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Logics over the integers

Examples:

∀x ∃y ∃z : y > x ∧ y − x = 5z

∀x ∀y : ((y | x) ∧ (y | x+ 1))→ y ≤ 1

Motivation:

I Common framework/toolbox for problems from various
domains

I Growing software support:
SMT (satisfiability modulo theories) solvers

I Nice mathematics at the interface of several areas
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Periodic and ultimately periodic sets of integers

Suppose S ⊆ N.

S is periodic if there exists a p > 0 such that,
for all x ∈ N: x ∈ S iff x+ p ∈ S.

0 2 4 61 3 5 7

S is ultimately periodic if there exist N and p > 0 such that,
for all x ≥ N : x ∈ S iff x+ p ∈ S.

0 1 2 4 63 5 7
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Ultimately periodic sets in higher dimension
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Linear and semi-linear sets
[Parikh (1961)]

Vector b: base vector
Vectors P = {p1, . . . ,ps}: period vectors

}
generators

Linear set: |P | <∞

L(b, P ) = {b+ λ1p1 + . . .+ λsps :

λ1, . . . , λs ∈ N}

Rohit J. Parikh 5/30
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Linear and semi-linear sets
[Parikh (1961)]

Vector b: base vector
Vectors P = {p1, . . . ,ps}: period vectors

}
generators

Linear set: |P | <∞

L(b, P ) = {b+ λ1p1 + . . .+ λsps :

λ1, . . . , λs ∈ N}

Semi-linear set: |I|, |Pi| <∞
M =

⋃
i∈I

L(bi, Pi)
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Theorem (Ginsburg and Spanier, 1964)
Semi-linear sets = sets definable in Presburger arithmetic.

Seymour Ginsburg
Edwin H. Spanier
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Presburger arithmetic:

the first-order theory of integers with addition and order.

Mojżesz Presburger
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Semi-linear = definable in Presburger arithmetic
[Ginsburg and Spanier, 1964]

PA ⊆ Semi-linear:

∃x1 ∀x2 . . . ∃xk . ϕ(x)

where ϕ : Boolean combination of a · x ≤ b

I One inequality defines a semi-linear set

I Semi-linear is closed under Boolean operations

I Semi-linear is closed under projections

Corollary [Presburger, 1929]: Presburger arithmetic is decidable.

Semi-linear ⊆ ∃∗-PA: by definition.
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What about computational complexity?

Full Presburger arithmetic is elementary [Oppen, 1978]

∀∗∃∗-fragment is complete for coNEXP [Haase, 2014]

Integer programming (A · x ≥ c) in fixed dimension
is in P [Lenstra, 1984]

Quantified integer programming with k blocks
is complete for kth level of PH [C. & Haase, 2017]

. . . and many more results!
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Geometry of
A · x ≥ c
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Linear Algebra Linear Arithmetic

= ≤
Equations Inequalities

Points, lines, planes Rays, segments, polygons

Subspaces Polyhedra
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Convex hulls and cones

Convex hull
conv{f1,f2,f3,f4}

f1

f2

f3 f4

Finitely generated cone
cone{g1, g2}

g1

g2
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Integers Reals

Linear sets Cones

Hybrid linear sets Convex polyhedra

Semi-linear sets Polyhedral sets
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The Minkowski–Weyl theorem (1896, 1935)

Theorem
The following are equivalent:

1. P = {x : A · x ≥ c} for some matrix A and vector c; and

2. P = conv(F ) + cone(G) for some finite sets F , G.

“This classical result is an outstanding example of a fact which is
completely obvious to geometric intuition, but which wields
important algebraic content and is not trivial to prove.”
(R. T. Rockafellar, 1970)

In both translations 1⇒ 2 and 2⇒ 1:

I The blowup in size can be exponential.

I The size of all numbers stays polynomial.

15/30



The Minkowski–Weyl theorem (1896, 1935)
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f2

f3 f4
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g1
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Integer programming

Input: matrix A ∈ Zm×d, vector c ∈ Zm

Output: does there exist an x ∈ Zd that satisfies A · x ≥ c ?

NP-hard: encode SAT
In NP: small model property
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Geometry of integer programming

Theorem (von zur Gathen and Sieveking, 1978)
For any S ⊆ Zd, the following are equivalent:

1. S is a projection of {x ∈ Zk : A · x ≥ c} for some A ∈ Zm×k,
c ∈ Zm, and k ≥ d and

2. S = L(C,Q) for some finite sets C ⊆ Zd and Q ⊆ Zd.

In both translations 1⇒ 2 and 2⇒ 1:

I The blowup in size can be exponential.

I The size of all numbers stays polynomial.
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Linear, hybrid linear, and semi-linear sets

Vectors b in B: base vectors
Vectors P = {p1, . . . ,ps}: period vectors

}
generators

Linear set: |P | <∞
L(b, P ) = {b+ λ1p1 + . . .+ λsps :

λ1, . . . , λs ∈ N}

b

p1

p2
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generators

Linear set: |P | <∞
L(b, P ) = {b+ λ1p1 + . . .+ λsps :

λ1, . . . , λs ∈ N}

Hybrid linear set: |B|, |P | <∞

L(B,P ) =
⋃
b∈B

L(b, P )

Semi-linear set: |I|, |Bi|, |Pi| <∞

M =
⋃
i∈I

L(Bi, Pi)

20/30



Linear, hybrid linear, and semi-linear sets

b

p1

p2
b′

Linear < Hybrid linear < Semi-linear
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Integers Reals

Linear sets Cones

Hybrid linear sets Convex polyhedra

Semi-linear sets Polyhedral sets
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Geometry of integer programming
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Proof
[von zur Gathen and Sieveking, 1978]

x

=

∑
λifi +

∑
µjgj

(convF ) (coneG)

=
(∑

λifi +
∑

(µj − bµjc)gj
)
+
∑
bµjc gj

from bounded set from linear set

x ∈ L(C,Q).
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Geometry of integer programming

Theorem (von zur Gathen and Sieveking, 1978)
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Why geometry?
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Example: The universality problem

Does the given set coincide with Nd?

Motivation:

I Important special case of equivalence

I ∀ in logic

Computational complexity:

I For linear set: trivial

I For hybrid linear set: easy

I For semi-linear set: hard
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Beyond Presburger arithmetic

Additional operations (e.g., Kleene star)
[Piskac and Kuncak, 2008; Haase and Zetzsche, 2019]

Nonlinear predicates (e.g., divisibility)
[Lipshitz, 1978+, Lechner et al., 2015]

Counting problems and counting quantification (such as Härtig’s
quantifier)

[Schweikardt, 2005; Habermehl and Kuske, 2015]
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Open questions

What is the computational complexity
of the following decision problems?

Quantified integer programming with unbounded alternation
(between PSPACE and STA(∗, 2nO(1)

, n))
[C. & Haase, ICALP’17]

Short Presburger arithmetic with quantifier prefix ∃∀∃∃
[Nguyen and Pak, FOCS’17]

Thank you!
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