Automata-Theoretic Model Checking of Reactive
Systems

Radu losif
Verimag/CNRS (Grenoble, France)

Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-llan University, Israel)

Ensuring Correctness of Hw/Sw Systems

e Uses logic to specify correctness properties, e.g.:
— the program never crashes
— the program always terminates
— every request to the server is eventually answered
— the output of the tree balancing function is a tree, provided the input
Is also a tree ...
e Given a logical specification, we can do either:
— VERIFICATION: prove that a given system satisfies the specification
— SYNTHESIS: build a system that satisfies the specification

Approaches to Verification

e THEOREM PROVING: reduce the verification problem to the satisfiability
of a logical formula (entailment) and invoke an off-the-shelf theorem

prover to solve the latter
— Floyd-Hoare checking of pre-, post-conditions and invariants

— Certification and Proof-Carrying Code

e MODEL CHECKING: enumerate the states of the system and check that

the transition system satisfies the property
— explicit-state model checking (SPIN)
— symbolic model checking (SMV)

e COMBINED METHODS:
— static analysis (ASTREE)
— predicate abstraction (SLAM, BLAST)

Model Checking Real-Life Systems

e MODEL EXTRACTION:

— give precise semantics (meaning) to what the system does and how it

does it

— the result is a (possibly infinite) directed graph in which the nodes
denote states and the edges denote transitions

— the model is an abstraction of the original system, i.e. it has more
behaviors
e MODEL VERIFICATION:
1. check whether the model satisfies a given property
2. if no error was found, stop and report OK

3. otherwise, check if the error is feasible in the original system
— if yes, report ERROR
— otherwise, refine the abstraction, by excluding the spurious behavior
and goto 1

Safety vs. Liveness

e Safety : something bad never happens

A counterexample is an finite execution leading to something bad

happening

Example: the program does not dereference any null pointers

e Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good happens

Example: the function terminates on any given input

Modeling Systems

Systems Dichotomies

e Deterministic/Non-deterministic

e Sequential/Concurrent

— synchronous/asynchronous communication between processes

e Hardware/Software/Embedded
— Hw is always finite-state (boolean data)

— Sw is considered infinite (integers, recursive data structures, etc.)

e Transformational/Reactive
— a transformational system takes input, computes output and stops

— a reactive system interacts continuously with the environment

Problems in Systems Modeling

e Representing states

— local /global components

e Granularity of actions

— what are the atomic transitions ?

e Representing concurrency
— one transition at a time

— coinciding transitions

Modeling States

o V ={xg,x1,22...} is a set of variables ranging over some domain

(bool,int,...)

e ©(xp,x1,...)Is a parameterized assertion over V e.g.,

ro < 10, 1 < a9+ 23,...

e A state is an assignment of values to the variables e.g.,
s(xg) =2, s(x1) =3, s(xa) =5,...

e s = o iff ¢ is true under s

Atomic Transitions

e An atomic transition is a small piece of code such that no smaller piece

of code is observable
e Question: is & < x + 1 observable ?

e Answerl: yes, if x is a register and the transition is executed using an

inc machine command

e Answer2: yes, if x is variable local to a process, which is not visible to

other processes

int a = 0;

P1: load R1, a P2: load R2, a
inc R1 inc R2

store R1, a store R2, a

Modeling Atomic Transitions

e Each transition G — A has two parts:

— the guard G: the enabling condition

— the action A: a multiple assignment

— the guard and action are executed in one atomic step
e Example: z >y —2' =y ANy ==z

e Frame rule: if a variable v’ does not appear in A then implicitly v = v

Initial Conditions

o V ={xg,x1,x2,...} are program variables
e The initial condition is an assumption ¥ (xg, x1, .. .)
e The program can start in any state s such that s =

e Example: x =0, >0, ...

Sequential Systems

o VV = {Zl?o,:El,ZEQ,...}

o P=(V,T,I), where
— T is a set of transitions G — A involving V

— [i1s an initial condition over I

e Example:
P={z,y},{True =2’ =r+y,y>0—y' =y— 1}, z=0Ay > 0)

e State space:

2) (9,1) (10,0)
3) (12,2) (14,1) (15,0)

Concurrent Systems: the interleaving model

o S=(P,Ps,...,P,), where P, = (V;,T;,;),i=1,...,n

o V =),V are called global variables

e [, =V;\V are called local variables

e An execution is a possibly infinite sequence of states sg, s1, s2,... such
that:
—soELAN...N1I,
— foreach ¢ =0,1,2,... there exists j € {1,...,n} and G — A € T}

such that s; =G and s;,s;11 E= A (s; is the valuation of unprimed

and s;11 the valuation of primed variables)
— l.e., exactly one process is executed at the time

— the frame rule applies to that specific process

Mutual Exclusion Example

o D= {{m,x, ;},{ti,t5,t5},m=0Ax=0A1l; =0), fori = 1,2 where
tt : L;=0Am=0 — ll=1Am'=1
ty - L=1Am=1 — Ul=2Am'=0A2'=a2+1

e A possible execution:
(1,0,1,0) (0,1,2,0)

(0,2,2,2)

(m7$7l17l2) . (0,0,0,0) i) i>
2 2
— —

(1,1,2,1)

Mutual Exclusion Example

e No deadlock: in every state there (0,0,0,0)
is at least one enabled transition 1 2
e Mutex: there is at most one pro- (1,0,1,0) (1,0,0,1)
cess in the critical section at any 1,
time
(0,1,2,0)
e No starvation: if a process at-
tempts to enter the critical sec- /\
tion, then eventually it will enter (1,1,2,1) (0,1,0,0)

VA A

e Future problem: the state space /X
is infinite!

Fairness

Global assumptions on the process scheduler:

e \Weak process fairness: if some process is enabled continuously from some

state, then it will be executed

e \Weak transition fairness: if some transition is enabled continuously from
some state, then it will be executed

e Strong process fairness: if some process is enabled infinitely often, then it

will be executed

e Strong transition fairness: if some transition is enabled infinitely often,

then it will be executed

Fairness Example

r=0ANy=0ANz2=0A0[1=0AIl=0

Pl1::= 0: x’=1 P2::= 0: while y=0 do
1: z’=z+1
[]
2: if x=1 then y’=1

Does P; terminate 7 Does P, terminate ?
e No fairness: nothing guaranteed
o \Weak fairness: P; terminates
e Strong process fairness: P; terminates

e Strong transition fairness: both P, and P» terminate

Linear Temporal Logic

Reasoning about infinite sequences of states

e Linear Temporal Logic is interpreted on infinite sequences of states

e Each state in the sequence gives an interpretation to the atomic

propositions

e [emporal operators indicate in which states a formula should be

Interpreted

Example 1 Consider the sequence of states:

{p,a} {—p,~q} {—p,a} {p,q})”

Starting from position 2, q holds forever. O

Kripke Structures

Let P ={p,q,r,...} be a finite alphabet of atomic propositions.

A Kripke structure is a tuple K = (5, sg, —, L) where:

e S is a set of states,
e sy € S a designated initial state,

e — : S X S s a transition relation,

o L:S — 2% is a labeling function.

Paths in Kripke Structures

A path in K is an infinite sequence ™ : sg, S1,S2 ... such that, for all 2 > 0,

we have Si — Si+1-

By 7(¢) we denote the i-th state on the path.

By m; we denote the suffix s;, ;11,812 ...

inf(7) = {s € S | s appears infinitely often on 7}

If S is finite and 7 is infinite, then inf(xw) # (.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:
e atomic proposition symbols p,q,r,...,
e boolean connectives =, V, A\, —, <>,

e temporal connectives (), 0,0, U, 'R.

The set of LTL formulae is defined inductively, as follows:
e any atomic proposition is a formula,

e if © and v are formulae, then = and p e 1), for @ € {V, A, — <1} are

also formulae.
e if ¢ and v are formulae, then (O, Op, O, WY and R are formulae,

e nothing else is a formula.

Temporal Operators

e () is read at the next time (in the next state)

e [is read always in the future (in all future states)

e < is read eventually (in some future state)

e ([is read until

e R iIs read releases

Linear Temporal Logic: Semantics

K,mE=p = p € L(mw(0))

KrnkE-p < K, ¢
KrnkEphYy <+— K,mE=pand K,7 =1
KrkEQp <+— K,m Eo
K,m = Uy <= there exists k € N such that K, 7, =%

and K,m; =pforall 0 <i <k

Derived meanings:
KrnEOp <— K,mE TUyp
K,r=Op < K, mE—-C-p
K.mlE¢RYy <= K7 (-pU=y)

Examples

e p holds throughout the execution of the system (p is invariant) : Op
e whenever p holds, ¢ is bound to hold in the future : O(p — <q)

e p holds infinitely often : OOp

e p holds forever starting from a certain point in the future : $Op

e O(p — (O(—qUUr)) holds in all sequences such that if p is true in a state,
then ¢ remains false from the next state and until the first state where r

Is true, which must occur.

e pRq : q is true unless this obligation is released by p being true in a

previous state.

Concurrent system specification in LTL

o Let S=(P,...,P,) be a concurrent system, where P; = (V;,T;, I;)
e Absence of deadlock: O\/%_, enabled(F;)
e Weak process fairness: A\;_; COenabled(P;) — Cexecute(F;)

e Strong process fairness: A\;_; OCenabled(P;) — $Cexecute(F;)

Conclusion of the first part

e Need a formal language (logic) to express queries about a system's

behavior: deadlock freedom, absence of starvation, fairness conditions,

etc.

e The global behavior of a system is modeled as a possibly infinite directed

graph, whose nodes are labeled with assertions
e System executions are possibly infinite paths through this graph

e Linear Temporal Logic is a powerful language to express properties of

system behaviors

