
Automata-Theoretic Model Checking of Reactive
Systems

Radu Iosif

Verimag/CNRS (Grenoble, France)

Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University, Israel)

Ensuring Correctness of Hw/Sw Systems

• Uses logic to specify correctness properties, e.g.:

– the program never crashes

– the program always terminates

– every request to the server is eventually answered

– the output of the tree balancing function is a tree, provided the input

is also a tree ...

• Given a logical specification, we can do either:

– VERIFICATION: prove that a given system satisfies the specification

– SYNTHESIS: build a system that satisfies the specification

Approaches to Verification

• THEOREM PROVING: reduce the verification problem to the satisfiability

of a logical formula (entailment) and invoke an off-the-shelf theorem

prover to solve the latter

– Floyd-Hoare checking of pre-, post-conditions and invariants

– Certification and Proof-Carrying Code

• MODEL CHECKING: enumerate the states of the system and check that

the transition system satisfies the property

– explicit-state model checking (SPIN)

– symbolic model checking (SMV)

• COMBINED METHODS:

– static analysis (ASTREE)

– predicate abstraction (SLAM, BLAST)

Model Checking Real-Life Systems

• MODEL EXTRACTION:

– give precise semantics (meaning) to what the system does and how it

does it

– the result is a (possibly infinite) directed graph in which the nodes

denote states and the edges denote transitions

– the model is an abstraction of the original system, i.e. it has more

behaviors

• MODEL VERIFICATION:

1. check whether the model satisfies a given property

2. if no error was found, stop and report OK

3. otherwise, check if the error is feasible in the original system

– if yes, report ERROR

– otherwise, refine the abstraction, by excluding the spurious behavior

and goto 1

Safety vs. Liveness

• Safety : something bad never happens

A counterexample is an finite execution leading to something bad

happening

Example: the program does not dereference any null pointers

• Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good happens

Example: the function terminates on any given input

Modeling Systems

Systems Dichotomies

• Deterministic/Non-deterministic

• Sequential/Concurrent

– synchronous/asynchronous communication between processes

• Hardware/Software/Embedded

– Hw is always finite-state (boolean data)

– Sw is considered infinite (integers, recursive data structures, etc.)

• Transformational/Reactive

– a transformational system takes input, computes output and stops

– a reactive system interacts continuously with the environment

Problems in Systems Modeling

• Representing states

– local/global components

• Granularity of actions

– what are the atomic transitions ?

• Representing concurrency

– one transition at a time

– coinciding transitions

Modeling States

• V = {x0, x1, x2 . . .} is a set of variables ranging over some domain

(bool,int,...)

• ϕ(x0, x1, . . .) is a parameterized assertion over V e.g.,

x0 < 10, x1 ≤ x2 + x3, . . .

• A state is an assignment of values to the variables e.g.,

s(x0) = 2, s(x1) = 3, s(x2) = 5, . . .

• s |= ϕ iff ϕ is true under s

Atomic Transitions

• An atomic transition is a small piece of code such that no smaller piece

of code is observable

• Question: is x← x+ 1 observable ?

• Answer1: yes, if x is a register and the transition is executed using an

inc machine command

• Answer2: yes, if x is variable local to a process, which is not visible to

other processes

int a = 0;

P1: load R1, a P2: load R2, a

inc R1 inc R2

store R1, a store R2, a

Modeling Atomic Transitions

• Each transition G→ A has two parts:

– the guard G: the enabling condition

– the action A: a multiple assignment

– the guard and action are executed in one atomic step

• Example: x > y → x′ = y ∧ y′ = x

• Frame rule: if a variable v′ does not appear in A then implicitly v′ = v

Initial Conditions

• V = {x0, x1, x2, . . .} are program variables

• The initial condition is an assumption ψ(x0, x1, . . .)

• The program can start in any state s such that s |= ψ

• Example: x = 0, x > 0, ...

Sequential Systems

• V = {x0, x1, x2, . . .}

• P = 〈V, T, I〉, where

– T is a set of transitions G→ A involving V

– I is an initial condition over I

• Example:

P = 〈{x, y}, {True→ x′ = x+ y, y > 0→ y′ = y − 1}, x = 0 ∧ y > 0〉

• State space:

(0, 3) (3, 2) (5, 1) (6, 0)

(0, 4) (4, 3) (7, 2) (9, 1) (10, 0)

(0, 5) (5, 4) (9, 3) (12, 2) (14, 1) (15, 0)

. . .

Concurrent Systems: the interleaving model

• S = 〈P1, P2, . . . , Pn〉, where Pi = 〈Vi, Ti, Ii〉, i = 1, . . . , n

• V =
⋂n

i=1
Vi are called global variables

• Li = Vi \ V are called local variables

• An execution is a possibly infinite sequence of states s0, s1, s2, . . . such

that:

– s0 |= I1 ∧ . . . ∧ In

– for each i = 0, 1, 2, . . . there exists j ∈ {1, . . . , n} and G→ A ∈ Tj

such that si |= G and si, si+1 |= A (si is the valuation of unprimed

and si+1 the valuation of primed variables)

– i.e., exactly one process is executed at the time

– the frame rule applies to that specific process

Mutual Exclusion Example

• Pi = 〈{m,x, li}, {ti1, t
i
2, t

i
3},m = 0 ∧ x = 0 ∧ li = 0〉, for i = 1, 2 where

ti1 : li = 0 ∧m = 0 → l′i = 1 ∧m′ = 1

ti2 : li = 1 ∧m = 1 → l′i = 2 ∧m′ = 0 ∧ x′ = x+ 1

ti3 : li = 2 → l′i = 0

• A possible execution:

(m,x, l1, l2) : (0, 0, 0, 0)
1
−→ (1, 0, 1, 0)

1
−→ (0, 1, 2, 0)

2
−→ (1, 1, 2, 1)

2
−→ (0, 2, 2, 2)

Mutual Exclusion Example

• No deadlock: in every state there

is at least one enabled transition

• Mutex: there is at most one pro-

cess in the critical section at any

time

• No starvation: if a process at-

tempts to enter the critical sec-

tion, then eventually it will enter

• Future problem: the state space

is infinite!

2

(0,1,0,0)

1 2

(0,0,0,0)

1 2

(0,1,2,0)

1

(1,0,0,1)(1,0,1,0)

1

(1,1,2,1)

2

Fairness

Global assumptions on the process scheduler:

• Weak process fairness: if some process is enabled continuously from some

state, then it will be executed

• Weak transition fairness: if some transition is enabled continuously from

some state, then it will be executed

• Strong process fairness: if some process is enabled infinitely often, then it

will be executed

• Strong transition fairness: if some transition is enabled infinitely often,

then it will be executed

Fairness Example

x = 0 ∧ y = 0 ∧ z = 0 ∧ l1 = 0 ∧ l2 = 0

P1::= 0: x’=1 P2::= 0: while y=0 do

1: z’=z+1

[]

2: if x=1 then y’=1

Does P1 terminate ? Does P2 terminate ?

• No fairness: nothing guaranteed

• Weak fairness: P1 terminates

• Strong process fairness: P1 terminates

• Strong transition fairness: both P1 and P2 terminate

Linear Temporal Logic

Reasoning about infinite sequences of states

• Linear Temporal Logic is interpreted on infinite sequences of states

• Each state in the sequence gives an interpretation to the atomic

propositions

• Temporal operators indicate in which states a formula should be

interpreted

Example 1 Consider the sequence of states:

{p, q} {¬p,¬q} ({¬p, q} {p, q})ω

Starting from position 2, q holds forever. 2

Kripke Structures

Let P = {p, q, r, . . .} be a finite alphabet of atomic propositions.

A Kripke structure is a tuple K = 〈S, s0,−→, L〉 where:

• S is a set of states,

• s0 ∈ S a designated initial state,

• −→ : S × S is a transition relation,

• L : S → 2P is a labeling function.

Paths in Kripke Structures

A path in K is an infinite sequence π : s0, s1, s2 . . . such that, for all i ≥ 0,

we have si −→ si+1.

By π(i) we denote the i-th state on the path.

By πi we denote the suffix si, si+1, si+2

inf(π) = {s ∈ S | s appears infinitely often on π}

If S is finite and π is infinite, then inf(π) 6= ∅.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

• atomic proposition symbols p, q, r, . . .,

• boolean connectives ¬,∨,∧,→,↔,

• temporal connectives ©,2,3,U ,R.

The set of LTL formulae is defined inductively, as follows:

• any atomic proposition is a formula,

• if ϕ and ψ are formulae, then ¬ϕ and ϕ • ψ, for • ∈ {∨,∧,→,↔} are

also formulae.

• if ϕ and ψ are formulae, then©ϕ, 2ϕ, 3ϕ, ϕUψ and ϕRψ are formulae,

• nothing else is a formula.

Temporal Operators

• © is read at the next time (in the next state)

• 2 is read always in the future (in all future states)

• 3 is read eventually (in some future state)

• U is read until

• R is read releases

Linear Temporal Logic: Semantics

K,π |= p ⇐⇒ p ∈ L(π(0))

K,π |= ¬ϕ ⇐⇒ K,π 6|= ϕ

K,π |= ϕ ∧ ψ ⇐⇒ K,π |= ϕ and K,π |= ψ

K,π |=©ϕ ⇐⇒ K,π1 |= ϕ

K,π |= ϕUψ ⇐⇒ there exists k ∈ N such that K,πk |= ψ

and K,πi |= ϕ for all 0 ≤ i < k

Derived meanings:

K,π |= 3ϕ ⇐⇒ K,π |= ⊤Uϕ

K,π |= 2ϕ ⇐⇒ K,π |= ¬3¬ϕ

K,π |= ϕRψ ⇐⇒ K,π |= ¬(¬ϕU¬ψ)

Examples

• p holds throughout the execution of the system (p is invariant) : 2p

• whenever p holds, q is bound to hold in the future : 2(p→ 3q)

• p holds infinitely often : 23p

• p holds forever starting from a certain point in the future : 32p

• 2(p→©(¬qUr)) holds in all sequences such that if p is true in a state,

then q remains false from the next state and until the first state where r

is true, which must occur.

• pRq : q is true unless this obligation is released by p being true in a

previous state.

Concurrent system specification in LTL

• Let S = 〈P1, . . . , Pn〉 be a concurrent system, where Pi = 〈Vi, Ti, Ii〉

• Absence of deadlock: 2
∨n

i=1
enabled(Pi)

• Weak process fairness:
∧n

i=1
32enabled(Pi)→ 3execute(Pi)

• Strong process fairness:
∧n

i=1
23enabled(Pi)→ 3execute(Pi)

Conclusion of the first part

• Need a formal language (logic) to express queries about a system’s

behavior: deadlock freedom, absence of starvation, fairness conditions,

etc.

• The global behavior of a system is modeled as a possibly infinite directed

graph, whose nodes are labeled with assertions

• System executions are possibly infinite paths through this graph

• Linear Temporal Logic is a powerful language to express properties of

system behaviors

