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Abstract
Array bound checking and array dependency analysis (for par-
allelization) have been widely studied. However, there are
much less results about analyzing properties of array contents.
In this paper, we propose a way of using abstract interpreta-
tion for discovering properties about array contents in some
restricted cases: one-dimensional arrays, traversed by simple
“for” loops. The basic idea, borrowed from [15], consists in
partitioning arrays into symbolic intervals (e.g., [1, i−1], [i, i],
[i + 1, n]), and in associating with each such interval I and
each array A an abstract variable AI ; the new idea is to con-
sider relational abstract properties ψ(AI , BI , ...) about these
abstract variables, and to interpret such a property pointwise
on the interval I: ∀` ∈ I, ψ(A[`], B[`], ...). The abstract se-
mantics of our simple programs according to these abstract
properties has been defined and implemented in a prototype
tool. The method is able, for instance, to discover that the re-
sult of an insertion sort is a sorted array, or that, in an array
traversal guarded by a “sentinel”, the index stays within the
bounds.

1 Introduction
Although array bound checking was a motivation of the very
first work on abstract interpretation [9], analyzing properties
of array contents was considered only recently. The reason is,
of course, that the general problem is difficult: array indexing
induces complex semantics, and in particular the possibility
of aliasing; moreover, since the size of an array can be large
or unknown, it represents a large or unbounded number of
variables. In this paper, we propose a way of using abstract
interpretation for discovering properties about array contents
in some restricted cases. First, we restrict ourselves to one-
dimensional arrays and “simple programs”, which manipulate
arrays only by sequential traversal: typically, for loops incre-
menting (or decrementing) their index at each iteration, and
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accessing arrays by simple expressions (constant translations)
of the loop index. Fig. 1 shows several examples of such “sim-
ple programs”, which will be used throughout the paper. Sec-
ond, we consider a restricted class of properties: while a quite
general kind of property about arrays A1, A2, . . . , Am could
be written

∀` ∈ D,ψ(A1[f1(`)], . . . , Am[fm(`)], x1, . . . , xp) (1)

where D is some set of values for indices, ψ is some scalar
property about content values, f1, . . . , fm are general index
functions, and x1, . . . , xp are scalar variables, we will only
consider properties of the form

∀` ∈ I, ψ(A1[`+ k1], . . . , Am[`+ km], x1, . . . , xp) (2)

where I is an interval, and k1, . . . , km are integer constants.
For instance, our method will discover automatically the

following properties:

• at the end of “Array maximum” (Fig. 1.a):

∀` ∈ [1, n], A[`] ≤ max (3)

• at the end of “Array copy” (Fig. 1.b):

∀` ∈ [1, n], A[`] = B[`] (4)

• at the end of “Insertion sort” (Fig. 1.c):

∀` ∈ [2, n], A[`] ≥ A[`− 1] (5)

So, in spite of severe restrictions both on programs and prop-
erties, our method allows interesting properties to be found
about non trivial programs.

Related work: The automatic analysis of properties of array
contents was considered only recently. [6, 18] study decidable
logics for expressing such properties. If we restrict ourselves
to automatic analysis, an important track initiated by [12] con-
cerns verification of programs with arrays using predicate ab-
straction [21, 20], possibly improved with counter-example
guided refinement [3] and Craig interpolants [19]. All these
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max := A[1] ;
for i := 2 to n do

if max < A[i] then
max := A[i]

a. Array maximum

for i := 1 to n do
A[i] := B[i]

b. Array copy

for i := 2 to n do
x := A[i]; j := i− 1 ;
while j ≥ 1 and A[j] > x do

A[j + 1] := A[j] ; (?)
j := j − 1

A[j + 1] := x

c. Insertion sort

x := A[1] ; i := 2 ; j := n ;
while i ≤ j do

if A[i] < x then
A|i− 1] := A[i] ;
i := i+ 1

else
while j ≥ i and A[j] ≥ x do

j := j − 1
if j > i then

A[i− 1] := A[j]; A[j] := A[i] ;
i := i+ 1 ; j := j − 1

A[i− 1] := x ;

d. Find: segmentation phase of the QuickSort

A[1] := 7 ;
for i := 2 to n do

A[i] := A[i− 1] + 1

e. Sequence initialization

A[n] := x ; i := 1 ;
while A[i] 6= x do

i := i+ 1

f. Sentinel

s := n+ 1 ;
for i := 1 to n do

if s = n+ 1 and A[i] 6= 0 then
s := i

g. First not null

Figure 1: Some simple programs

approaches make use of the property to be proved, while we
aim at discovering properties.

Concerning automatic program analysis methods based on
a abstract interpretation, a general common approach [4, 14] is
by summarizing a collection S of variables with one auxiliary
variable, say s, managed to satisfy the disjunction of proper-
ties of variables in the collection: if s satisfies a property ψ so
do all the variables v ∈ S.

In [4], this approach is called “array smashing”: all the
cells of an array A are subsumed by one variable a, of the
same type as the cells. Initially, a is given the strongest known
property satisfied by all the initial values of the cells of A.
Each assignment “A[i] := e” to an array cell is replaced by a
weak update of the auxiliary variable: the weak update of an
expression e to a variable a (it will be noted a t= e) can be
interpreted as a non deterministic choice between keeping a
unchanged and actually performing the assignment (or strong
update) a := e. For instance, if all the cells of an array A are
known to satisfy some property ψ, and if the expression e is
known to satisfy ψ′, then after an assignment A[i] := e all the
cells ofA are known to satisfy ψtψ′ (where t is the least up-
per bound operator on properties), which is exactly the effect
of a weak update a t= e, if a is known to satisfy ψ before.
The problem with this approach is that the weak assignment
can only lose information; moreover tests on individual cells
don’t bring any information. One needs to know (i.e., the user
has to provide) an initial property satisfied by all the array
cells, and the analysis can only weaken this initial knowledge.
As a consequence, the results are generally very unprecise.

[15, 13] proposes a significant improvement, by partition-
ing the index domain (say, [1..n]) into several symbolic inter-
vals (e.g., I1 = [1 .. i−1], I2 = [i, i], I3 = [i+1 ..n]), and asso-
ciating with each subarrayA[Ik] a summary auxiliary variable
ak, managed so that

ψ(ak) ⇒ ψ(A[`]),∀` ∈ Ik (6)

In order to reduce the loss of information due to weak up-
dates, each cell A[i] appearing in the left-hand side of an as-
signment or in a test constitutes a singleton in the partition,
so the assignment can be interpreted as a strong update of the
corresponding summary variable. This technique is able to
discover our property (3) at the end of the “Array maximum”
program. Concerning the “Array copy”, if we know that all the
cells of B are positive, it can deduce that so are all the cells of
A after the copy. So, the method is much more effective in dis-
covering global properties of array contents. However, it can-
not discover relations between the contents of different cells.
For instance, it is not able to discover thatA[`] = B[`] for all `
(property (4)) at the end of “Array copy”. The paper proposes
a technique to check such properties, which succeeds for our
properties (4) and (5), but these candidate invariants must be
provided by the user.
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While in our property scheme (2), the indices will be quan-
tified over intervals chosen in a fixed partition like in [15, 13],
[16] considers more general pointwise properties of the form
∀`, ϕ(`) ⇒ ψ(A[`] . . .). This generality involves difficulties,
since in such properties, assumptions ϕ on indices must be
under-approximated. Moreover, the user must provide some
template for the properties that should be discovered.

[5] deals with the same kind of problems in a quite different
context, which is the analysis of data-sensitive programs ma-
nipulating single linked lists. The considered data structure
is rather different, and the method is specialized to ordering
relations. Moreover, as for Cousot’s parametric abstract do-
mains [8], the considered properties express relations between
all the elements of two data collections, while the essence of
our approach is to express pointwise relations.

Contribution: Our main contribution, in the present paper,
is to propose a fully automatic method to discover relations
between array cells. For that, we use the same partitioning
approach as [15, 13], but the auxiliary variables ak are not
summary variables (let us call them slice variables), they are
interpreted in a much more restrictive sense: we generalize the
interpretation (6) by giving the following sense to relations
between slice variables:

ψ(ak, bk) ⇒ ψ(A[`], B[`]),∀` ∈ Ik (7)

Moreover, we will introduce shift variables, representing fixed
translations of array slices, in order to be able to express rela-
tions like

ψ(A[`], A[`+ k1], B[`+ k2]),∀` ∈ I

as announced at (2).
The paper is organized as follows: in Section 2, we give

a better intuition of the method, by dealing informally with
the “Array copy” example. Section 3 makes precise the kind
of programs we consider, and Section 4 defines the abstract
properties we shall deal with. All necessary operations on
these properties are defined in Section 5. Section 6 describes
our prototype implementation and the experiments performed.
We conclude the paper with some perspectives.

2 An Intuitive Example
We first give a very informal intuition of the method. Let us
consider the program “Array copy” of Fig. 1.b. As in [15],
since there is an assignment to A[i], the set [1, n] of index
values is split into three intervals:

I1 = [1, (i− 1)] , I2 = [i, i] , I3 = [(i+ 1), n]

and with each array, we associate three slice variables, say:

A→ (a1, a2, a3) B → (b1, b2, b3)

which take their values in the same set as array contents. As
said before, a property ψ(ak) should be understood as

∀` ∈ Ik, ψ(A[`]).

Remarks:

1. If Ik is empty (e.g., I1 when i = 1), ψ(ak) is true for all
ψ (in particular false).

2. Intervals Ik are symbolic; in particular, the emptiness of
Ik depends on the value of the index i.

With these auxiliary variables, interpreted in that way:

• the assignment “A[i] := B[i]” can be abstracted into
“a2 := b2”

• when i is incremented, its previous value moves from I2
to I1, and its current value is extracted from I3 to become
the only element of I2. So, the index incrementation in-
volves

– a “weak update” (a1, b1) t= (a2, b2); the assign-
ment is weak because I1 is not a singleton.

– an assignment (a2, b2) := (a3, b3), which is strong
because I2 is a singleton (This just an intuitive jus-
tification. In fact, such a strong assignment would
result in the property a2 = a3, which makes no
sense according to formula (7) since it relates vari-
ables corresponding to distinct intervals with differ-
ent size. The actual interpretation is more complex,
see §5.5).

In summary, instead of considering the initial program with
arrays, we can analyze the following program without arrays:

i := 1 ;1

while i ≤ n do2

a2 := b2 ;3

i := i+ 1 ;4

(a1, b1) t= (a2, b2) ;5

(a2, b2) := (a3, b3)6

and interpret, in the results, the properties of (ak, bk) as de-
fined by formula (7).

Let us assume that classical analyses are available, which
take into account simple inequalities of indices (e.g., differ-
ence bound matrices [11] or octagons [23]), and equalities of
array contents: so, after the assignment “a2 := b2”, we know
that a2 = b2.

Now, the analysis of our program without arrays provides:

• At the first iteration:

– After line 2: i = 1, which implies I1 = ∅, so
false(a1, b1) (cf. remark 2 above).
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– after line 3: i = 1, false(a1, b1), (a2 = b2)

– after line 6: i = 2, (a1 = b1), (a2 = a3), (b2 =
b3), since false(a1, b1) t (a1 = b1) = (a1 = b1);

• At the second iteration:

– at line 2, the property on i is widened to 1 ≤ i ≤
n + 1, and a least upper bound is taken on other
properties, giving 1 ≤ i ≤ n+ 1, (a1 = b1).

– after line 3: 2 ≤ i ≤ n, (a1 = b1), (a2 = b2)

– after line 6: 2 ≤ i ≤ n, (a1 = b1), (a2 =
a3), (b2 = b3), and the iteration converges;

• So, the final result at the end of the program is
(i = n+ 1), (a1 = b1), which can be interpreted as the
expected result

(i = n+ 1),∀` ∈ [1, i− 1], A[`] = B[`].

3 Simple Programs
For simplicity, we assume that programs manipulate only data
types “integer” (for indices), “content” (an arbitrary type),
and “array of content”. The following sets will be considered
(with associated meta-variables):

• Integer constants: Z (3 k)

• Integer parameters (or non assignable integer variables,
used for parametric array size): Params (3 n)

• Integer variables: Indices (3 i, j)

• Content constants: C

• Content variables: CVars (3 x, y)

• Array variables: Arrays (3 A,B)

3.1 Syntax
Fig. 2 gives the abstract syntax of our simple programs. Some
of the imposed restrictions are just for simplicity, others are
necessary for the analysis to give good results. As usual in
abstract interpretation, a more general language can be con-
sidered, either by defining specific extensions to the analysis,
or by abstracting away the extended features.

We ignore the declarations, so a program is simply a (se-
quence of) statement(s). Statements can be assignments to
content variables or array elements (the syntax of content ex-
pressions 〈C-exp〉 is left unspecified, since it depends on the
content type), assignment to integer variables (which must
not be loop indices), “for” loops (which are restrictions of
C-like “for” constructs: in the initialization of the loop in-
dex “i := 〈Iexp〉”, the expression 〈Iexp〉 may not depend

〈program〉 ::= 〈statement〉
〈statement〉 ::= 〈left-part〉 := 〈C-exp〉

| i := 〈Iexp〉
| for(i := 〈Iexp〉; 〈cond〉; 〈progress〉)

〈statement〉
| if 〈cond〉 〈statement〉 〈statement〉
| 〈statement〉 ; 〈statement〉

〈left-part〉 ::= x | A[〈Iexp〉]
〈Iexp〉 ::= k | n | i | 〈Iexp〉 + k
〈cond〉 ::= 〈Icond〉 | 〈Ccond〉

| 〈cond〉 and 〈cond〉 | 〈cond〉 or 〈cond〉
〈progress〉 ::= ++ | −−

Figure 2: The syntax of simple programs

on i; the loop progress statement can only be an index in-
crementation (++) or decrementation (−−); the loop index
may not be assigned inside the loop), conditionals, and se-
quences. The syntax of “for” loops is convenient to ex-
press the wanted restrictions, but for detailing the analy-
sis of examples, such loops will often be decomposed into
“i := 〈Iexp〉; while〈cond〉{〈statement〉; i〈progress〉}”. Index
expressions are restricted to constants or parameters and sums
of an index or parameter and a constant. Conditions are
conjunctions and/or disjunctions of atomic conditions, whose
syntax will depend on the lattices used in the analysis (see
§4.1): the conditions on contents are supposed to express at
least equalities (e.g., x = A[i+ 1]), those on indices are sup-
posed to express at least potentials (e.g., i ≤ j − 3).

3.2 Semantics

Arrays will be indexed from 1 tom, wherem is the size of the
array. We are concerned with the analysis of array contents,
not with array bound checking, which we assume to be solved
by other means. As a consequence, we don’t want to bother
about access out of bounds. This is reflected by considering an
array value to be a function Z 7→ C⊥ from all relative integers
to the domain of contents completed with a ⊥ element: of
course, an array value A is restricted to return a non ⊥ value
exactly on an interval [1,m].

Let States denote the set of states of a program. A state
is a triple (I, C,A), where I : (Indices ∪ Params) 7→ Z is
a valuation for indices and parameters, C : CVars 7→ C is
a valuation for content variables, and A : Arrays 7→ (Z 7→
C⊥) is a valuation for arrays. The semantics of statements is
described in Fig. 3 as functions from States to States.

4



[[.]]: 〈statement〉 7→ States 7→ States
〈Cexp〉 7→ States 7→ C
〈Iexp〉 7→ States 7→ Z
〈cond〉 7→ States 7→ B

[[x := 〈C-exp〉]](I, C,A) = (I, C[[[〈C-exp〉]](I, C,A)/x],A)
[[i := 〈Iexp〉]](I, C,A) = (I[[[〈Iexp〉]](I, C,A)/i], C,A)
[[A[〈Iexp〉] := 〈C-exp〉]](I, C,A) = (I, C,A[F/A])

where F = λz.


A(A)(z) if z 6= [[〈Iexp〉]](I, C,A)
[[〈C-exp〉]](I, C,A) otherwise

[[for(i := 〈Iexp〉; 〈cond〉; 〈prog〉)〈stat〉]](I, C,A) =
[[while〈cond〉〈stat〉i〈prog〉]](I[[[〈Iexp〉]](I, C,A)/i], C,A)

[[while〈cond〉〈stat〉i〈prog〉]](I, C,A) =
(I, C,A) if [[〈cond〉]](I, C,A) = false
[[〈stat〉; i〈prog〉; while〈cond〉〈stat〉i〈prog〉]](I, C,A) otherwise

[[i++]](I, C,A) = (I[(I(i) + 1)/i], C,A)
[[i−−]](I, C,A) = (I[(I(i)− 1)/i], C,A)
[[if〈cond〉〈stat1〉〈stat2〉]](I, C,A) =

[[〈stat1〉]](I, C,A) if [[〈cond〉]](I, C,A) = true
[[〈stat2〉]](I, C,A) otherwise

[[〈stat1〉; 〈stat2〉]](I, C,A) = [[〈stat2〉]]([[〈stat1〉]](I, C,A))

Figure 3: Semantics of simple programs

4 Array Content Properties

4.1 Lattices

Throughout the paper, we assume the existence of two anal-
yses, the former concerning the behavior of indices, and the
later concerning contents. In some sense, our method is pa-
rameterized by these analyses:

• The analysis of indices is based on a lattice
(LZ,vZ,uZ,tZ,>Z,⊥Z) of properties over the set
Indices of index variables. Elements of LZ will be noted
φ. LZ must be a relational lattice, at least as powerful
as potential constraints (i.e., systems of inequalities of
the form i − j ≤ k, k1 ≤ i ≤ k2, often implemented
as “Difference Bound Matrices” [11, 1]), and defining
convex properties. Candidates for LZ are potential con-
straints, octagons [23], octahedra [7], or polyhedra [10].
In this paper we will consider LZ to be the lattice of
potential constraints. We will also use an extension L′Z
of LZ, expressing properties over Indices ∪ {`}, where
` is a new special variable (used for quantification).
Elements of L′Z will be noted ϕ. The same notations will
be used for operations in LZ and L′Z, and LZ will often
be implicitly plunged into L′Z.

• The analysis of contents is based on a lattice
(LC,vC,uC,tC,>C,⊥C), of which we only assume that
it is able to express equality relations. Elements of LC
will be noted ψ.

In many classical examples, it happens that array contents are
numbers. In that case, we can choose LC = LZ, but this
choice is not compulsory.

4.2 Partitions
Following [15], our method relies on the choice of a symbolic
partition of the index domain. We formalize such a partition
as a finite set P = (ϕp)p∈P of properties in L′Z, such that

tZ
p∈P

ϕp = >Z , ∀p, p′ ∈ P, (p 6= p′) ⇒ ϕp uZ ϕp′ = ⊥Z

Elements ϕp of a partition will be called slices.
An example of partition is

ϕ0 = (i < 1) ϕ1 = (` < 1 ≤ i ≤ n)
ϕ2 = (1 ≤ ` < i ≤ n) ϕ3 = (1 ≤ ` = i ≤ n)
ϕ4 = (1 ≤ i < ` ≤ n) ϕ5 = (1 ≤ i ≤ n < `)
ϕ6 = (n < i)

A different partition will be considered for each loop in the
program. The choice of the partition, for a given loop, is per-
formed automatically from the text of the program according
to the following rules:

(i) the partition of a nested loop should refine the partition
of the outer loop;

(ii) for a loop “for(i := Iexp; cond; ++)”, the partition
should distinguish the cases (` < Iexp) and (` ≥ Iexp);
conversely, for a loop “for(i := Iexp; cond; −−)”, the
partition should distinguish the cases (` > Iexp) and
(` ≤ Iexp).

(iii) for each “A[Iexp]” appearing either in the left part of an
assignment, or in a condition, the partition should distin-
guish between (` < Iexp), (` = Iexp), and (` > Iexp).

In practice, a partition doesn’t have to cover the whole do-
main of indices: it is enough that it covers all the valuations
that are reachable during the program execution; in particular,
the cases where ` is outside the array bounds are not consid-
ered. A preliminary analysis of the indices generally provides
a restricted domain for each loop. The left column of Fig. 4
shows a realistic example of partition, where, since it is known
that 0 ≤ j < i ≤ n+ 1, situations like i ≤ 0 or j ≥ i are not
considered.

Remarks:

• Although a sliceϕp in a partition is intended to specify an
interval for the specific variable `, this interval depends
on the valuation I of indices.

• Moreover, ϕp may involve constraints on I. We will note
ϕp the property ∃`.ϕp which summarizes the constraints
on indices in the slice ϕp.
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φ = 0 ≤ j ≤ i− 1, 2 ≤ i ≤ n

ϕ1 = (1 = ` < j < i) ψ1 = >C
ϕ2 = (1 = j = ` < i) ψ2 = >C
ϕ3 = (1 = j + 1 = ` < i) ψ3 = (a0 > x)
ϕ4 = (2 ≤ ` < j < i) ψ4 = (a0 ≥ a−1)
ϕ5 = (2 ≤ j = ` < i) ψ5 = (a0 ≥ a−1)
ϕ6 = (2 ≤ j + 1 = ` < i) ψ6 = (a0 > x, a0 ≥ a−1)
ϕ7 = (1 ≤ j + 1 < ` < i) ψ7 = (a0 ≥ a−1 > x)
ϕ8 = (2 ≤ ` = j + 1 = i) ψ8 = (a0 = x)
ϕ9 = (1 ≤ j + 1 < ` = i) ψ9 = (a0 ≥ a−1 > x)
ϕ10 = (1 ≤ j + 1 ≤ i, 2 ≤ i < `) ψ10 = >C

Figure 4: Example of abstract value for insertion sort

• As soon as an equation (` = Iexp) appears in the defi-
nition of a slice, the slice is a singleton: for any I there
is at most one ` in the slice. Singleton slices play an im-
portant role, because their corresponding slice variables
may be dealt with as scalar variables. We note Single(P)
the set of singletons in P .

Slice compatibility: Let’s recall that ϕp denotes the con-
straints on indices involved by a slice ϕp. Now, if ϕp u ϕp′ =
⊥Z, the slices ϕp and ϕp′ induce contradictory constraints, so
these slices cannot be both non-empty in a same state. There
are said to be incompatible. We shall use a notion of com-
patibility relative to some formula φ on indices: two slices
ϕp and ϕp′ will be said to be φ-compatible, if and only if
φ u ϕp u ϕp′ 6= ⊥Z.

4.3 Abstract Values
As announced in the introduction, our analysis will make use
of slice variables, possibly shifted. The choice of these vari-
ables will be explicited later, but we already assume the exis-
tence of a finite set {az} of slice variables: this notation asso-
ciates uppercase letters (e.g., A,B) for arrays, with lowercase
letters (a, b) for slice variables; the exponent z is a relative
integer, called the shift. For a given valuation I of index vari-
ables and a given slice ϕp, the slice variable az represents the
subarray {A[`+ z] | ϕp(I, `)}.
Remark: the disappearance of the subscript p, referring to a
symbolic slice, on slice variables is not a shortcut. As we saw
during the analysis of our intuitive example (§2), we are in-
terested in the join of properties linked to different symbolic
slices (e.g., weak update). If these properties use the same
slice variables, the join operation can be performed in a clas-
sical lattice (here LC). In the example, in place of joining
a1 = b1 and a2 = b2 the join will be between two identical
properties a0 = b0.

Given a partition (ϕp)p∈P and a set of slice variables {az},
an abstract value Ψ consists of

• a property φ ∈ LZ of index variables

• a tuple (ψp)p∈P of properties (∈ LC) of slice variables
and content variables.

The concretization γ(Ψ) of an abstract value Ψ is a set of
states (γ(Ψ) ⊆ States) defined as follows:

(I, C,A) ∈ γ(Ψ) ⇔

 • φ(I)
• ∀p ∈ P,∀` such that ϕp(I, `)

ψp[A[`+ z]/az](C,A)

(in the formula above, ψp[A[` + z]/az](C,A) means that
(C,A) satisfy the formula ψp where each variable az has been
replaced by A[`+ z]).

Example: Fig. 4 shows the abstract value associated with
the entry of the inner loop of the insertion sort (Fig. 1.c) at the
end of the analysis. For instance, (ϕ7, ψ7) expresses that

∀`, (1 ≤ j + 1 < ` < i) ⇒ A[`] ≥ A[`− 1] > x.

We note Vars(ψp) the set of variables appearing in (i.e., con-
strained by) ψp.

For each partition P , the set of abstract values forms a lat-
tice (LA(P),vA,uA,tA,>A,⊥A). The lattice operations and
all other necessary operations on abstract values are described
in the following section.

5 Operations on Abstract Values

5.1 Normalization
An abstract value Ψ = (φ, (ϕp)p∈P ) is a complex object
which must be kept consistent. For instance, if its concretiza-
tion is empty, it should be normalized to ⊥A. There are other
needs for normalization, which are taken into account by the
following conditional rewriting rules:

1. (empty slice) As said before, when a slice ϕp is empty,
the corresponding ψp can be any formula, in particular
the strongest one ⊥C. Hence the rule:

(φ uZ ϕp = ⊥Z) ⇒ ψp → ⊥C.

2. (unsatisfiable index property) If φ is not satisfiable, γ(Ψ)
is empty:

φ = ⊥Z ⇒ Ψ → ⊥A.

3. (consistency of constraints on scalars) The knowledge
about scalar contents variables in each ψp should be
propagated to all slices φ-compatible slices with ϕp. For
instance, after the assignment “x = A[i]”, in the slice
[i, i] we know that x has the same properties than A[`].
The part of this knowledge that does not depend on `
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ϕ2ϕ1 ϕ3

i

φ = (i ≥ 1)

ϕ1 = (i ≥ 2)
ϕ2 = (i ≥ 1)
ϕ3 = (i ≥ 1)

ψ1 = (x ≥ 6)
ψ2 = (x ≥ 5)
ψ3 = (n+ 5 ≥ x ≥ 5)

normalization
ψ1 = (n+ 5 ≥ x ≥ 6)
ψ2 = (n+ 5 ≥ x ≥ 5)
ψ3 = (n+ 5 ≥ x ≥ 5)

Figure 5: Example for consistency of scalars properties

(e.g., x ≥ 0) must be propagated to slices [1, i − 1] and
[i+ 1, n]. Let Sc(ψp) be the projection of ψ obtained by
existential quantification of all slice variables az . Then

(ϕp uZ φ) vZ ϕp′ ⇒ ψp → ψp uC Sc(ψp′).

Fig. 5 shows an abstract value on partition
{ϕ1 = (1 ≤ ` < i ≤ n), ϕ2 = (1 ≤ ` = i ≤
n), ϕ3 = (1 ≤ i < ` ≤ n)}, followed by the
result of the application of the rule. Such an ab-
stract value will appear for instance, in the program

i := 1; x := 5; for i := 1 to n do x := x+ 1
at the head of the loop.

4. (consistency of shifts) If some z-shift of a slice ϕp is
included inside another slice ϕp′ , the constraints on a−z

in ϕp′ should apply to a0 in ϕp. For instance, if we know
that ∀` ∈ [2, n], A[`] ≥ A[` − 1], we may conclude that
∀` ∈ [1, 1], A[`] ≤ A[`+1]; that is, for ϕ1 = (` = 1) and
ϕ2 = (2 ≤ ` ≤ n), if ψ2 implies (a−1 ≤ a0) then ϕ1

should imply (a0 ≤ a1). Let us noteϕp⊕z = ϕp[`−z/`]
and ψp′ � z = ψp′ [ay−z/ay]. Then the first rule for
consistency of shift is

ϕp ⊕ z vZ ϕp′ ⇒ ψp → (ψp uC (ψp′ � z)).

In the example above, ϕ1 ⊕ 1 = (` = 2) vZ ϕ2, so ψ2

must be strengthened with (a−1 ≤ a0) � −1 = (a0 ≤
a1), as desired.

There is a second rule when the reverse inclusion also
holds:

ϕp′ vZ ϕp ⊕ z ⇒ ψp′ → (ψp′ uC (ψp �−z)).

For instance, this rule will be applied in the normaliza-
tion phase of Fig. 8, where

ϕ1 = (` = i) ϕ2 = (` = i+ 3)
ψ1 = (a0 = x) ψ2 = (a0 = a−3)

we have ϕ2⊕−3 = ϕ1, so both ψ1 and ψ2 are rewritten:

ψ1 → (a0 = x, a3 = a0) , ψ2 → (a0 = a−3, a−3 = x).

To make the rules readable, we discarded the use of φ.
However, better results are obtained if the slices appearing in
premises of the rules are intersected with φ. For instance, con-
sider the partition of Fig. 5 with φ = (i = 2). Then we have
(ϕ1uZφ) vZ ((ϕ2⊕−1)uZφ) and ψ1 could be strengthened.

Of course, these rules influence each other. By chance they
can be applied step by step, in reverse order w.r.t. the list
above (i.e., apply thoroughly the rule (4), then apply thor-
oughly the rule (3), etc.). Henceforth, we will assume that
all abstract values are normalized.

Proposition. Normalization does not change the concretiza-
tion of formulas: Ψ → Ψ′ ⇒ γ(Ψ) = γ(Ψ′)

5.2 Lattice Operations
After normalization, the lattice operations are straightforward.
They are defined on abstract values based on the same parti-
tion:

(φ, (ϕp)p∈P )uA (φ′, (ϕ′p)p∈P ) = (φuZ φ
′, (ϕpuCϕ

′
p)p∈P )

(φ, (ϕp)p∈P )tA (φ′, (ϕ′p)p∈P ) = (φtZ φ
′, (ϕptCϕ

′
p)p∈P )

Ψ vA Ψ′ ⇐⇒ φ vZ φ
′ ∧ ∀p ∈ P,ψp vC ψ

′
p

5.3 Change of Partition
When entering a loop, a new index i is introduced, and the
partition is refined according to this index. Conversely, when
a loop is exited, its index is forgotten, and the partition is
simplified accordingly. We need operations for transform-
ing an abstract value Ψ on a partition P to an abstract value
Ψ′ = [P → P ′](Ψ) on a partition P ′ that refines P , and
the converse operation, noted [P ′ i→ P] which also forgets
about the index i. If P ′ = (ϕ′p)p∈P ′ is a refinement of
P = (ϕp)p∈P , then, for every p ∈ P ′, there exists f(p) ∈ P
such that ϕ′p vZ ϕf(p). Then,

• for Ψ = (φ, (ψp)p∈P ) ∈ LA, we define

[P → P ′](Ψ) = (φ, (ψf(p))p∈P ′)

• conversely, for Ψ′ = (φ′, (ψ′p)p∈P ′) we define

[P i→ P ′](Ψ′) = (∃i.φ′, (tp=f(p′)ψp′)p∈P )

5.4 Slice Property
Given a symbolic interval ϕ ∈ L′Z and an abstract formula
Ψ ∈ LA(P), we want to extract the strongest property ψΨ(ϕ)
implied by Ψ on ϕ. Of course, if there exists p ∈ P such
that ϕ = ϕp, ψΨ(ϕ) is simply ψp. However, the operation
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5 ≤ a0 ≤ 10

ϕ2ϕ1

4 5

i
ϕ

Figure 6: Example for slice property

is more tricky and interesting when ϕ intersects several slices
in P . The first idea is to take the least upper bound of the
properties of these slices. However we shall see that additional
information can be gained from shifted variables.
We define:

InterΨ(ϕ) = {p ∈P | ϕp uZ ϕ uZ φ 6=⊥Z}
TransΨ(ϕ) = {(p, z) | az ∈ Vars(ψp)

and ϕp ⊕ z uZ ϕ uZ φ 6= ⊥Z}

Then we define

ψΨ(ϕ) =tp∈InterΨ(ϕ)ψp uu(q, z) ∈ TransΨ(ϕ)
ϕp u ϕ u φ v ϕq ⊕ z u φ

ψq �−z

We explain this complex formula by means of a small example
(see Fig. 6): the partition is {ϕ1 = (i = `), ϕ2 = (i < `)},
the abstract formula Ψ = (1 ≤ i, {ψ1 = (a0 = 4, a1 =
5), ψ2 = (5 ≤ a0 ≤ 10)}). For ϕ = (i ≤ ` ≤ i + 1),
we have InterΨ(ϕ) = {1, 2} and TransΨ(ϕ) = {(1, 1)}. We
get tp∈InterΨ(ϕ)ψp = (4 ≤ a0 ≤ 10). If we take also into
account the translated slices intersected by ϕ (we have (ϕ uZ
ϕ2) vZ ϕ1 ⊕ 1) we get the more precise result ψ = (4 ≤
a0 ≤ 5).

5.5 Index Progression
Let us consider index incrementing (the decrementing being
symmetrical). When an index i is incremented, the subarray
represented by a slice ϕp involving i changes. Let us note
ϕ′p = ϕp[i+ 1/i]. Thanks to the operation defined in the pre-
vious subsection, we can compute the property ψ′p = ψΨ(ϕ′p)
, which is the property to be satisfied within ϕp after the as-
signment. So, we can define

[i++]A(Ψ) =
(
[i++]Z(φ),

(
ψΨ(ϕp[i+ 1/i])

)
p∈P

)
.

For instance, Fig. 7 represents a property with partition {ϕ1 =
(1 ≤ ` < i ≤ n), ϕ2 = (1 ≤ ` = i ≤ n), ϕ3 = (1 ≤ i < ` ≤
n)}, and φ = (1 ≤ i ≤ n), ψ1 = (0 ≤ a0 ≤ 4), ψ2 = (a0 =
6), ψ3 = (a0 > a−1). Then, ϕ′1 = (1 ≤ ` < i+1 ≤ n), ϕ′2 =
(1 ≤ ` = i + 1 ≤ n), ϕ′3 = (1 ≤ i + 1 < ` ≤ n). We get
[i++]A(Ψ) = (φ = (2 ≤ i ≤ n+ 1), ψ1 = ψΨ(ϕ′1) = (0 ≤
a0 ≤ 6), ψ2 = ψΨ(ϕ′2) = (a0 > a−1), ψ3 = ψΨ(ϕ′3) =
(a0 > a−1).

ϕ2ϕ1 ϕ3

ϕ′1 ϕ′2 ϕ′3

a−1 < a00 ≤ a0 ≤ 4 6
i

Figure 7: Example for index progression

5.6 Loop Index Initialization
Index initialization “i := Iexp” only occurs when entering a
loop. So, it is applied just after the refinement of the partition
(cf. §5.3), and nothing is known about i before the assignment.
So the transformation is just

[i := Iexp]A(Ψ) = (φ u (i = Iexp), (ψp)p∈P ) .

5.7 Content Assignment
A content assignment of an expression exp, affects several
slice formulas, in which the modified slice variable will be
different, the update will be applied strongly or weakly, and
exp will be translated in terms of slice variables in accordance.
First, we address left part issues:

Left part:

• In case of a scalar assignment x := exp, the variable x
must be strongly updated in all ψp.

• In case of an array cell assignment A[i + k] := exp, we
know that there are singleton slices ϕs where (` = i+k).
In the corresponding ψs, a0 must be strongly assigned.
We call Strong1 the set of such s. Moreover, for each s ∈
Strong1, there can be also other slices ϕp, φ-compatible
with ϕs, such that there is some az ∈ Vars(ψp) and
ϕp⊕z intersects (in fact, contains)ϕs. We call Affect(ϕs)
the set of such p. If p ∈ Affect(ϕs), ψp refers to a shift
variable which may be aliased with the assigned variable:
if ϕp is a singleton, az must be strongly assigned, other-
wise it must be weakly assigned in ψp. So, we define

Strong1 = {s ∈ P | ϕs vZ (` = i+ k)}
Affect(ϕs) = {(p, z) | az ∈ Vars(ψp), ϕs vZ ϕp ⊕ z}
Strong = {s′ ∈ Single(P) | ∃s ∈ Strong1,∃z ∈ Z,

(s′, z) ∈ Affect(ϕs)}
Weak = {p ∈ P \ Single(P) | ∃s ∈ Strong1,

∃z ∈ Z, (p, z) ∈ Affect(ϕs)}

Scalar right part: When the right part exp does not con-
tain any array access, the postcondition of the assignment
is easy to compute. Let us note ψ′p the slice formulas of
[Left = exp]A(Ψ). If the left-hand side is scalar, then ∀p, ψ′p =
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[x := exp]C(ψp). Otherwise, with the notations defined
above:

∀s∈ Strong1, ψ′s = [a0 :=exp]C(ψs)
∀s∈ Strong, (s, z) ∈ Affect(ϕs′), ψ′s = [az :=exp]C(ψs)
∀p∈Weak, (p, z)∈Affect(ϕs′), ψ′p =ψptC [az :=exp]C(ψp)

Right part with array accesses: Without loss of general-
ity assume the right part of the assignment is an expression
“B[j+k]” (more complex expressions may be reduced to this
case using auxiliary scalar variables and successive assign-
ments). If the left-hand side is a scalar variable x, its new
value must be computed for each slice. If it is an array cell,
we have to perform weak or strong assignments in some slice
property ψp to some slice variable az , p belonging either to
Strong1, or to Strong, or to Weak. So, we want to get the
strongest information about B[j + k] available in some slice
ϕp. Two cases occur:

• either ϕp(`) implies j+k = `+w, for some w, in which
case, B[j + k] is represented by a shift variable bw: if
ϕp uZ (`′ = j + k) implies `′ = `+ w for some w, then

[A[i] := B[j + k]]A(ψp) = [az := bw]C(ψp)

• otherwise, we extract the scalar information about B[j+
k] using our “slice property” operation (§5.4), as fol-
lows: the formula ψ = ψΨ((` = j + k) uZ φ uZ ϕp )
gives for b0 the best information about B[j + k] for the
slice ϕp ((` = j + k) is φ-compatible with ϕp), so
ψ′ = Sc(ψ[y/b0]), where y is a fresh scalar variable,
gives the wanted information for y. Then the result is ob-
tained in a similar way as for a scalar right part reduced
to y:

[x := B[j + k]]A(ψp) = ∃y.[x := y]C(ψp uC ψ
′)

Let ϕ′ = (` = j + k); For s ∈ Strong1,

[A[i] := B[j + k]]A(ψs) = ∃y.[a0 := y]C(ψs uC ψ
′)

where ψ′ = Sc(ψΨ(ϕ′ uZ φ uZ ϕs )[y/b0]).

For s ∈ Strong, (s, z) ∈ Affect(ϕs′),

[A[i] := B[j + k]]A(ψs) = ∃y.[az := y]C(ψs uC ψ
′)

where ψ′ = Sc(ψΨ(ϕ′ uZ φ uZ ϕs )[y/b0]).

For p ∈ Weak, (p, z)∈Affect(ϕs′),

[A[i] := B[j + k]]A(ψp) = ψp tC [az := y]C(ψp uC ψ
′)

where ψ′ = Sc(ψΨ(ϕ′ uZ φ uZ ϕp )[y/b0]).

ϕ1

i

ϕ2

i+3

ϕ3

ψ1 = (a0 = x)
ψ2 = (a0 > x)
ψ3 = (a0 > x, a−1 > x, a0 ≥ a−1)
content assignment A[i+ 3] := A[i]
ψ1 = (a0 = x)
ψ2 = (a0 = a−3)
ψ3 = (a0 > x, a−1 ≥ x, a0 ≥ a−1)
normalization
ψ1 = (a0 = x, a0 = a3, a3 = x)
ψ2 = (a−3 = x, a0 = x, a0 = a−3)
ψ3 = (a0 > x, a−1 ≥ x, a0 ≥ a−1)

Figure 8: Example for content assignment

Example: On the example shown in Fig 8, we perform the
assignment A[i + 3] := A[i]. We have s = 2, Affect(ϕs) =
{(2, 0), (3,−1)}, Strong1 = {2}, Strong = {2},Weak = {3}.
So, ψ′2 = ψ2[a0 := a−3]C(ψ2) = (a0 = a−3). To
compute ψ3, we have first to compute ψ′ = Sc(ψΨ((` =
i) uZ φ uZ ϕ3 )[y/a0]) = (a0 = x)[y/a0] = (y = x), and
then ψ′3 = ψ3 tC [a−1 := y]C(ψ3 uC ψ

′) = ψ3 tC [a−1 :=
y]C(a0 > x, a−1 > x, a0 ≥ a−1, y = x, a0 > y, a−1 > y) =
ψ3 tC (a0 > x, y = x, a0 > y, a−1 = y, a0 > a−1, a−1 =
x) = (a0 > x, a−1 ≥ x, a0 ≥ a−1). The rest of the work is
done by the normalization. Notice that, in spite of the weak as-
signment, the property that the slice ϕ3 is sorted is preserved.

5.8 Conditional statements
Let us note Cond(c,Ψ) the strengthening of a formula Ψ =
(φ, (ψp)p∈P ) by the knowledge that the condition “c” is true.
According to the syntax of our simple programs, a condition is
either a formula on indices, or a formula on contents (includ-
ing array cells) or a conjunction or a disjunction of conditions.
We assume that an elementary condition only on indices is ab-
stracted by a formula φc ∈ LZ. Then, Cond(φc,Ψ) = (φ uZ
φc, (ψp)p∈P ). For elementary conditions only on contents, let
us note Cond(c,Ψ) = (φ, (Cond(c, ψp)p∈P )). If c does not
involve any array expression, it is supposed to be a formula
ψc ∈ LC on content variables, and Cond(c, ψp) = ψp uC ψc

for all p. Otherwise, if A[i+ k] appears in c, there are single-
ton slices ϕs vZ (` = i+ k), for which a represents A[i+ k]
in ψs. As for the assignment, either other array expressions in
c can be expressed as translations of A[i+k], and replaced by
some az in c, or their properties can be extracted using “slice
property” operation and reported in c. Anyway, c is trans-
formed into a formula ψs

c ∈ LC. Then, for slices s such that
ϕs vZ (` = i+ k), Cond(c, ψs) = ψs uC ψ

s
c .
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Finally, for conditions mixing conditions on indices and on
contents, we use the classical lattice operators:

Cond(c or c′,Ψ) = Cond(c,Ψ) tA Cond(c′,Ψ)
Cond(c and c′,Ψ) = Cond(c,Ψ) uA Cond(c′,Ψ)

5.9 Soundness of Operations
Proposition. All the operations defined so far are sound,
i.e., ∀Ψ,∀(I, C,A) ∈ γ(Ψ),

• ϕ(I, `) ⇒ ψΨ(ϕ)[A[`+ z]/az](C,A)

• [[i++]](I, C,A) ∈ [i++]A(Ψ)

• [[i := Iexp]](I, C,A) ∈ [i := Iexp]A(Ψ)

• [[x := exp]](I, C,A) ∈ [x := exp]A(Ψ)

• [[A[i+ k] := exp]](I, C,A) ∈ [A[i+ k] := exp]A(Ψ)

• if [[c]](I, C,A) ∈ γ(Ψ) = true, then (I, C,A) ∈
Cond(c,Ψ).

5.10 Widening
We assume that a widening ∇Z is available in LZ. For LC we
note ∇C either the widening in LC if any, or the least upper
bound tC if LC is of finite depth. Then, a natural definition
for a widening operator in LA is

(φ, (ψp)p∈P )∇
(
φ′, (ψ′p)p∈P

)
=

(
φ∇Zφ

′, (ψp∇Cψ
′
p)p∈P

)
.

Now, this operator is not completely satisfactory for the fol-
lowing reason: when it happens that some slice ϕp is empty in
Ψ (i.e., φ uZ ϕp = ⊥Z) and not empty in Ψ′, the correspond-
ing slice property is widened from ⊥C in the result (since
ψp = ⊥C). In that case, it is better to wait for two mean-
ingful iterates before performing the global widening. So, we
define (φ, (ψp)p∈P )∇A

(
φ′, (ψ′p)p∈P

)
as

(
φ′, (ψ′p)p∈P

)
if ∃p, φ uZ ϕp = ⊥Z

and φ′ uZ ϕp 6= ⊥Z(
φ∇Zφ

′, (ψp∇Cψ
′
p)p∈P

)
otherwise

Proposition. ∇A is a widening (i.e., Ψ tA Ψ′ vA Ψ∇AΨ′,
and ∇A satisfies the chain condition).

5.11 About Shift Variables
The analysis introduces slice and shift variables at different
steps: slice variables are created at the creation of new par-
titions (first entry in a loop); shift variables are introduced
during normalization (consistency of shifts) and assignment
(array expression in right part). It is important to notice that,
even if these variables are created during the analysis, their

number remains bounded: they can only appear during the
first traversal of a loop, the next iterations can only remove
variables.

6 Implementation and Experiments

The method has been implemented in OCaml
from a generic analyzer due to B. Jeannet (see
http://bjeannet.gforge.inria.fr/fixpoint/).
When invoking the prototype, one can choose the lattice
for indices (intervals or potentials) or a domain for arrays
which is a functor on the abstract domains (LZ and LC)
assuming a fixed set of functions on these domains. Of
course, classical operations on lattices must be available, but
also normalization functions, postcondition of assignment
and condition, support (set of involved variables), and support
extension/reduction. The program to be analyzed is given as
a control-flow graph, in a language inspired from the input
language of FAST [2].

The array content analysis takes place after some prelimi-
nary steps:

1. First, an index analysis is performed, which checks the
array accesses w.r.t. array bounds, and computes invari-
ants about index values at each control point of the pro-
gram.

2. Second, an analysis of live variables is performed to de-
termine the live indexes in each point

3. Finally, a traversal of strongly connected subcomponents
(SCSCs) builds the partition attached with each SCSC,
according to the strategy described in §4.2.

The results of these three analyses are merged to get, at each
control point, the needed actions for changing the partition
(cf. §5.3). The results of analysis (1) are φ formulas that
are used for simplifying the partition. Only live variables are
considered for partitioning.

Then the analysis described in this paper is performed. No-
tice that for examples 1.f and 1.g, which use disequations over
array cells in their conditions, we used the abstract domain
of dDBM [24] as the lattice of properties over contents (LC).
This domain is an extension of the DBM one, handling dise-
quations between pairs of variables.

We give now the results of this analysis on some exam-
ples: Insertion sort (Fig. 1.c), a version of the famous “Find”
program (Fig. 1.d) used for segmenting arrays in QuickSort,
a simple initialization sequence (Fig. 1.e) showing properties
mixing indices and contents when the same lattice is used (nu-
merical arrays), a version of the “Sentinel” program (Fig. 1.f),
which is a well-known challenge for array bound checking,
and a program involving an index assignment: “First not null”,
extracted from [12]. Of course, simpler programs like “Array
maximum” and “Array copy” (Fig 1) give the announced re-
sults, which we don’t detail here.
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# vert. × # edg. # ϕp # shifts # iter. time (s) # norm. time (%) norm. avg. time (s)
avg (max) / (#ϕp + #shifts)

array copy 3 × 3 3 0 (0) 5 0.02 30 - -
seq. init. 3 × 3 4 0.8 (2) 5 0.05 32 54 0.00016
max. search 5 × 6 4 0.8 (2) 5 0.10 58 50 0.00017
sentinel 3 × 3 9 0 (1) 5 0.21 28 22 0.00019
first n. null 6 × 8 13 0 (1) 6 2.25 89 50 0.00102
insert. sort 9 × 11 4-10 4.6 (11) 7 5.38 169 85 0.00153
find 9 × 13 14 6.7 (14) 6 22.87 171 74 0.00453

Figure 9: Performance results

Results for “Find”: Fig. 1.d shows a version of the famous
“Find” program [17], used for segmenting an array according
to its first element, and used at each step of the “QuickSort”.
The final results attached by our analyzer to the very end of
the program are exactly those expected (i.e., the array is seg-
mented):

• φ = (2 ≤ i ≤ n+ 1, j = i− 1)

• either n = 1, then i = 2 and A[1] = x

• or n ≥ 2 and A[i − 1] = x and ∀`, 1 ≤ ` < i − 1 ⇒
A[`] < x and ∀`, i ≤ ` ≤ n⇒ x ≤ A[`]

Results for “Insertion sort”: The result of the analysis at
the end of the program is as simple as the partition at that
point: ∀`, 2 ≤ ` ≤ n⇒ A[`− 1] ≤ A[`].

A more interesting result is after the array assignment in the
nested loop ((?) point in Fig.1.c). The situation is: sorting is
not terminated (i ≤ n) and current value in cell j is greater
than the key x, so we assign its value to cell j + 1. We have:

• φ = (1 ≤ j ≤ i− 1 ≤ n− 1)

• either j = 1 then A[1] = A[2] > x

– moreover if i ≥ 3 then ∀`, 3 ≤ ` ≤ i, A[`] ≥
A[`− 1] > x

• or j ≥ 2, then ∀`, 2 ≤ ` < j,A[`] ≥ A[` − 1] and
A[j] > x and A[j + 1] = A[j] ≥ A[j − 1]

– moreover if i > j+1 then ∀`, j+2 ≤ ` ≤ i, A[`] ≥
A[`− 1] > x

Results for “Sequence init.”: At the end of the program,
we get the expected bound on array contents (≤ n+ 6):

• φ = (1 ≤ n = i− 1)

• n ≥ 1 ⇒ A[1] = 7 ≤ n+ 6

• moreover if n ≥ 2 then ∀`, 2 ≤ ` ≤ n ⇒ 8 ≤ A[`] ≤
n+ 6, 7 ≤ A[`− 1] ≤ n+ 5, A[`] = A[`− 1] + 1

Results for “Sentinel”: A more surprising success is the
discovery, in the program of Fig. 1.f, that the index cannot
exceed the bound n: the “sentinel” x is either found before or
at n. At the end of the program we get:

• φ = 1 ≤ i ≤ n

• A[i] = x and ∀`, 1 ≤ ` < i⇒ A[`] 6= x

It is an interesting case where a property on contents involves
a property on indices.

Results for “First not null”: The program of Fig. 1.g, was
given in [12]. The standard method gives poor results. How-
ever, if we enrich the partition by distinguishing the singleton
(` = s) we get the expected property at then end of the pro-
gram:

• φ = (1 ≤ s ≤ i = n+ 1)

• s ≤ n+ 1 ⇒ (∀`, 1 ≤ ` ≤ s− 1 ⇒ A[`] = 0)

• moreover if s ≤ n then A[s] 6= 0

Performances: Experiments were driven on a Core2 Duo
1.6 GHz, with 2Mo of RAM. In Fig. 9, the first part of the
table shows, for each example, the size of the control-flow
graph (number of vertices and edges), the size of the partition,
the (average and maximum) number of shift variables presents
in abstract values during the analysis, the number of iterations
before convergence, and the total computation time.

If small examples take less than a half of second to be an-
alyzed, analysis time sharply increases when more slices and
shift variables are required. In order to confirm this point,
the second part of the table shows the number of normaliza-
tions performed during the analysis. This number is directly
linked to the number of abstract operations done, which is a
good measure of the complexity of the program under analy-
sis. But it does not explain the hight time of the analysis of
“Find”. The table indicates also the amount of time spent do-
ing normalizations, which most often need more than half the
total analysis time. Finally, it gives the average of normaliza-
tion time divided by the sum of the size of the partition and
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the number of shift variables. As expected, the cost to main-
tain the coherence between slices is dominating, and seems
to behave exponentially with respect to the number of slices
(compare “Sentinel” and “First not null”), and the number of
shift variables (compare “Find” and “First not null”).

We know there is room for improvements, particularly fo-
cusing on the design of a clever data structure for the partition.

7 Conclusion and Future Work

We have presented a method for automatically discovering
properties involving array contents in simple programs. The
key idea is to synthesize pointwise relations between array
segments. The method is able to deal with problems which
are well-known to be difficult. A prototype tool has been im-
plemented and applied to some classical examples, most of
which, to our knowledge, were not managed by previously
existing methods.

This work deserves to be extended in several di-
rections. Our first task will be to improve our pro-
totype implementation, both concerning the perfor-
mances and the flexibility; in particular, it should be
made fully compatible with the APRON interface (see
http://apron.cri.ensmp.fr/library/), which
would allow all compatible lattices to be used. A more clever
choice of the partition would reduce the number of slices and
variables. An improved widening is also likely to reduce the
number of iterations.

Of course, more general programs must be considered:
on one hand, non convex slices should be dealt with
to take into account more than simple index incrementa-
tion/decrementation; on the other hand, multi-dimensional ar-
rays should be considered as well. We could make use of
non-convex partitioning of multi-dimensional arrays as pro-
posed in [22]. Also, we are not far from analyzing programs
like QuickSort, but our current prototype does not deal with
recursive programs.

Concerning our examples, notice that generally we did not
fully verify programs: for “array maximum”, we prove that
the result is greater than all the array elements, it remains to
prove that it belongs to the set of elements; for “insertion sort”,
we prove that the result is sorted, it remains to prove that it is
a permutation of the initial array, and similarly for “find”. So,
it would be nice to design an analysis dealing with the (multi-
)sets of array cell contents.

A longer term perspective would be to generalize our ab-
stract values for other uses: an array is a special case of
function, so an interesting question is whether, using similar
principles, we could design an abstract domain for expressing
function properties.
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