends with 1’s

Fact: NFAs define the class \(\text{Reg} \) of regular languages.
Logic of Finite Words

View finite word $w = a_0, \ldots, a_{n-1}$ over alphabet Σ as a mathematical structure:
• Domain: $0, \ldots, n - 1$
• Binary relation: $<$
• Unary relations: $\{P_a : a \in \Sigma\}$

First-Order Logic (FO):
• Unary atomic formulas: $P_a(x)$ ($a \in \Sigma$)
• Binary atomic formulas: $x < y$

Example: $(\exists x)((\forall y)(\neg(x < y)) \land P_a(x))$ – last letter is a.

Monadic Second-Order Logic (MSO):
• Monadic second-order quantifier: $\exists Q$
• New unary atomic formulas: $Q(x)$
Theorem [Büchi, Elgot, Trakhtenbrot, 1957-8 (independently)]: MSO \equiv NFA

- Both MSO and NFA define the class Reg.

Proof: Effective

- From NFA to MSO ($A \mapsto \varphi_A$)
 - Existence of run – existential monadic quantification
 - Proper transitions and acceptance - first-order formula

- From MSO to NFA ($\varphi \mapsto A_\varphi$): closure of NFAs under
 - \textit{Union} – disjunction
 - \textit{Projection} – existential quantification
 - \textit{Complementation} – negation
NFA Complementation

Run Forest of A on w:

- Roots: elements of S_0.
- Children of s at level i: elements of $\rho(s, a_i)$.
- Rejection: no leaf is accepting.

Key Observation: collapse forest into a DAG – at most one copy of a state at a level; width of DAG is $|S|$.

Subset Construction Rabin-Scott, 1959:

- $A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c)$
- $F^c = \{T : T \cap F = \emptyset\}$
- $\rho^c(T, a) = \bigcup_{t \in T} \rho(t, a)$
- $L(A^c) = \Sigma^* - L(A)$
Complementation Blow-Up

\[A = (\Sigma, S, S_0, \rho, F), \ |S| = n \]
\[A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c) \]

Blow-Up: \(2^n\) upper bound

Can we do better?

Lower Bound: \(2^n\)
Sakoda-Sipser 1978, Birget 1993

\[L_n = (0 + 1)^*1(0 + 1)^{n-1}0(0 + 1)^* \]
- \(L_n\) is easy for NFA
- \(\overline{L_n}\) is hard for NFA
NFA Nonemptiness

Nonemptiness: \(L(A) \neq \emptyset \)

Nonemptiness Problem: Decide if given \(A \) is nonempty.

Directed Graph \(G_A = (S, E) \) of NFA \(A = (\Sigma, S, S_0, \rho, F) \):

- **Nodes**: \(S \)
- **Edges**: \(E = \{(s, t) : t \in \rho(s, a) \text{ for some } a \in \Sigma\} \)

Lemma: \(A \) is nonempty iff there is a path in \(G_A \) from \(S_0 \) to \(F \).

- Decidable in time linear in size of \(A \), using *breadth-first search* or *depth-first search*.
Satisfiability: \(\text{models}(\psi) \neq \emptyset \)

Satisfiability Problem: Decide if given \(\psi \) is satisfiable.

Lemma: \(\psi \) is satisfiable iff \(A_\psi \) is nonempty.

Corollary: MSO satisfiability is decidable.
- Translate \(\psi \) to \(A_\psi \).
- Check nonemptiness of \(A_\psi \).

Complexity:
- **Upper Bound**: Nonelementary Growth
 \[
 2 \cdot 2^n
 \]
 (tower of height \(O(n) \))
- **Lower Bound** [Stockmeyer, 1974]: Satisfiability of FO over finite words is nonelementary (no bounded-height tower).
Thread III: Sequential Circuits

Church, 1957: Use logic to specify sequential circuits.

Sequential circuits: $C = (I, O, R, f, g, R_0)$
- I: input signals
- O: output signals
- R: sequential elements
- $f : 2^I \times 2^R \rightarrow 2^R$: transition function
- $g : 2^R \rightarrow 2^O$: output function
- $R_0 \in 2^R$: initial assignment

Trace: element of $(2^I \times 2^R \times 2^O)\omega$

$t = (I_0, R_0, O_0), (I_1, R_1, O_1), \ldots$
- $R_{j+1} = f(I_j, R_j)$
- $O_j = g(R_j)$
Specifying Traces

View infinite trace \(t = (I_0, R_0, O_0), (I_1, R_1, O_1), \ldots \) as a mathematical structure:

- **Domain:** \(\mathbb{N} \)
- **Binary relation:** \(<\)
- **Unary relations:** \(I \cup R \cup O \)

First-Order Logic (FO):

- **Unary atomic formulas:** \(P(x) \) (\(P \in I \cup R \cup O \))
- **Binary atomic formulas:** \(x < y \)

Example: \((\forall x)(\exists y)(x < y \land P(y)) \) — \(P \) holds i.o.

Monadic Second-Order Logic (MSO):

- **Monadic second-order quantifier:** \(\exists Q \)
- **New unary atomic formulas:** \(Q(x) \)

Model-Checking Problem: Given circuit \(C \) and formula \(\varphi \); does \(\varphi \) hold in all traces of \(C \)?

Easy Observation: Model-checking problem reducible to satisfiability problem — use FO to encode the “logic” (i.e., \(f, g \)) of the circuit \(C \).
Büchi Automata

Büchi Automaton: $A = (\Sigma, S, S_0, \rho, F)$
- **Alphabet**: Σ
- **States**: S
- **Initial states**: $S_0 \subseteq S$
- **Transition function**: $\rho : S \times \Sigma \rightarrow 2^S$
- **Accepting states**: $F \subseteq S$

Input word: a_0, a_1, \ldots

Run: s_0, s_1, \ldots
- $s_0 \in S_0$
- $s_{i+1} \in \rho(s_i, a_i)$ for $i \geq 0$

Acceptance: F visited infinitely often

Fact: Büchi automata define the class ω-Reg of ω-regular languages.
Paradigm: Compile high-level logical specifications into low-level finite-state language

Compilation Theorem: [Büchi, 1960] Given an MSO formula φ, one can construct a Büchi automaton A_φ such that a trace σ satisfies φ if and only if σ is accepted by A_φ.

MSO Satisfiability Algorithm:

1. φ is satisfiable iff $L(A_\varphi) \neq \emptyset$

2. $L(\Sigma, S, S_0, \rho, F) \neq \emptyset$ iff there is a path from S_0 to a state $f \in F$ and a cycle from f to itself.

Corollary [Church, 1960]: Model checking sequential circuits wrt MSO specs is decidable.

Church, 1960: “Algorithm not very efficient” (nonelementary complexity, [Stockmeyer, 1974]).
Catching Bugs with A Lasso

Figure 1: Ashutosh’s Blog, November 23, 2005
Büchi Complementation

Problem: subset construction fails!

\[\rho(\{s\}, 0) = \{s, t\}, \rho(\{s, t\}, 0) = \{s, t\} \]

History

- Büchi’62: doubly exponential construction.
- SVW’85: \(16^{n^2}\) upper bound
- Safra’88: \(n^{2n}\) upper bound
- Michel’88: \((n/e)^n\) lower bound
- KV’97: \((6n)^n\) upper bound
- FKV’04: \((0.97n)^n\) upper bound
- Yan’06: \((0.76n)^n\) lower bound
- Schewe’09: \((0.76n)^n\) upper bound
Thread IV: Temporal Logic

Prior, 1914–1969, Philosophical Preoccupations:

- **Religion**: Methodist, Presbyterian, atheist, agnostic
- **Ethics**: “Logic and The Basis of Ethics”, 1949
- **Free Will, Predestination, and Foreknowledge**:
 - “The future is to some extent, even if it is only a very small extent, something we can make for ourselves”.
 - “Of what will be, it has now been the case that it will be.”
 - “There is a deity who infallibly knows the entire future.”

Mary Prior: “I remember his waking me one night [in 1953], coming and sitting on my bed, . . ., and saying he thought one could make a formalised tense logic.”

- **1957**: “Time and Modality”
Linear vs. Branching Time, A

• Prior’s first lecture on tense logic, Wellington University, 1954: linear time.

• Prior’s “Time and modality”, 1957: relationship between linear tense logic and modal logic.

• Sep. 1958, letter from Saul Kripke: “[I]n an indetermined system, we perhaps should not regard time as a linear series, as you have done. Given the present moment, there are several possibilities for what the next moment may be like – and for each possible next moment, there are several possibilities for the moment after that. Thus the situation takes the form, not of a linear sequence, but of a ’tree’. (Kripke was a high-school student, not quite 18, in Omaha, Nebraska.)
Linear vs. Branching Time, B

- **Linear time**: a system induces a set of traces

- *Specs*: describe traces

- **Branching time**: a system induces a trace tree

- *Specs*: describe trace trees
Linear vs. Branching Time, C

- Prior developed the idea into Ockhamist and Peircean theories of branching time (branching-time logic *without* path quantifiers)

Sample formula: $CKMpMqAMKpMqMKqMp$

- Burgess, 1978: “Prior would agree that the determinist sees time as a line and the indeterminist sees times as a system of forking paths.”
Linear vs. Branching Time, D

Philosophical Conundrum

• Prior:
 – Nature of course of time – branching
 – Nature of course of events – linear

• Rescher:
 – Nature of time – linear
 – Nature of course of events – branching
 – “We have ’branching in time’, not ’branching of time’”.

Linear time: Hans Kamp, Dana Scott and others continued the development of linear time during the 1960s.
Key Theorem:

- Kamp, 1968: Linear temporal logic with past and binary temporal connectives ("until" and "since") has precisely the expressive power of FO over the integers.
The Temporal Logic of Programs

Precursors:

• Prior: “There are practical gains to be had from this study too, for example in the representation of time-delay in computer circuits”

• Rescher & Urquhart, 1971: applications to processes (“a programmed sequence of states, deterministic or stochastic”)

“Big Bang 1” [Pnueli, 1977]:

• Future linear temporal logic (LTL) as a logic for the specification of non-terminating programs

• Temporal logic with “eventually” and “always” (later, with “next” and “until”)

• Model checking via reduction to MSO and automata

Crux: Need to specify ongoing behavior rather than input/output relation!
Linear Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977)

Main feature: time is implicit

- *next* φ: φ holds in the next state.
- *eventually* φ: φ holds eventually
- *always* φ: φ holds from now on
- *φ until ψ*: φ holds until ψ holds.

\[\pi, w \models next \varphi \text{ if } w \bullet \bullet \bullet \varphi \bullet \bullet \bullet \bullet \bullet \bullet \ldots \]

\[\pi, w \models \varphi \text{ until } \psi \text{ if } w \bullet \bullet \varphi \varphi \varphi \psi \bullet \bullet \bullet \psi \ldots \]
Examples

• always not (CS\textsubscript{1} and CS\textsubscript{2}): mutual exclusion (safety)

• always (Request implies eventually Grant): liveness

• always (Request implies (Request until Grant)): liveness
Expressive Power

- Gabbay, Pnueli, Shelah & Stavi, 1980: Propositional LTL has precisely the expressive power of FO over the naturals.
- Thomas, 1979: FO over naturals has the expressive power of star-free ω-regular expressions

Summary: LTL=FO=star-free ω-RE $<\text{MSO}=\omega$-RE

Meyer on LTL, 1980, in “Ten Thousand and One Logics of Programming”:

“The corollary due to Meyer – I have to get in my controversial remark – is that that [GPSS’80] makes it theoretically uninteresting.”
Computational Complexity

Recall: Satisfiability of FO over traces is non-elementary

Contrast with LTL:
- Wolper, 1981: LTL satisfiability is in EXPTIME.

Basic Technique: *tableau* (influenced by branching-time techniques)
Model Checking

"Big Bang 2" [Clarke & Emerson, 1981, Queille & Sifakis, 1982]: Model checking programs of size m wrt CTL formulas of size n can be done in time mn.

Linear-Time Response [Lichtenstein & Pnueli, 1985]: Model checking programs of size m wrt LTL formulas of size n can be done in time $m2^{O(n)}$ (tableau-based).

Seemingly:

- **Automata**: Nonelementary
- **Tableaux**: exponential
Exponential-Compilation Theorem:

[V. & Wolper, 1983–1986]

Given an LTL formula φ of size n, one can construct a Büchi automaton A_φ of size $2^{O(n)}$ such that a trace σ satisfies φ if and only if σ is accepted by A_φ.

<table>
<thead>
<tr>
<th>Automata-Theoretic Algorithms:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LTL Satisfiability:</td>
</tr>
<tr>
<td>φ is satisfiable iff $L(A_\varphi) \neq \emptyset$ (PSPACE)</td>
</tr>
<tr>
<td>2. LTL Model Checking:</td>
</tr>
<tr>
<td>$M \models \varphi$ iff $L(M \times A_{\neg \varphi}) = \emptyset$ ($m2^{O(n)}$)</td>
</tr>
</tbody>
</table>
Reduction to Practice

Practical Theory:
- Courcoubetis, V., Yannakakis & Wolper, 1989: Optimized search algorithm for explicit model checking
- Burch, Clarke, McMillan, Dill & Hwang, 1990: Symbolic algorithm for LTL compilation
- Clarke, Grumberg & Hamaguchi, 1994: Optimized symbolic algorithm for LTL compilation
- Gerth, Peled, V. & Wolper, 1995: Optimized explicit algorithm for LTL compilation

Implementation:
- COSPAN [Kurshan, 1983]: deterministic automata specs
- Spin [Holzmann, 1995]: Promela w. LTL
- SMV [McMillan, 1995]: SMV w. LTL

Satisfactory solution to Church’s problem?
Almost, but not quite, since $\text{LTL} < \text{MSO}=\omega$-RE.
Enhancing Expressiveness

- Wolper, 1981: Enhance LTL with grammar operators, retaining EXPTIME-ness (PSPACE [SC'82])
- V. & Wolper, 1983: Enhance LTL with automata, retaining PSPACE-completeness
- Sistla, V. & Wolper, 1985: Enhance LTL with 2nd-order quantification, losing elementariness
- V., 1989: Enhance LTL with fixpoints, retaining PSPACE-completeness

Bottom Line: ETL (LTL w. automata) = μTL (LTL w. fixpoints) = MSO, and has exponential- compilation property.
Thread V: Dynamic and Branching-Time Logics

Dynamic Logic [Pratt, 1976]:
- The $\Box \varphi$ of modal logic can be taken to mean “φ holds after an execution of a program step”.
- Dynamic modalities:
 - $[\alpha] \varphi$ – φ holds after all executions of α.
 - $\psi \to [\alpha] \varphi$ corresponds to Hoare triple $\{\psi\} \alpha \{\varphi\}$.

Propositional Dynamic Logic [Fischer & Ladner, 1977]: Boolean propositions, programs – regular expressions over atomic programs.

Satisfiability [Pratt, 1978]: EXPTIME – using tableau-based algorithm

Branching-Time Logic

From dynamic logic back to temporal logic:
The dynamic-logic view is clearly branching; what is the analog for temporal logic?

- Emerson & Clarke, 1980: correctness properties as fixpoints over computation trees
- Ben-Ari, Manna & Pnueli, 1981: branching-time logic UB; satisfiability in EXPTIME using tableau
- Clarke & Emerson, 1981: branching-time logic CTL; efficient model checking
- Emerson & Halpern, 1983: branching-time logic CTL* – ultimate branching-time logic

Key Idea: Prior missed path quantifiers
- \forall eventually p: on all possible futures, p eventually happen.
Linear vs. Branching Temporal Logics

- **Linear time**: a system generates a set of computations
- **Specs**: describe computations
- **LTL**: \(\text{always}(\text{request} \rightarrow \text{eventually} \text{ grant}) \)

- **Branching time**: a system generates a computation tree
- **Specs**: describe computation trees
- **CTL**: \(\forall \text{always} \ (\text{request} \rightarrow \forall \text{eventually} \text{ grant}) \)
Combining Dynamic and Temporal Logics

Two distinct perspectives:
• Temporal logic: state based
• Dynamic logic: action based

Symbiosis:
• Harel, Kozen & Parikh, 1980: Process Logic (branching time)
• V. & Wolper, 1983: Yet Another Process Logic (branching time)
• Harel and Peleg, 1985: Regular Process Logic (linear time)
• Henriksen and Thiagarajan, 1997: Dynamic LTL (linear time)

Tech Transfer:
• Beer, Ben-David & Landver, IBM, 1998: RCTL (branching time)
• Beer, Ben-David, Eisner, Fisman, Gringauze, Rodeh, IBM, 2001: Sugar (branching time)
Thread VI: From LTL to PSL

Model Checking at Intel

Prehistory:

- 1990: successful feasibility study using Kurshan’s COSPAN
- 1992: a pilot project using CMU’s SMV
- 1995: an internally developed (linear time) property-specification language

History:

- 1997: Development of 2nd-generation technology started (engine and language)
- 1999: BDD-based model checker released
- 2000: SAT-based model checker released
- 2000: ForSpec (language) released
Dr. Vardi Goes to Intel

1997: (w. Fix, Hadash, Kesten, & Sananes)

V.: How about LTL?
F., H., K., & S.: Not expressive enough.

V.: How about ETL? \(\mu TL \)?
F., H., K., & S.: Users will object.

1998 (w. Landver)

V.: How about ETL?
L.: Users will object.
L.: How about regular expressions?
V.: They are equivalent to automata!

RELTL: LTL plus dynamic modalities, interpreted linearly – \([e]\varphi\)

Easy: RELTL=ETL=\(\omega\)-RE

ForSpec: RELTL + hardware features (clocks and resets) [Armoni, Fix, Flaisher, Gerth, Ginsburg, Kanza, Landver, Mador-Haim, Singerman, Tiemeyer, V., Zbar]
From ForSpec to PSL

Industrial Standardization:
- Process started in 2000
- Four candidates: IBM’s Sugar, Intel’s ForSpec, Motorola’s CBV, and Verisity’s E.
- Fierce debate on linear vs. branching time

Outcome:
- Big political win for IBM (see references to PSL/Sugar)
- Big technical win for Intel
 - PSL is LTL + RE + clocks + resets
 - Branching-time extension as an acknowledgement to Sugar
 - Some evolution over time in hardware features
- Major influence on the design of SVA (another industrial standard)

Bottom Line: *Huge* push for model checking in industry.
Some Philosophical Points

• Science is a cathedral; we are the masons.

• There is no architect; outcome is unpredictable.

• Most of our contributions are smaller than we’d like to think.

• Even small contributions can have major impact.

• Much is forgotten and has to be rediscovered.