
1.1.1 Efficient Verification based on abstraction (1991-1998)

So far, we had mainly concentrated on optimisation methods computing state graph reductions modulo
some equivalence, and which strongly preserves some set of properties of interest and allows exploiting
both correctness proofs and error traces. Nevertheless, relaxing this criterion makes the computation of
reduced models easier and allows using smaller models.

Abstract interpretation [CC77, CC80] is a general framework for abstractions which preserve extreme
fixpoints of monotonic functions between property lattices. In this framework properties are sets of con-
figurations or states, that is state predicates. Property lattices of interest may be the boolean algebra
induced by a set of states or predicates, but they may be arbitrary complete lattices.

1.1.1.1 Property preservation by abstraction

In [LGS+95], we study property preserving simulation-based abstractions. We define a notion of (α, γ)-
simulation, which is a simulation parameterized by a Galois connexion (α, γ) between a concrete and an
abstract property lattice. We establish the relationship between abstract interpretation and simulation
by showing that this notion of Galois connection induced simulation coincides with Milner’s notion of
ρ-simulation [Mil71] by defining for each Galois connection a corresponding simulation relation and vice
versa.

We also establish results of weak and strong property preservation for universal and existential frag-
ments of the µ-calculus between transition systems related by (α, γ)-simulations.

We show also that under some minimal sufficient conditions, abstractions of a system can be com-
puted by composing abstractions of its components, and this for any of the usual parallel composition
operators: when the abstractions of components do not abstract the interfaces between the components,
then abstraction and parallel composition commute, otherwise abstracting before composition yields a
weaker abstraction (see also [GL93a]). This result represents a generalisation of the property known for
CCS which allows the application of label abstraction and weak bisimulation reduction before parallel
composition, as long as no labels of the interface are renamed (see also section ??)).

This framework for abstraction extends those proposed in [CGL92] — where abstractions are restricted
to homomorphisms from the concrete to the abstract state space — and in [Kur87] — which also considers
homomorphism-based abstractions and which formulates preservation results for language inclusion only.

It has later been extended by using a pair of abstraction relations (or Galois connections), one overap-
proximating the set of successors and one undervapproximating it [KDG95], so as to obtain preservation
results for the full µ-calculus.

Based on this framework, we have defined several concrete frameworks for effectively computing ab-
stractions

1.1.1.2 Computation of abstractions

1.1.1.2.1 Calculating abstractions of Boolean programs In the context of the thesis work of
Claire Loiseaux [Loi94], we have used this theory to compositionally compute abstractions of Boolean
transition systems defined by a set of transitions represented by guarded commands on Boolean variables.

(α, γ)-simulations are defined by an expression defining a relation ρ between concrete and abstract
states, that is by posing α = post[ρ] and γ = p̃re[ρ] which are quantified expressions that can be computed
effectively for boolean expressions.

Notice that the exact abstraction of an individual command α ◦ pre[com] ◦ γ is not always of the form
pre[comA] — that is a precondition of a transition relation. There may be several minimal transition
relations comA. In [LGS+95], we have defined a notion of faithfulness, defining a criterion of minimality
up to bisimulation, and we have shown that whenever ρ is total and ρ◦ρ−1 is a closure, then the transition
relation defined by comA = ρ ◦ com ◦ ρ−1 is faithful. To compute an abstract program, we replace each
guarded command (transition relation) com by an abstraction comA.
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We have implemented a tool, called Oscar (see section ??) that uses BDDs1 for the encoding and
manipulation of boolean expressions, which constructs abstractions of boolean programs and evaluates
formulas of a univesal fragment of temporal logic.

Using this prototype, we have verified a set of safety properties of non trivial examples, in particular
a token ring protocol and a non trivial toy service in the context of an automated highway, managing
overtaking manoeuvres [GL93c, GL93a, GL93b]. In the second example, the compositional approach to
abstraction was essential.

1.1.1.2.2 Use of abstract Data types for computing abstractions and verification of a Cache
memory system Abstract interpretation [CC77] and also the approach chosen in [CGL94] propose an
even more compositional approach. They do not aim at building exact abstractions of entire guarded
commands, but compose abstractions for atomic functions and predicates. The obtained abstract programs
are generally less precise than the ones that we compute, nevertheless it is often much easier to compute: for
finite domains it implies computation on smaller sets of variables and for infinite domains it allows building
libraries of useful abstractions of particular data types and their associated predicates and functions.

In [Gra94, Gra99], such an approach is used for the validation of Lotos specifications, where data types
and their functions are represented by abstract data types. In this case, an “abstract interpretation” is
obtained simply by replacing the original (concrete) abstract data type of a given – structured – variable
by a more abstract one.

This method has been applied to a distributed memory system with lazy caching, where read and write
requests are propagated via a system of lossy buffers [ABM93]. The aim is to verify that this system has
the property of Sequential consistency [Lam79], that is, it guarantees that in any single location, the order
of read and write actions executed is compatible with a global sequential memory. This system is infinite,
as the number of participating nodes and the size of request queues may be unlimited. In the context of
the REACT project, several verification methods have been proposed [Ger99]. All approaches suppose
without loss of generality that each datum D is written at most once at the same address A.

The paper [Gra99] contains several results which could be interesting beyond the mere case study,
for the verification of other cache memory systems, or more generally systems communicating through
buffers.

• Different kinds of buffer abstractions where needed which distinguish by their put and get methods.
They are more precise than the usual counter abstractions, such as those proposed in [Cri95] as they
are property oriented.

• We succeeded in verifying the cache memory for an arbitrary number of cache lines (called nodes
hereafter). Indeed, (depending on the property to be verified) the abstract system consisting of n
nodes of type T , is defined as a composition of the same number of abstract nodes, of type TA

i . In
each abstraction only a small number of the types TA

i are distinct, in particular there exists at least
one node type TA

gen representing a memoryless abstraction, such that, independently of n, all but a
fixed number of nodes are abstracted to one of these TA

gen-types. This guarantees for any parallel
composition that TA

gen is an invariant of the set of nodes representing the “noise” of the rest of the
system with respect to the property to be verified and the composition of a small number of abstract
nodes defines a network invariant (see [WL89]).

Some time later, we have proposed in [GLW99] a generalisation of this abstraction method, where
the types TA

gen may be memoryful.

• A third result of this study is a characterisation of the notion of sequential consistency which is
“exact enough in practise”.

It was known that the notion of sequential consistency cannot be characterized exactly in CTL by a
formula depending only on the observable events read and write as in Lamport’s definition saying that

1Binary Decision Diagrams [Bry86]
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the result of any execution is the same as if the operations [memory accesses read and write]
of all processors were executed in some sequential order, and the operations of each individual
processor appear in in this sequence in the order specified by its program.

Lamport’s characterisation can be used directly to define a tester which checks the safety property
implied by the above property, that is that for each observed prefix if an appropriate ordering is possible.
We are interested in a temporal logic characterization allowing to to verify any given algorithm and not
any individual execution.

In the paper, we have given a set of temporal properties which implies sequential consistency. I
was convinced that this characterisation comes indeed close enough to an exact characterisation to be
applicable to any reasonable algorithm. However, taking up this characterisation several years later, I
believe that it could be better structured and simplified. It could also be weakened a bit in order to allow
algorithms with justified “anticipating reads” which I had considered to be a priori unrealistic.

1.1.1.3 Use of constraint solvers for model-checking and predicate abstractions

Motivated by the fact that our tools did not allow constructing the abstractions used for the verification of
the cache memory system, even if the abstraction relation has been fixed, we were interested in extended
finite state abstraction and verification methods to systems with unbounded data types. In the following we
suppose that safety properties are expressed as invariants that the system Sys must have. The semantics
of a system is represented by a transition τ which will be defined in a more structured form. For ϕ a
predicate representing a set of states, 2ϕ represents the greatest fixpoint of F (X) = X ∩ p̃re[τ ](X), a
function on the property lattice under consideration. Therefore, we represent invariants by properties of
the form 2ϕ and the fact that the system Sys has this invariant by

Sys |= init ⇒ 2ϕ (1)

The standard method for proving (1) requires coming up with an inductif invariant stronger than ϕ, that
is a predicate P satisfying

P ⇒ ϕ ∧ P ⇒ p̃re[τ ](P ) (2)

A possible model-checking technique for (1) consists in computing the greatest P satisfying (2) as the limit
of the decreasing chain of properties

P 0 = ϕ ; P i+1 = P i ∩ p̃re[τ ](P i)(3)

In order to be able to apply this “truly symbolic” model-checking technique, we need a representation of
the elements of the property lattice for which it is possible to represent or compute the function F —
that is boolean operations and the function p̃re[τ ] — and for which there is a (semi-) decision procedure
for proving implications of the form (2), that is termination of the algorithm. The existence of a fixpoint
can be guaranteed if the length of the decreasing chains calculated in (3) is always finite, that is, if the
relevant subset of the property lattice is well-founded. If only a semi-decision procedure exists, then it is
possible that termination cannot be detected, even if the fixpoint is reached.

In the context of the thesis of Hassen Säıdi [Sai98], we decided to use the theorem prover PVS [SOR93]
to discharge the verification conditions requested by this proof rule. PVS includes a decision procedure
for a useful subset of Presburger arithmetic. The interactive theorem prover of PVS can also be used as
a semi-decision procedure for richer theories using a language for the definition of complex tactics which
can be used as functions with a result of type “proof” or “no proof found”.

For the structured representation of Symbolic transition systems, we extend the guarded command
language on boolean variables of section 1.1.1.2 to the rich type system of PVS which includes subtyping
and inductive types.

We built a tool, Invariant-checker using PVS to implement the model-checking algorithm above on
parallel compositions of Symbolic transition systems [GS96]. Notice that PVS is only used as a “solver”,
to discharge verification conditions, and not to encode the program semantics. We use PVS however
for generating type checking conditions associated with guarded commands which – if they cannot be
automatically discharged – are invariants to be proven.
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The tool implements a proof tactic combining boolean simplifications, rewriting strategies, decision
procedures, inductive proofs for theorems on inductive types as well as a user definable set of auxiliary
theorems which are often necessary.

But used in a naive way — even exploiting the fact that p̃re[τ ](P ) can be calculated compositionally
for τ a union of transition relations and that (2) can be checked individually for each disjunct of τ —
this model-checking procedure turns out to be unusable in practise if the fixpoint computation takes more
than a few iterations to converge. This is due to the fast growth of the size of the expressions representing
approximants.

Different tactics have been envisaged to try to either accelerate convergence or avoid the fast growth
of terms. Our first idea was to apply simplification procedures for first order formulas. It turned out
however that there existed no such tool doing significantly better than the rewriting heuristics already
implemented in PVS.

The STeP temporal logic prover [MBB+95] and TPVS [BLUP94] apply a similar strategy as ours
applying appropriate proof rules for arbitrary temporal formula. The more recent tool TLPVS [PA03]
handles also liveness properties. Finding a proof corresponds to refining (unfolding) the minimal model
of the formula until it matches the symbolic transition system to be analysed. STeP asks the user to
interactively choose some tactic for the next refinement step, and then automatically applies it to the
current model.

In [HS96] a means for avoiding the growth of the size of formula is proposed: if Q must be shown
an invariant, but is not inductive, then Q ⇒ p̃re[τ ](Q) does not reduce to true, but to some formula R.
Then, one may check in the following step the invariance of R instead of the invariance of Q ∩ p̃re[τ ](Q),
as R seems often to be simpler. This method does however not help accelerating the convergence.

The tool CAVEAT [GR95] proposes the use of auxiliary invariants to improve interactive proofs of
invariants. This tools proposes also some strategies for efficiently exploiting large repositories of potential
invariants efficiently. But CAVEAT does no automatic strengthening. In our tool, we use the strengthening
with automatically generated structural invariants as proposed in [BLS96].

In some cases, this method is very successful. Nevertheless, the structural invariants generated by the
methods of [BLS96] are compositional invariants, which makes them easy to construct. They eliminate
only non reachable states where the state of each component can be proven unreachable independently
of the state of the environment. Global control invariants are however often the key to the verification of
global properties.

In order to get better global control invariants, we propose in [GS97] an abstraction method, later
called predicate abstraction. For a set of predicates pi which are considered useful as a basis for the
construction of a an abstract global control graph, we construct a boolean transition system on a set of
boolean variables Bi, such that Bi = true represents the set of concrete states in which the predicate pi

holds. This defines a Galois connection (α, γ), where γ can be easily computed for an arbitrary expression
by replacing each occurrence of a variable Bi by the corresponding concrete predicate pi, and where α
is only applied to boolean expressions exp having pi as variables, for which the evaluation of α(exp) is
trivial.

Instead of calculating for any set of abstract states expA(B1...Bn) its successor set by applying γ ◦
post[τ ] ◦ α which may lead to non reducable, and thus non usable expressions, we rather try to prove for
some set of states expA′

that expA′
is unreachable from expA via τ , by proving (with the proof strategies

of the invariant checker) that
expA ⇒ p̃re[τ ](¬expA′

)
holds.

Such proof steps are combined so as to compute an abstraction of the control graph defined by B1, ...Bn.
Notice that the most precise naive approach would consist in analysing for each 2n × 2n abstract state
pairs if there exists an abstract transition between them. In [GS97] we propose the following strategy
which combines overapproximation, reachability analysis and simplifications based on static dependency
analysis. We suppose that τ is of the form ∨τi. Start by a static dependency analysis amongst the
predicates pi to detect infeasible valuations of the abstract state. Then try to establish some trivial facts
about the abstract transition relations τA

i ; in particular, try to find for τi a set of Bj that are independent
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of τi and thus never change by the application of τi. Or find a set of Bj set to a fixed value (0 or 1) by
the application of τi. These facts defines a first overapproximation τA0

i of τi that is simple to compute.
The next step is to further strengthen the relations τA0

i by a combined reachability analysis and
successor elimination. For those abstract states SA which cannot be proven unreachable, try to find a
set of successor states via τA0

i which can be proven unreachable via τi, and strengthen the relations τA0
i

accordingly. As each abstract state has potentially 2n successors (if we have already proven some facts
about τi this set may be considerably smaller), we may not be able to examine them individually. As
a heuristics – reducing the number of proofs for each set of start states from 2n to 2 ∗ n, we choose to
consider only successor sets defined by monomials on Bi. The reason is, that this can be done by at most
2× n proofs trying to establish for each abstract variable Bi that SA ⊆ p̃re[τ ](Bi) or SA ⊆ p̃re[τ ](¬Bi).

At any point of time, one may stop and use the abstractions τA
i already computed. One may then

either try to prove SysA |= ∀2ϕ by finite state model-checking. Alternatively one may use the invariant
checker tool to apply the method defined by (2) and (3) using the control invariant defined by SysA as
an auxiliary invariant. In fact, our initial motivation for defining abstract was the construction of such
control invariants.

A large number of improvements and variants of this method have been proposed since then. The
tools InVest [BL98] and CEGAR [CGJ+00] use spurious counter examples to automatically refine the
initial set of predicates. Invariant checker implements abstraction refinement and invariant strengthening
as described above, but predicate refinement is done manually. A problem with automatic predicate
refinement — already proposed in a different setting in [DGG93] — is that it leads easily to an infinite
regress, where it is not always the case that a refinement step really improves the abstraction.

The InVest tool proposes also an improvement of the computation of abstract transition relations by
trying to directly compute postconditions by quantifier elimination. Invest considers predicate abstrac-
tions where individual variables are abstracted by a set of boolean variables. These compositional data
abstraction approach is complementary to our control abstractions; and in practice more realistic.

The abstraction and verification tool Bebop/SLAM [BR00, BR01] uses predicate abstraction to extract
abstract boolean programs from C programs, and then uses model-checking and counter-example based
automatic refinement if needed. This tool has been used with great success to the verification of driver
software, where only specific structural properties — such as correct usage of locking mechanisms — are
checked.
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