Notions of Automata Theory
Automata on Finite Words

A non-deterministic finite automaton (NFA) over \(\Sigma \) is a tuple \(A = \langle S, I, T, F \rangle \) where:

- \(S \) is a finite set of states,
- \(I \subseteq S \) is a set of initial states,
- \(T \subseteq S \times \Sigma \times S \) is a transition relation,
- \(F \subseteq S \) is a set of final states.

We denote \(T(s, \alpha) = \{ s' \in S \mid (s, \alpha, s') \in T \} \). When \(T \) is clear from the context we denote \((s, \alpha, s') \in T \) by \(s \xrightarrow{\alpha} s' \).
Determinism and Completeness

Definition 1 An automaton $A = \langle S, I, T, F \rangle$ is deterministic (DFA) iff $\|I\| = 1$ and, for each $s \in S$ and for each $\alpha \in \Sigma$, $\|T(s, \alpha)\| \leq 1$.

If A is deterministic we write $T(s, \alpha) = s'$ instead of $T(s, \alpha) = \{s'\}$.

Definition 2 An automaton $A = \langle S, I, T, F \rangle$ is complete iff for each $s \in S$ and for each $\alpha \in \Sigma$, $\|T(s, \alpha)\| \geq 1$.
Runs and Acceptance Conditions

Given a finite word $w \in \Sigma^*$, $w = \alpha_1\alpha_2\ldots\alpha_n$, a *run* of A over w is a finite sequence of states $s_1, s_2, \ldots, s_n, s_{n+1}$ such that $s_1 \in I$ and $s_i \xrightarrow{\alpha_i} s_{i+1}$ for all $1 \leq i \leq n$.

A run over w between s_i and s_j is denoted as $s_i \xrightarrow{w} s_j$.

The run is said to be *accepting* iff $s_{n+1} \in F$. If A has an accepting run over w, then we say that A *accepts* w.

The language of A, denoted $\mathcal{L}(A)$ is the set of all words accepted by A.

A set of words $S \subseteq \Sigma^*$ is *recognizable* if there exists an automaton A such that $S = \mathcal{L}(A)$.
Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has \textit{at most one run} for each input word.

Proposition 2 If A is complete, then it has \textit{at least one run} for each input word.
Determinization

Theorem 1 For every NFA A there exists a DFA A_d such that $\mathcal{L}(A) = \mathcal{L}(A_d)$.

Let $A_d = \langle 2^S, \{I\}, T_d, \{G \subseteq S \mid G \cap F \neq \emptyset\} \rangle$, where

$$(S_1, \alpha, S_2) \in T_d \iff S_2 = \{s' \mid \exists s \in S_1 . \ (s, \alpha, s') \in T\}$$

This definition is known as **subset construction**
On the Exponential Blowup of Complementation

Theorem 2 For every $n \in \mathbb{N}$, $n \geq 1$, there exists an automaton A, with $\text{size}(A) = n + 1$ such that no deterministic automaton with less than 2^n states recognizes the complement of $L(A)$.

Let $\Sigma = \{a, b\}$ and $L = \{uav \mid u, v \in \Sigma^*, |v| = n - 1\}$.

There exists a NFA with exactly $n + 1$ states which recognizes L.

Suppose that $B = \langle S, \{s_0\}, T, F \rangle$, is a (complete) DFA with $\|S\| < 2^n$ that accepts $\Sigma^* \setminus L$.
On the Exponential Blowup of Complementation

\[\| \{ w \in \Sigma^* \mid |w| = n \} \| = 2^n \text{ and } \| S \| < 2^n \text{ (by the pigeonhole principle)} \]

\[\Rightarrow \exists uav_1, ubv_2 \mid |uav_1| = |ubv_2| = n \text{ and } s \in S \cdot s_0 \xrightarrow{uav_1} s \text{ and } s_0 \xrightarrow{ubv_2} s \]

Let \(s_1 \) be the (unique) state of \(B \) such that \(s \xrightarrow{u} s_1 \).

Since \(|uav_1| = n \), then \(uav_1u \in L \Rightarrow uav_1u \notin \mathcal{L}(B) \), i.e. \(s \) is not accepting.

On the other hand, \(ubv_2u \notin L \Rightarrow ubv_2u \in \mathcal{L}(B) \), i.e. \(s \) is accepting, contradiction.
Completion

Lemma 1 For every NFA A there exists a complete NFA A_c such that $\mathcal{L}(A) = \mathcal{L}(A_c)$.

Let $A_c = \langle S \cup \{\sigma\}, I, T_c, F \rangle$, where $\sigma \not\in S$ is a new sink state. The transition relation T_c is defined as:

$$\forall s \in S \forall \alpha \in \Sigma . (s, \alpha, \sigma) \in T_c \iff \forall s' \in S . (s, \alpha, s') \not\in T$$

and $\forall \alpha \in \Sigma . (\sigma, \alpha, \sigma) \in T_c$.
Closure Properties

Theorem 3 Let $A_1 = \langle S_1, I_1, T_1, F_1 \rangle$ and $A_2 = \langle S_2, I_2, T_2, F_2 \rangle$ be two NFA. There exists automata \tilde{A}_1, A_\cup and A_\cap that recognize the languages $\Sigma^* \setminus L(A_1)$, $L(A_1) \cup L(A_2)$, and $L(A_1) \cap L(A_2)$ respectively.

Let $A' = \langle S', I', T', F' \rangle$ be the complete deterministic automaton such that $L(A_1) = L(A')$, and $\tilde{A}_1 = \langle S', I', T', S' \setminus F' \rangle$.

Let $A_\cup = \langle S_1 \cup S_2, I_1 \cup I_2, T_1 \cup T_2, F_1 \cup F_2 \rangle$.

Let $A_\cap = \langle S_1 \times S_2, I_1 \times I_2, T_\cap, F_1 \times F_2 \rangle$ where:

$$(\langle s_1, t_1 \rangle, \alpha, \langle s_2, t_2 \rangle) \in T_\cap \iff (s_1, \alpha, s_2) \in T_1 \text{ and } (t_1, \alpha, t_2) \in T_2$$
Decidability

Given automata A and B:

- **Membership** Given $w \in \Sigma^*$, $w \in \mathcal{L}(A)$?
- **Emptiness** $\mathcal{L}(A) = \emptyset$?
- **Equality** $\mathcal{L}(A) = \mathcal{L}(B)$?
- **Infinity** $\|\mathcal{L}(A)\| < \infty$?
- **Universality** $\mathcal{L}(A) = \Sigma^*$?

Theorem 4 The emptiness, equality, infinity and universality problems are decidable for automata on finite words.
Automata on Infinite Words
Definition of Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A non-deterministic Büchi automaton (NBA) over Σ is a tuple
$A = \langle S, I, T, F \rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $F \subseteq S$ is a set of final states.
Acceptance Condition

A run of a Büchi automaton is defined over an infinite word \(w : \alpha_1 \alpha_2 \ldots \) as an infinite sequence of states \(\pi : s_0 s_1 s_2 \ldots \) such that:

- \(s_0 \in I \) and
- \((s_i, \alpha_i+1, s_{i+1}) \in T \), for all \(i \in \mathbb{N} \).

\[
\inf(\pi) = \{ s \mid s \text{ appears infinitely often on } \pi \}
\]

Run \(\pi \) of \(A \) is said to be accepting iff \(\inf(\pi) \cap F \neq \emptyset \).

The language of \(A \), denoted \(\mathcal{L}(A) \), is the set of all words accepted by \(A \).

A language \(L \subseteq \Sigma^\omega \) is recognizable (or, equivalently rational) if there exists a Büchi automaton \(A \) such that \(L = \mathcal{L}(A) \).
Examples

Let $\Sigma = \{0, 1\}$. Define Büchi automata for the following languages:

1. $L = \{ \alpha \in \Sigma^\omega \mid 0 \text{ occurs in } \alpha \text{ exactly once} \}$
2. $L = \{ \alpha \in \Sigma^\omega \mid \text{after each } 0 \text{ in } \alpha \text{ there is } 1 \}$
3. $L = \{ \alpha \in \Sigma^\omega \mid \alpha \text{ contains finitely many } 1\text{’s} \}$
4. $L = (01)^*\Sigma^\omega$
5. $L = \{ \alpha \in \Sigma^\omega \mid 0 \text{ occurs on all even positions in } \alpha \}$
Closure Properties

Closure under union is like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Büchi automata is a complex result.

Deterministic BA are not closed under complement.
Closure under Intersection

Let $A_1 = \langle S_1, I_1, T_1, F_1 \rangle$ and $A_2 = \langle S_2, I_2, T_2, F_2 \rangle$

Build $A_\cap = \langle S, I, T, F \rangle$:

- $S = S_1 \times S_2 \times \{1, 2, 3\}$,
- $I = I_1 \times I_2 \times \{1\}$,
- the definition of T is the following:
 - $((s_1, s'_1, 1), a, (s_2, s'_2, 1)) \in T$ iff $(s_i, a, s'_i) \in T_i$, $i = 1, 2$ and $s_1 \not\in F_1$
 - $((s_1, s'_1, 1), a, (s_2, s'_2, 2)) \in T$ iff $(s_i, a, s'_i) \in T_i$, $i = 1, 2$ and $s_1 \in F_1$
 - $((s_1, s'_1, 2), a, (s_2, s'_2, 2)) \in T$ iff $(s_i, a, s'_i) \in T_i$, $i = 1, 2$ and $s'_1 \not\in F_2$
 - $((s_1, s'_1, 2), a, (s_2, s'_2, 3)) \in T$ iff $(s_i, a, s'_i) \in T_i$, $i = 1, 2$ and $s'_1 \in F_2$
 - $((s_1, s'_1, 3), a, (s_2, s'_2, 1)) \in T$ iff $(s_i, a, s'_i) \in T_i$, $i = 1, 2$
- $F = S_1 \times S_2 \times \{3\}$
The Emptiness Problem

Theorem 5 Given a Büchi automaton A, $\mathcal{L}(A) \neq \emptyset$ iff there exist $u, v \in \Sigma^*$, $|u|, |v| \leq \|A\|$, such that $uv^\omega \in \mathcal{L}(A)$.

In practical terms, A is non-empty iff there exists a state s which is reachable both from an initial state and from itself.

Q: Is the membership problem decidable for Büchi automata?
Deterministic Büchi Automata

ω-languages recognized by NBA ⊃ ω-languages recognized by DBA

Q: Why classical subset construction does not work for Büchi automata?

Let $A = \langle S, I, T, F \rangle$ and $A_d = \langle 2^S, \{I\}, T_d, \{Q \mid Q \cap F \neq \emptyset\} \rangle$.

Let $u_0u_1u_2 \ldots \in \mathcal{L}(A)$ be an infinite word. In A_d this gives:

$I \xrightarrow{u_0} Q_1 \xrightarrow{u_1} Q_2 \xrightarrow{u_2} \ldots$

where each $Q_i \cap F$. However this does not necessarily correspond to an accepting path in A!
Deterministic Büchi Automata

Let \(W \subseteq \Sigma^* \). Define \(\overrightarrow{W} = \{ \alpha \in \Sigma^\omega \mid \alpha(0, n) \in W \text{ for infinitely many } n \} \)

Theorem 6 A language \(L \subseteq \Sigma^\omega \) is recognizable by a deterministic Büchi automaton iff there exists a rational language \(W \subseteq \Sigma^* \) such that \(L = \overrightarrow{W} \).

If \(L = \mathcal{L}(A) \) then \(W = \mathcal{L}(A') \) where \(A' \) is the DFA with the same definition as \(A \), and with the finite acceptance condition.
Deterministic Büchi Automata

Theorem 7 There exists a Büchi recognizable language that can be recognized by no deterministic Büchi automaton.

\[\Sigma = \{a, b\} \text{ and } L = \{ \alpha \in \Sigma^\omega \mid \#_a(\alpha) < \infty \} = \Sigma^* b^\omega. \]

Suppose \(L = \overrightarrow{W} \) for some \(W \subseteq \Sigma^* \).

\[b^\omega \in L \Rightarrow b^{n_1} \in W \]

\[b^{n_1} ab^\omega \in L \Rightarrow b^{n_1} ab^{n_2} \in W \]

\[\ldots \]

\[b^{n_1} ab^{n_2} a \ldots \in \overrightarrow{W} = L, \text{ contradiction.} \]
Deterministic BA are not closed under complement

Theorem 8 There exists a DBA A such that no DBA recognizes the language $\Sigma^\omega \setminus \mathcal{L}(A)$.

$\Sigma = \{a, b\}$ and $L = \{\alpha \in \Sigma^\omega \mid \#_a(\alpha) < \infty\} = \Sigma^* b^\omega$.

Let $V = \Sigma^* a$. There exists a DFA A such that $\mathcal{L}(A) = V$.

There exists a deterministic Büchi automaton B such that $\mathcal{L}(A) = \overrightarrow{V}$

But $\Sigma^\omega \setminus \overrightarrow{V} = L$ which cannot be recognized by any DBA.
Complementation of non-deterministic BA

- Languages recognized by non-deterministic BA are closed under complement
- Original proof by Büchi using Ramsey Theorem
- Optimal $2^{O(n \log n)}$ complexity by Safra Algorithm
- Lower bound of $n!$
LTL Model Checking
System verification using LTL

• Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often).

• Given an LTL formula φ over a set of atomic propositions \mathcal{P}, specifying all bad behaviors, we build a Büchi automaton A_φ that accepts all sequences over $2^\mathcal{P}$ satisfying φ.

• Check whether $\mathcal{L}(A_\varphi) \cap \mathcal{L}(K) = \emptyset$. In case it is not, we obtain a counterexample.

• Alternatively, if φ specifies all good behaviors, we check $\mathcal{L}(A_{\neg\varphi}) \cap \mathcal{L}(K) = \emptyset$.
Generalized Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A = \langle S, I, T, \mathcal{F} \rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $\mathcal{F} = \{F_1, \ldots, F_k\} \subseteq 2^S$ is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all $1 \leq i \leq k$, we have

$$\inf(\pi) \cap F_i \neq \emptyset$$
GBA and BA are equivalent

Let $A = \langle S, I, T, \mathcal{F} \rangle$, where $\mathcal{F} = \{ F_1, \ldots, F_k \}$.

Build $A' = \langle S', I', T', F' \rangle$:

- $S' = S \times \{1, \ldots, k\}$,
- $I' = I \times \{1\}$,
- $(\langle s, i \rangle, a, \langle t, j \rangle) \in T'$ iff $(s, t) \in T$ and:
 - $j = i$ if $s \not\in F_i$,
 - $j = (i \mod k) + 1$ if $s \in F_i$.
- $F' = F_1 \times \{1\}$.
The idea of the construction

Let $K = \langle S, s_0, \rightarrow, L \rangle$ be a Kripke structure over a set of atomic propositions P, $\pi : \mathbb{N} \rightarrow S$ be an infinite path through K, and φ be an LTL formula. To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.

Then $K, \pi \models \varphi$ if such a labeling exists.
Negation Normal Form

- Negation occurs only on atomic propositions

\[\neg(\varphi U \psi) = \neg\varphi R \neg\psi \]
\[\neg(\varphi R \psi) = \neg\varphi U \neg\psi \]
\[\neg\Box \varphi = \Diamond \neg\varphi \]
\[\neg\Diamond \varphi = \Box \neg\varphi \]

- Example

\[\neg\Box p \lor \Diamond (\neg(a U b \land \Box c)) = \Diamond \neg p \lor \Diamond (\neg a R \neg b \lor \Diamond \neg c) \]
Closure

Let ϕ be an LTL formula written in negation normal form.

The closure of ϕ is the set $Cl(\phi) \in 2^{L(LTL)}$:

- $\phi \in Cl(\phi)$
- $\bigcirc \psi \in Cl(\phi) \Rightarrow \psi \in Cl(\phi)$
- $\psi_1 \cdot \psi_2 \in Cl(\phi) \Rightarrow \psi_1, \psi_2 \in Cl(\phi)$, for all $\cdot \in \{\land, \lor, U, R\}$.

Example 1 $Cl(\Diamond p) = Cl(\top U p) = \{\Diamond p, p, \top\}\Box$

Q: What is the size of the closure relative to the size of ϕ?
Labeling rules

Given a path $\pi : \mathbb{N} \rightarrow 2^P$ in a Kripke structure $K = \langle S, s_0, \rightarrow, L \rangle$ and φ, we define the labeling $\tau : \mathbb{N} \rightarrow 2^{Cl(\varphi)}$ as follows:

- for $p \in P$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \not\in \pi(i)$

- if $\psi_1 \land \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ and $\psi_2 \in \tau(i)$

- if $\psi_1 \lor \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ or $\psi_2 \in \tau(i)$
Labeling rules

\[\varphi \mathcal{U} \psi \iff \psi \lor (\varphi \land \Box(\varphi \mathcal{U} \psi)) \]
\[\varphi \mathcal{R} \psi \iff \psi \land (\varphi \lor \Box(\varphi \mathcal{R} \psi)) \]

- if \(\Box \psi \in \tau(i) \) then \(\psi \in \tau(i+1) \)

- if \(\psi_1 \mathcal{U} \psi_2 \in \tau(i) \) then either \(\psi_2 \in \tau(i) \), or \(\psi_1 \in \tau(i) \) and \(\psi_1 \mathcal{U} \psi_2 \in \tau(i+1) \)

- if \(\psi_1 \mathcal{R} \psi_2 \in \tau(i) \) then \(\psi_2 \in \tau(i) \) and either \(\psi_1 \in \tau(i) \) or \(\psi_1 \mathcal{R} \psi_2 \in \tau(i+1) \)
Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above

- $\varphi \in \tau(0)$, and

- if $\psi_1 \mathcal{U} \psi_2 \in \tau(i)$, then for some $j \geq i$, $\psi_2 \in \tau(j)$ (the eventuality condition)
Example

\[\pi: \quad p \quad p \quad p \quad \ldots \]

\hline
\[\tau: \quad p \cup q \quad p \cup q \quad p \cup q \quad p \cup q \quad \ldots \]

\begin{align*}
& p \\
& p \\
& p \\
& p \\
& \bigcirc(p \cup q) \quad \bigcirc(p \cup q) \quad \bigcirc(p \cup q)
\end{align*}
Building the GBA $A_\varphi = \langle S, I, T, F \rangle$

The automaton A_φ is the set of labeling rules + the eventuality condition(s)!

- $\Sigma = 2^P$ is the alphabet
- $S \subseteq 2^{Cl(\varphi)}$, such that, for all $s \in S$:
 - $\varphi_1 \land \varphi_2 \in s \Rightarrow \varphi_1 \in s$ and $\varphi_2 \in s$
 - $\varphi_1 \lor \varphi_2 \in s \Rightarrow \varphi_1 \in s$ or $\varphi_2 \in s$
- $I = \{s \in S \mid \varphi \in s\}$,
- $(s, \alpha, t) \in T$ iff:
 - for all $p \in P$, $p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \notin \alpha$,
 - $\bigcirc \psi \in s \Rightarrow \psi \in t$,
 - $\psi_1 U \psi_2 \in s \Rightarrow \psi_2 \in s$ or $[\psi_1 \in s$ and $\psi_1 U \psi_2 \in t]$
 - $\psi_1 R \psi_2 \in s \Rightarrow \psi_2 \in s$ and $[\psi_1 \in s$ or $\psi_1 R \psi_2 \in t]$
Building the GBA $A_\phi = \langle S, I, T, F \rangle$

• for each eventuality $\phi U \psi \in Cl(\phi)$, the transition relation ensures that this will appear until the first occurrence of ψ

• it is sufficient to ensure that, for each $\phi U \psi \in Cl(\phi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi U \psi$ and ψ appear

• let $\phi_1 U \psi_1, \ldots \phi_n U \psi_n$ be the “until” subformulae of ϕ

$F = \{F_1, \ldots, F_n\}$, where:

$$F_i = \{s \in S \mid \phi_i U \psi_i \in s \text{ and } \psi_i \in s \text{ or } \phi_i U \psi_i \not\in s\}$$

for all $1 \leq i \leq n$.
Conclusion of the second part

- Model checking is a **push-button** verification technique
- The main limitation is the **size** of the system’s model
- Practical for **hardware systems**: boolean variables, finite-state models
- Difficult for **software systems**: integers, pointers, recursive data structures
- There are several methods to fight state explosion:
 - **finite-state systems**: partial-order reductions, symmetry reductions
 - **infinite-state systems**: symbolic representations (automata, logic), abstract interpretation, compositional techniques
- **Verification in industry**:
 - hardware: Cadence, Synopsis, IBM, Intel, ...
 - software: AbsInt, GrammaTech, Coverity, Polyspace, Monoidics, ...