
Contract-Based Reasoning for Component
Systems with Complex Interactions

Susanne Graf1 and Roberto Passerone2 and Sophie Quinton3

1 VERIMAG, CNRS — 2 DISI, University of Trento — 3 IDA, TU Braunschweig

Abstract In this paper we propose a rule unifying circular and non-
circular assume-guarantee reasoning and show its interest for contract-
based design and verification. Our work was motivated by the need to
combine, in the top-down methodology of the FP7 SPEEDS project,
partial tool chains for two component frameworks derived from the HRC
model and using different refinement relations. While the L0 framework
is based on a simple trace-based representation of behaviors and uses set
operations for defining refinement, the more elaborated L1 framework
offers the possibility to build systems of components with complex inter-
actions. Our approach in L1 is based on circular reasoning and results
in a method for checking contract dominance which does not require
the explicit composition of contracts. In order to formally relate results
obtained in L0 and L1, we provide a definition of the minimal concepts
required by a consistent contract theory and propose abstract definitions
which smoothly encompass hierarchical components. Finally, using our
relaxed rule for circular reasoning, we show how to use together the L0
and L1 refinement relations and as a result their respective tool chains.1

1 Introduction

Contract and interface frameworks are emerging as the formalism of choice for
system designs that require large and dispersed teams, or where the supply
chain is complex [13]. Contracts are usually expressed as pairs of assumptions,
or properties that the environment must satisfy, and guarantees, the properties
that must be satisfied by the component. This style of specification is typically
employed for top-down design of systems of components, where the system un-
der design is built by a sequence of decomposition and verification steps. The
refinement relation between a specification and an implementation is at the core
of component-based design. In contract-based design however, refinement takes
different forms depending on whether it relates a system to a specification, two
contracts or an implementation to a contract. In this paper we use a methodology
which divides the design and verification process into three steps corresponding
to these three forms of refinement.

Our work has its practical motivations in the component-framework HRC
— standing for Heterogeneous Rich Components — defined in the SPEEDS IP
project [13] and used in the COMBEST project [4]. The HRC model defines

1 NB: for readability of the proofs, we adopt here the LNCS style. The main part of
this document (i.e. before the appendix) is the same as in the submitted version.

component properties as extended transition systems and provides several com-
position models, ranging from low-level semantic composition to composition
frameworks underlying the design tools used by system designers. We focus here
on two component frameworks for HRC denoted respectively L0 and L1, and
the corresponding contract frameworks. In particular, the complexity of the L1
framework leads us to focus on circular reasoning, which allows a component
and its environment to be refined concurrently — each relying on the abstract
description of its context — and entails an interesting rule for proving domi-
nance. In order to relate L0 and L1, we define a generic contract framework that
uses abstract composition operators and thus encompasses a variety of different
interaction models, e.g. I/O communication and priority policies. We then show
that L0 and L1 can be seen as instances of this generic contract framework. Fi-
nally, we show how to use a relaxed rule for circular reasoning to combine partial
tool chains for both frameworks into a complete tool chain for our methodology.

To the best of our knowledge this is the first time that a rule combining
different refinement relations is proposed and used to unify two contract frame-
works. While circular reasoning has been extensively studied, e.g. in [1,9] existing
work focuses on finding sufficient conditions for soundness of circular reasoning
while we focus on how to use circular reasoning in a contract-based methodology.
Non-circular assume-guarantee reasoning is also a topic of intense research. The
difficulty there lies in finding a decomposition of the system that would satisfy
the strong condition imposed on at least one of its components. It was shown
in [3] that in most cases assume-guarantee reasoning is not more efficient than
monolithic verification. Finally our contract frameworks are related to interface
automata [5]. Since de Alfaro and Henzinger’s seminal paper many contract and
interface theories have been developed for numerous frameworks (see e.g. [8,14,6]
to name just a few). However these theories all focus on composition of contracts
and furthermore do not handle complex interactions. Preliminary versions of our
contract framework appeared in [11,7] but did not address the question of com-
bining results from different refinement relations.

This paper is structured as follows: Section 2 describes our design and ver-
ification methodology as well as generic definitions of component and contract
framework. It then discusses sufficient reasoning rules for establishing dominance
without composing contracts. Section 3 presents how the proposed approach is
applied to the L0 and L1 frameworks. In particular it shows how their different
satisfaction relations may be used together using relaxed circular reasoning and
discusses practical consequences of this result. Section 4 concludes the paper.
The proofs of all theorems presented in this paper are presented in [10].

2 Design methodology

Our methodology is based on an abstract notion of components. We characterize
a component K by its interface defined as a set P of ports which describe what
can be observed by its environment. We suppose given a global set of ports Ports,
which all sets of ports in the following are subsets of. In addition, components are

also characterized by their behavior. We are not concerned with how behaviors
are represented at this level, and develop our methodology independently of the
particular formalism employed.

In order to separate the implementation phase of a component from its inte-
gration into the system under design, we use contracts [2,11,13]. A contract for
a component K describes the interface P of K, the interaction between K and
its environment E, the expected behavior of E, called the assumption A of the
contract, and the expected behavior of K, called the guarantee G.

Interactions are expressed using the concept of glue operator [12]. A glue
defines how the ports of different components are connected and the kind of
synchronization and data exchange that may take place. We denote the compo-
sition of two components K1 and K2 through a glue gl as gl{K1,K2}. The glue
must be defined on the union of the ports P1 and P2 of the components.

Assumptions and guarantees are in turn expressed as components, defining
the interface and the behavior that are considered acceptable from the environ-
ment and from the component. Thus, formally, a contract C for an interface P
is a triple (A, gl , G), where gl is a glue operator on P ∪PA for some PA disjoint
from P; the assumption A is a component with interface PA; and the guarantee
G is a component with interface P. Note that the interface of the environment
is implicitly defined by gl . A expresses a constraint on the environment E and
G a constraint on K. Graphically, we represent contracts as in Figure 1.

��������

���
���
���
���

������

G

gl PA
PC = (A, gl , G)

A

Figure1. A contract (A, gl , G) for an interface P

From a macroscopic point of view, we adopt a top-down design and veri-
fication methodology (see Figure 2) in which global requirements are pushed
progressively from the top-level system to the low-level atomic components. As
usual, this is just a convenient representation; in real life, the final picture is
always obtained in several iterations alternatively going up and down the hier-
archy.

We assume that the system K under construction has to realize a global re-
quirement ϕ together with an environment on which we may have some knowl-
edge, expressed by a property A. Both ϕ and A are expressed w.r.t. the interface
P of K. We proceed as follows: (1) define a contract C = (A, gl , G) for P such
that gl{A,G} conforms to ϕ; (2) decompose K as subcomponents Ki connected
through a glue operator glI and provide a contract Ci for each of them; possibly
iterate this step if needed; (3) prove that whenever a set of implementations Ki

satisfy their contracts Ci, then their composition satisfies the top-level contract
C (dominance) — and thus guarantee ϕ; (4) provide such implementations.

|= C3K3|= C2K2|= C1K1 satisfaction

A2

C2

G3

C3
A3

G2

G1 A1

C1

glI

G

C
A

and dominance
decomposition

A G
4

conformance

ϕ

gl

Figure2. Proof of gl{A, glI{K1,K2,K3}} 4 ϕ

The correctness proof for a particular system is therefore split into 3 phases:
conformance (denoted 4) of the system defined by the top-level contract C to ϕ;
dominance between the composition of the set of contracts {Ci} through glI and
C; and satisfaction (denoted |=) of each Ci by the corresponding implementa-
tion Ki. Thus, conformance relates closed systems, dominance relates contracts,
while satisfaction relates components to contracts.

The assumption of C1 is represented as one component A1 while in the actual
system K1 will be used in the context of three components, namely K2, K3 and
A. Thus, we need to relate the actual glues gl and glI to the glue gl1 of C1.
In other words, we need a glue glE1

to compose K2, K3 and A as well as an
operation ◦ on glues such that gl ◦glI = gl1 ◦glE1

. In most cases ◦ cannot simply
be composition of functions and has to involve some flattening of the system.

2.1 Contract framework

To summarize, we consider a component framework that smoothly supports
complex composition operators and hierarchical components. The elements of
the component framework are as follows:

Definition 1 (Component framework). A component framework is a tuple
(K,GL, ◦,∼=) where:

– K is a set of components. Each component K ∈ K has as interface a set of
ports, denoted PK and subset of our global set of ports Ports.

– GL is a set of glues. A glue is a partial function 2K −→ K transforming a set
of components into a new composite component. Each gl ∈ GL is defined on
a set of ports Sgl , called support set, and defines a new interface Pgl for the

new component, called exported interface. K = gl({K1, . . . ,Kn}) is defined if
K1, . . . ,Kn ∈ K have disjoint interfaces, Sgl =

⋃n
i=1 PKi

and PK = Pgl .
– ◦ is a partial operator on GL, called flattening, to compose glues. gl ◦ gl ′ is

defined if Pgl′ ⊆ Sgl . Then, its support set is Sgl\Pgl′ ∪ Sgl′ and its interface
is Pgl

– ∼=⊆ K ×K is an equivalence relation between components.
We simplify our notation by writing gl{K1, . . . ,Kn} instead of gl({K1, . . . ,Kn}).
The equivalence relation ∼= is typically used for relating composite components
with their semantics given as an atomic component. More importantly, ◦ must
be coherent with ∼= in the sense that gl{gl ′{K1},K2} ∼= (gl ◦ gl ′){K1 ∪ K2} for
any sets of components Ki such that all terms are defined.

After formalizing generic properties required from a component framework,
we now define the relations used in the methodology for dealing with contracts.
Satisfaction is usually considered as a derived relation and chosen as the weakest
relation implying conformance and preserved by composition. We loosen the cou-
pling between satisfaction and conformance to obtain later stronger reasoning
schemata for dominance. Furthermore we propose a representation of satisfac-
tion as a set of refinement under context relations denoted vA,gl and such that
K vA,gl G iff K |= (A, gl , G).

Definition 2 (Contract framework). A contract framework is a tuple
(K,GL, ◦,∼=,4, |=) where:

– (K,GL, ◦,∼=) is a component framework.
– 4 ⊆ K × K is a preorder called conformance relating components having the

same interface.
– |= is a relation called satisfaction between components and contracts s.t.: the

relations vA,gl defined by K vA,gl G iff K |= (A, gl , G) are preorders; and, if
K |= (A, gl , G) then gl{A,K} 4 gl{A,G}.

Our definition of satisfaction emphasizes the fact that |= can be seen as a set of
refinement relations where K vA,gl G means that K refines G in the context of
A and gl . The condition which relates satisfaction and conformance ensures that
the actual system gl{A,K} will conform to the global requirement ϕ discussed
in the methodology because 4 is transitive and gl{A,G} 4 ϕ.

Example 1. Typical notions of conformance for LTS are trace inclusion and its
structural counterpart simulation. For these, satisfaction is usually defined as
the weakest relation implying conformance.

K |= (A, gl , G) , gl{K,A} 4 gl{G,A}

Dominance is a key notion for reasoning about contracts rather than us-
ing refinement between components. Proving that a contract C dominates C′
means showing that every component satisfying C also satisfies C′.2 However, a

2 One may also need to ensure that the assumptions of the low-level contracts are
indeed satisfied in the actual system. This is achieved by strengthening the definition
with:

∀E on PA, if E |= (G′, gl ′, A′) then E |= (G, gl , A)

dominance check involves in general not just a pair of contracts: a typical sit-
uation would be the one depicted in Figure 2, where a set of contracts {Ci}ni=1

are attached to disjoint interfaces {Pi}ni=1. Besides, a glue glI is defined on
P =

⋃n
i=1 Pi and a contract C is given for P . In this context, a set of contracts

{Ci}ni=1 dominates a contract C w.r.t. a glue glI if any set of components sat-
isfying contracts Ci, when composed using glI , makes a component satisfying
C.

Definition 3 (Dominance). Let C be a contract on P, {Ci}ni=1 a set of con-
tracts on Pi and glI a glue such that SglI =

⋃n
i=1 Pi and P = PglI . Then {Ci}ni=1

dominates C with respect to glI iff for all components {Ki}ni=1:

(∀i : Ki |= Ci) =⇒ glI{K1, . . . ,Kn} |= C

Note that this formal definition of dominance does not help establishing
dominance in practice because looking at all possible components satisfying a
contract is not realistic. What we need is a sufficient condition that refers to
assumptions and guarantees, rather than components. One such condition is
when the composition of the low-level guarantees satisfies the top-level contract
and each low-level assumption is discharged by its abstract environment built
from the guarantees of the other components. Formally:{

glI{G1, ... , Gn} |= C
∀i : glEi

{A,G1, ... , Gi−1, Gi+1, ... , Gn} |= C−1i
(1)

In the next subsection, we provide two rules which indeed make the previous
condition sufficient for establishing dominance: one is similar to circular assume-
guarantee reasoning and the other one deals with preservation of satisfaction
by composition. This result is particularly significant because one can check
dominance while avoiding composition of contracts, which is impossible in the
general case and leads to state explosion in most concrete contract frameworks.

2.2 Reasoning within a contract framework

We use here the representation of satisfaction as a set of refinement under context
relations vA,gl where K vA,gl G if and only if K |= (A, gl , G). The usual non-
circular assume-guarantee rule reads as follows in our context:

K vA,gl G ∧ E v A =⇒ K vE,gl G

where E v A denotes that for any component G and gl such that vG,gl is de-
fined E vG,gl A. This rule relates the behavior of K, when composed with the
abstract environment A, to the behavior of K, when composed with its actual
environment E. However it is quite limited as it imposes a very strong condi-
tion on E. Hence the following rule which is commonly referred to as circular
reasoning.

K vA,gl G ∧ E vG,gl A =⇒ K vE,gl G

Note that E and K may symmetrically rely on each other. For a given con-
tract framework, this property can be proven by an induction based on the
semantics of composition and refinement. Unfortunately, circular reasoning is
not sound in general. In particular it does not hold for parallel composition with
synchronizations (as in Petri Nets or process algebras) or instantaneous mutual
dependencies between inputs and outputs (as in synchronous formalisms). The
following example illustrates one possible reason for the non validity of circular
reasoning3.

Example 2. Consider a contract framework where components are labeled tran-
sition systems and composition is strong synchronization between corresponding
labels and interleaving of others denoted ‖. Define conformance as simulation
and satisfaction as the usual relation defined in Example 1. The circular reason-
ing rule translates into: if K ‖A is simulated by G‖A and E ‖G is simulated by
A‖G then K ‖E is simulated by G‖E.

In the example of Figure 3, both G and A forbid a synchronization between
bK and bE from occurring. This allows their respective refinements according
to v4, namely K and E, to offer respectively bK and bE , since they can rely
on respectively G and A to forbid their actual occurrence. But obviously, the
composition K ‖E now allows a synchronization between bK and bE .

aKbK
aK aE aEbE

G AK E

Figure3.K ‖A4G‖A and E ‖G4A‖GbutK ‖E 64G‖E.

A second rule which is used for compositional reasoning in most frameworks
is: if I v S, then I ‖ E v S ‖ E. It states that if an implementation I refines
its specification S then it refines it in any environment E. The equivalent of this
rule for satisfaction is more complex as refinement here relates closed systems.

Definition 4. Satisfaction |= is preserved by composition iff for any component
E, gl such that Sgl = PE ∪P for some P such that P ∩PE = ∅ and glE, E1, E2

such that E = glE{E1, E2}, the following holds for any components I, S on P:

I vE,gl S =⇒ gl1{I, E1} vE2,gl2 gl1{S,E1}
where gl1 and gl2 are such that gl ◦ glE = gl2 ◦ gl1.

Theorem 1. Suppose that circular reasoning is sound and satisfaction is pre-
served by composition. If ∀i ∃glEi

: gl ◦glI = gl i◦glEi
then to prove that {Ci}ni=1

dominates C w.r.t. gl , it is sufficient to prove that condition (1) holds.

This condition reduces a dominance proof to a set of satisfaction checks, one
for proving refinement between the guarantees and n for discharging individual
assumptions.

3 Note that non-determinism may also be a problem.

3 Circular reasoning in practice

In this section, we show how the results presented in the previous section have
been applied within the SPEEDS project: we build two contract frameworks,
called L0 and L1, and show how to combine them.

3.1 The L0 framework

A component K with interface PK at level L0 of HRC is defined as a set of be-
haviors in the form of traces, or runs, over PK . The behaviors correspond to the
history of values seen at the ports of the component for each particular behavior.
For instance, these histories could be the traces generated by a labeled transi-
tion system (LTS). Composition is defined as a composite that retains only the
matching behaviors of the components. If the ports of the two components have
the same names, composition at the level of trace sets boils down to a simple
intersection of the sets of behaviors. Because in our framework components must
have disjoint sets of ports under composition, we must introduce glues, or con-
nectors, as explicit components that establish a synchronous relation between
the histories of connected ports. The collection of these simple connectors forms
the glues gl ∈ GL of our framework at the L0 level.

We can model a glue as an extra component Kgl , whose set of ports includes
all the ports of the components involved in the composition. This component
has as set of behaviors all the identity traces. Composition can then be taken
as the intersection of the sets of behaviors of the components, together with
the glue. To make this work, we must also equalize the ports of all trace sets
using inverse projection proj−1Pi,P , which extends behaviors over P1 with the
appropriate additional ports of P. If we denote the interface of the composite as
Pgl , and if K = {K1, . . . ,Kn} is a set of components such that P1, . . . ,Pn are
pairwise disjoint, then a glue gl for K is a component Kgl defined on the ports
P = Pgl ∪ (

⋃n
i=1 Pi), and:

K= gl{K1, . . . ,Kn}
= projpgl ,P

(
Kgl ∩ proj−1P1,P (K1) ∩ · · · ∩ proj−1Pn,P (Kn)

)
The definition of ◦ is straightforward: since glues are themselves components,

their composition follows the same principle as component composition. Finally,
the ∼= relation on K is taken as equality of sets of traces.

In the L0 model there exists a unique maximal component satisfying a con-
tract C, namelyMC = G∪¬A, where ¬ denotes the operation of complementation
on the set of all behaviors over ports PA. A contract C = (A,G) is in canonical
form when G = MC . Every contract has an equivalent contract in canonical
form, which is obtained by replacing G with MC . The operation of computing a
canonical form is well defined, since the maximal implementation is unique, and
it is idempotent. It is easy to show that K |= C if and only if K ⊆MC .

The L0 contract framework has strong compositional properties, which de-
rive from its simple definition and operators. The theory, however, depends on

the effectiveness of certain operators, complementation in particular, which are
necessary for the computation of canonical forms. While the complete theory
can be formulated without the use of canonical forms, complementation remains
fundamental in the definition of contract composition, which is at the basis of
system construction. Circular reasoning is not sound for contracts which are not
in canonical form. This is a limitation of the L0 framework, since working with
canonical forms could prove computationally hard.

3.2 The L1 framework

L1 composition is based on interactions, which involve non-empty sets of ports.
An interaction is defined by the components that synchronize when it takes
place and the ports through which these components synchronize. Interactions
are structured into connectors which are used as a mechanism for encapsulation:
only these connectors appear at the interface of a composite component. This
enables to abstract the behavior of a component in a black-box manner, by
describing which connector is triggered but not exactly which interaction takes
place. Furthermore L1 is expressive enough to encompass synchronous systems.

Definition 5. An atomic component on a interface P is defined by an LTS
K = (Q, q0, 2P ,−→), where Q is a set of states, q0 an initial state and −→ ⊆
Q× 2P ×Q is a transition relation.

Note that atomic components are labeled by sets of ports rather than ports
because we allow several ports of a component to be triggered at the same time.

Definition 6. An interaction is a non-empty set of ports. A connector γ is
defined by a set of ports Sγ called the support set of γ, a port pγ called its
exported port and a set I(γ) of interactions in Sγ .

The intuition behind support set and exported port is illustrated in Figure 4,
where connectors relate in a composition a set of inner ports (of the subcom-
ponents) to an outer port (of the composite component). One should keep in
mind that a connector γ, and thus the exported port pγ , represents a set of
interactions rather than a single interaction.

Typical connectors represent rendezvous (only one interaction, equal to the
support set), broadcast (all the interactions containing a specific port called
trigger) and also mutual exclusion (some interactions but not their union).

���
���
���

���
���
���

��
��
��

��
��
��

����
����
����
����

γgl{K1,K2}

K1 K2

pγ′

pγ

Sγ
Sγ′

γ′

Figure4. The role of connectors in a composition

We now define glues as sets of connectors which may be used together in
order to compose components.

Definition 7. A glue gl on a support set Sgl is a set of connectors with distinct
exported ports and with support sets included in Sgl .

A glue gl defines as exported interface Pgl the set {pγ | γ ∈ gl}. Besides, I(gl)
denotes the set of all interactions of the connectors in gl , i.e.: I(gl) =

⋃
γ∈gl I(γ).

In Figure 4, gl is composed of connectors γ and γ′ and defines a composite
component denoted gl{K1,K2}.

Definition 8. A component is either an atomic component or it is inductively
defined as the composition of a set of components {Ki}ni=1 with disjoint interfaces
{Pi}ni=1 using a glue gl on P =

⋃n
i=1 Pi. Such a composition is called a composite

component on Pgl and it is denoted gl{Ki}ni=1.

So far we have defined components and glues. Glues can be composed so
as to allow flattening of components. Such a composition requires to handle
hierarchical connectors built by merging connectors defined at different levels of
hierarchy. The definition of the operator ◦ used for this purpose is omitted here
and can be found in [10]. Connectors whose exported ports and support sets
are not related are called disjoint and need not be composed. The operator ◦
is then easily extended to glues: the composition gl ◦ gl ′ of two glues gl and gl ′

is obtained from gl ∪ gl ′ by inductively composing all connectors which are not
disjoint.

We can now formally define the flattened form of a component. This in turn
will allow us to provide an equivalence relation between components based on
the semantics of their flattened form. A component is called flat if it is atomic or
of the form gl{K1, . . . ,Kn}, where all Ki are atomic components. A component
that is not flat is called hierarchical. A hierarchical component K is of the form
gl{K1, . . . ,Kn} such that at least one Ki is composite. Thus, such a K can be
represented as gl{gl ′{K1},K2}, where K1 and K2 are sets of components.

Definition 9. The flattened form of a component K is denoted flat(K) and
defined inductively as:

– if K is a flat component, then flat(K) is equal to K.
– otherwise, K is of the form gl{gl ′{K1},K2}, and then flat(K) is the flattened

form of (gl ◦ gl ′){K1 ∪ K2}.
Definition 10. The semantics JKK of a flat component K = gl{K1, . . . ,Kn} is
defined as (Q, q0, I(gl),−→), where Q =

∏n
i=1Qi, q

0 = (q01 , . . . , q
0
n) and −→ is

such that: given two states q1 = (q11 , . . . , q
1
n) and q2 = (q21 , . . . , q

2
n) in Q and an

interaction α ∈ I(gl), q1
α−→ q2 if and only if ∀i, q1i

αi−→i q
2
i , where αi = α∩Pi.

We use the convention that ∀q : q
∅−→ q so components not involved in an

interaction do not move. Thus the semantics of a flat component is obtained as
the composition of its constituting LTS where labels are synchronized according
to the interactions of I(gl).

We then define equivalence ∼= as follows: two components are equivalent if
their flattened forms have the same semantics. Note that in practice one would
prefer to define the semantics of a hierarchical component as a function of the
semantics of its constituting components. In presence of encapsulation this re-
quires to distinguish between closed and open systems and thus to provide two
different semantics. More detail can be found in [10].

We now have the ingredients for defining the L1 component framework and
we focus on its contract framework.

Definition 11. K1 4L1 K2 if and only if JK1K is simulated by JK2K.

Thus L1-conformance is identical to L0-conformance for components without
non-observable non-determinism, and otherwise stronger. Note that in verifica-
tion tools, in order to check trace inclusion efficiently, one will generally check
simulation anyway. Satisfaction is defined as follows.

Definition 12. A component K satisfies a contract C = (A, gl , G) for PK , de-
noted K |=L1 (A, gl , G), if and only if:{

gl{K,Adet} 4L1 gl{G,Adet}
(qK , qA)R (qG, q

′
A) ∧ qK

α−→K =⇒ qG
α−→G

where Adet is the determinization of A, R is the relation on states proving that
gl{K,Adet} 4L1 gl{G,Adet} and α ∈ 2PK is such that ∃α′ ∈ I(gl) : α ⊆ α′.

That is, |=L1 strengthens the satisfaction relation used in the L0 framework by:
1) determinizing A; 2) requiring every transition of K to have a counterpart in
each related state of G — unless it is structurally forbidden by gl ; however the
target states of the transition must be related only if the environment allows
this transition. As a consequence, |=L1 allows circular reasoning.

3.3 Relaxed circular reasoning

We have presented in the previous sections two contract frameworks developed
in the SPEEDS project. We show now how we use their respective tool chains to-
gether. Unifying the L0 and L1 component frameworks is quite straightforward.
However we have introduced two different notions of satisfaction: |=L0 and |=L1

where the second one is strictly stronger than the first one. To combine results
based on L0 and L1, we propose a rule called relaxed circular reasoning for two
(possibly different) refinement relations:

K v1
A,gl G ∧ E v2

G,gl A =⇒ K v1
E,gl G

This rule generalizes circular and non-circular reasoning by not restricting v2
G,gl

to refinement under context v1
G,gl or refinement in any context v1. Depending

on which relation is the most restrictive it can be used in two different ways: if
the first relation allows circular reasoning and is stronger than the second one
(i.e. K v1

A,gl G =⇒ K v2
A,gl G) then our new rule relaxes circular reasoning by

requiring E v2
G,gl A rather than E v1

G,gl A; symmetrically if the first relation

does not allow circular reasoning and refinement in any context v1 is stronger
than the second one then this rule relaxes non circular reasoning by requiring
E v2

G,gl A rather than E v1 A. Interestingly, relaxed circular reasoning can be
used both ways for L0- and L1-satisfaction. First it leads to a relaxed sufficient
condition for dominance in L1.

Theorem 2. K vL1A,gl G ∧ E vL0G,gl A implies K vL1E,gl G.

Theorem 3. If ∀i ∃glEi
: gl ◦ glI = gl i ◦ glEi

the following is sufficient to prove
that C dominates {Ci}i=1..n w.r.t. gl :{

glI{G1, . . . , Gn} |=L1 C
∀i : glEi

{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} |=L0 C−1i

This is particularly interesting since checking L0-satisfaction is obviously less
costly than checking L1-satisfaction. Thus, checking that contracts {Ci}ni=1 L1-
dominate a contract C requires one L1-satisfaction check and n L0-satisfaction
checks which increases the scalability of dominance checks. Moreover, dominance
can be established more often. Second:

Theorem 4. K vL0A,gl G ∧ E vL1G,gl A implies K vL0E,gl G.

This result made it possible in SPEEDS to incorporate results from tools check-
ing L0-satisfaction with results obtained through L1-dominance (implemented
by a set of L1-satisfaction checks), thus building a complete tool chain.

4 Conclusion and future work

The work presented in this paper has been motivated by necessity of combining
contract-based verification tools and corresponding results for two component
frameworks L0 and L1 defined in the context of the European SPEEDS project.
In particular, we were interested in using dominance results established in L1
— and which cannot be obtained using the L0 refinement relation — for fur-
ther reasoning in L0. To that purpose, we have presented an abstract notion
of contract framework for a given component framework that defines three dif-
ferent notions of refinement, that is, conformance, dominance and satisfaction.
We show how to derive these notions from refinement of closed systems and
refinement under context and we provide a methodology for compositional and
hierarchical verification of global properties.

We have studied circular reasoning as a powerful means for proving domi-
nance. As circular reasoning does not always hold for usual notions of refinement,
we provide proof rules for dominance relying on a relaxed notion of circular rea-
soning based on two notions of refinement. We have then shown that our abstract
framework is general enough to represent both L0 and L1 as specific instances
and proved that the L0 and L1 refinement relations satisfy the condition for
relaxed circular reasoning.

These theoretical results have been implemented in the context of the HRC
model developed in the SPEEDS project. There, analysis tools were built for
both frameworks and the theory presented in this paper was used to combine
them on concrete examples. A more detailed description of the design and ver-
ification methodology is provided in [13]. In particular, for every design step, a
set of checks to be carried out is defined. Future work includes strategies to be
deployed when some check fails, which should depend on the failed check and
on whether a top-down or bottom-up approach is followed, and which should be
able to exploit more detailed diagnostic information when it exists.

References

1. R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

2. L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi, R. Passerone, and C. Sofronis. A
contract-based formalism for the specification of heterogeneous systems. In Proc.
of FDL’08, Stuttgart, Germany, September 23–25, 2008.

3. J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hard to do: An
evaluation of automated assume-guarantee reasoning. ACM Trans. Softw. Eng.
Methodol., 17(2), 2008.

4. Combest project. http://www.combest.eu.
5. L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. of ESEC/SIGSOFT

FSE’01, pages 109–120. ACM Press, 2001.
6. B. Delahaye, B. Caillaud, and A. Legay. Probabilistic contracts: A compositional

reasoning methodology for the design of stochastic systems. In Proc. of ACSD’10,
pages 223–232, 2010.

7. I. B. Hafaiedh, S. Graf, and S. Quinton. Reasoning about safety and progress using
contracts. In Proc. of ICFEM’10, pages 436–451, 2010.

8. K. G. Larsen, U. Nyman, and A. Wasowski. Interface input/output automata. In
Proc. of FM’06, volume 4085 of LNCS, pages 82–97, 2006.

9. P. Maier. A Lattice-Theoretic Framework for Circular Assume-Guarantee Reason-
ing. PhD thesis, Universität des Saarlandes, 2003.

10. Extended version of this paper including proofs. http://www-verimag.imag.fr/

~quinton/TIMOBD11-proofs.pdf.
11. S. Quinton and S. Graf. Contract-based verification of hierarchical systems of

components. In Proc. of SEFM’08, pages 377–381. IEEE Computer Society, 2008.
12. J. Sifakis. A framework for component-based construction. In Proc. of SEFM’05,

pages 293–300. IEEE Computer Society, 2005.
13. SPEEDS methodology for speculative and exploratory design in systems engineer-

ing. http://www.speeds.eu.com.
14. S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee. On relational interfaces. In

Proc. of EMSOFT’09, pages 67–76, 2009.

http://www.combest.eu
http://www-verimag.imag.fr/~quinton/TIMOBD11-proofs.pdf
http://www-verimag.imag.fr/~quinton/TIMOBD11-proofs.pdf
http://www.speeds.eu.com

A Relaxed circular reasoning

NB: The following theorem is given for v1 stronger than or equal to v2. It
implies Theorem 1 and also Theorem 3 when combined with the results of the
following sections.

(CR) denotes the circular reasoning rule defined in Section 2 and (CMP) de-
notes the preservation of satisfaction by composition rule.

Theorem 5. Suppose that relaxed circular reasoning is sound for v1 and v2

and satisfaction is preserved by composition. If ∀i, ∃glEi
, gl ◦ glI = gl i ◦ glEi

then to prove that {Ci}ni=1 dominates C w.r.t. glI , it is sufficient to prove that:{
glI{G1, . . . , Gn} |=1 C
∀i, glEi

{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} |=2 C−1i
Proof. For every i ∈ [1, n], let Ki be a component on Pi. Suppose the following:

1. ∀i, ∃glEi
, gl ◦ glI = gl i ◦ glEi

2. glI{G1, . . . , Gn} v1
A,gl G

3. ∀i, glEi
{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} v2

Gi,gli
Ai

4. ∀i, Ki v1
Ai,gli

Gi

We aim at proving that glI{K1, . . . ,Kn} |=1 C, that is: glI{K1, . . . ,Kn} v1
A,gl G.

For this, we show by induction that for any l in [0, n], for any partition {J,K}
of [1, n] such that |J | = l:{

glI{KJ ∪ GK} v1
A,gl G

∀i ∈ K, glEi
{A, EJ,Ki } v2

Gi,gli
Ai

with KJ = {Kj}j∈J , GK = {Gk}k∈K and with EJ,Ki = KJ ∪ (GK\{Gi}).

– l = 0. By (2) and (3) the property holds.
– 0 ≤ l < n. We suppose that our property holds for l. Let {J ′,K ′} be a

partition of [1, n] such that |J ′| = l + 1. Let q be an element of J ′. We fix
J = J ′\{q} and K = K ′ ∪ {q}.

Step 1 We first prove that glI{KJ
′ ∪ GK′} v1

A,gl G.{
Kq v1

Aq,glq
Gq from (4)

glEq
{A, EJ,Kq } v2

Gq,glq
Aq

The second property is our recurrence hypothesis, as q ∈ K. Thus, by circular
reasoning (CR):

Kq v1
glEq

{A,EJ,Kq },glq
Gq

As refinement under context is preserved by composition, we obtain by (CMP):

glI{Kq, EJ,Kq } v1
A,gl glI{Gq, EJ,Kq }

This is equivalent to glI{KJ
′ ∪ GK′} v1

A,gl glI{KJ ∪ GK}.
Finally, by using the recurrence hypothesis: glI{KJ

′ ∪ GK′} v1
A,gl G.

Step 2 We now have to prove that:

∀i ∈ K ′, glEi
{A, EJ

′,K′

i } v2
Gi,gli

Ai

We fix i ∈ K ′. We have proved in step 1 that:

Kq v1
glEq

{A,EJ,Kq },glq
Gq

As v1 is stronger than v2, we also have:

Kq v2
glEq

{A,EJ,Kq },glq
Gq

K = K ′ ∪ {q}, so i ∈ K. Thus, by compositionality (CMP), we obtain:

glEi
{Kq, A, EJ,K\{i}q } v2

Gi,gli
glEi
{Gq, A, EJ,K\{i}q }

This boils down to glEi
{A, EJ

′,K′

i } v2
Gi,gli

glEi
{A, EJ,Ki }.

Hence, using the recurrence hypothesis: glEi
{A, EJ

′,K′

i } v2
Gi,gli

Ai.

Conclusion By applying our property to l = n, we get:

glI{K1, . . . ,Kn} v1
A,gl G

B Composition of glues in L1

Glues can be composed so as to allow flattening of components. Such a com-
position requires to handle hierarchical connectors built by merging connectors
defined at different levels of hierarchy. More precisely, if pγ′ ∈ Sγ then γ and γ′

can be composed to form a hierarchical connector denoted γ ◦ γ′ with support
set Sγ ∪Sγ′\{pγ′}, with exported port pγ and whose interaction set is computed
from I(γ) as follows: each interaction α in which pγ′ occurs is replaced by a set
of interactions identical to α except that the occurrence of pγ′ is replaced by an
interaction of I(γ′).

Definition 13. Let γ and γ′ be two connectors such that pγ′ ∈ Sγ . The hier-
archical connector γ ◦ γ′ resulting from their composition is defined as follows:

– Sγ◦γ′ , Sγ ∪ Sγ′\{pγ′}
– pγ◦γ′ , pγ
– I(γ ◦ γ′) , {α ∈ I(γ) | pγ′ /∈ α} ∪ {α.α′ | α.pγ′ ∈ I(γ) ∧ α′ ∈ I(γ′)}

Example 3. Let γ be such that Sγ = {pγ′ , c} and I(γ) = {{pγ′ , c}}; consider also
γ′ with Sγ′ = {a, b} and I(γ′) = {{a}, {b}, {a, b}}. Then γ ◦ γ′ has as support
set {a, b, c}, exported port pγ and interaction set {{a, c}, {b, c}, {a, b, c}}.
Note that if pγ ∈ Sγ′ and pγ′ ∈ Sγ , then composing γ and γ′ would result in a
circular connector (a connector γ′′ with pγ′′ ∈ Sγ′′), hence this situation must be
prevented. Connectors whose exported ports and support sets are not related are
called disjoint and need not be composed. The operator ◦ is then easily extended
to glues: the composition gl ◦ gl ′ of two glues gl and gl ′ is obtained from gl ∪ gl ′

by inductively composing all connectors which are not disjoint.

C Consistency between L0 and L1

In this section we prove the following theorems:

1. L1-satisfaction implies L0-satisfaction

2. Soundness of circular reasoning for vL1
3. Soundness of relaxed circular reasoning for vL1 and vL0
4. Soundness of relaxed circular reasoning for vL0 and vL1

Before this we recall some basic definitions and properties of LTS and provide
characterizations of vL1 and vL0 which are used in the proofs. Throughout this
section we deal only with atomic components and we discuss in the next section
how to handle composite components. Furthermore, K is implicitely defined as
(QK , q

0
K , 2

PK ,−→K) and qK denotes a state ofQK . A,G, E are defined similarly.

Finally, we use everywhere the convention that ∀q ∅−→ q.

C.1 Basic definitions and properties of LTS

Definition 14 (Trace). A (finite) trace of an LTS S is a sequence of labels
a1.a2 . . . an for which there exists a sequence of states q0.q1 . . . qn such that q0 =

q0 and for every 0 ≤ i < n there is a transition qi
ai+1−→ qi+1. The length of the

trace is n. The set of traces of S is denoted Tr(S).

Traces are in general denoted σ. The sequence q0.q1 . . . qn is called the sequence
of states corresponding to a1.a2 . . . an. In a deterministic LTS, every trace has
only one corresponding sequence of states.

Definition 15 (Determinization). The determinization of an LTS S, denoted
Sdet , is the LTS (2Q, {q0}, Σ,−→det) where −→det consists of triples in 2Q ×
Σ × 2Q and is the smallest relation such that for Q,Q′ ⊆ Q, Q a−→det Q′ if and
only if Q′ 6= ∅ and Q′ = {q′ | ∃q ∈ Q s.t . q

a−→ q′}.

The condition Q′ 6= ∅ ensures that there exists a transition in the determinized
LTS only if there exists at least one corresponding transition in the original
LTS. Note that for a given S, Sdet is unique and deterministic. Uniqueness and
determinism come from the fact that in every state Q′ is uniquely defined.

Lemma 1. For any LTS S, it holds that Tr(S) = Tr(Sdet).

Proof. We prove by induction the following lemma: for any l ≥ 0, the set
of traces of length l of S is equal to the set of traces of length l of Sdet ,
and for any σ of length l in these sets, if Q0.Q1 . . . Ql−1 is the (unique) se-
quence of states corresponding to σ in Sdet , then we have Ql−1 = {ql−1 ∈
Q | q0.q1 . . . ql−1 is a sequence of states in S corresponding to σ}.

Definition 16 (Simulation). Let S1 and S2 be two LTS. A relation R ⊆ Q1×
Q2 is a simulation relation of S2 by S1 iff q01R q02 and for any pair (q1, q2) ∈
Q1 ×Q2 and any q′1 ∈ Q1:

q1R q2 and q1
a−→1 q

′
1 implies ∃q′2 ∈ Q2 such that q2

a−→2 q
′
2 and q′1R q′2

S1 is simulated by S2 if and only if there exists such a relation.

Intuitively, an LTS S1 is simulated by S2 if any reachable state q1 of S1 can be
mapped to a state q2 in S2 such that all labels enabled in q1 (w.r.t S1) are also
enabled in q2 (w.r.t. S2).

Lemma 2. For any LTS S, S is simulated by Sdet .

Proof. Let R ⊆ Q × 2Q be a relation defined as follows: qRQ if and only if
q ∈ Q, for any q ∈ Q and Q ⊆ Q. Relation R is a simulation of Sdet by S.

Lemma 3. If S1 is simulated by S2 then Tr(S1) ⊆ Tr(S2).

Proof. Again, the proof is a simple induction on the length of the traces.

Simulation is strictly stronger than inclusion of traces. Furthermore, inclusion
of traces and simulation can be related by the following equivalence.

Lemma 4. Tr(S1) ⊆ Tr(S2) if and only if Sdet
1 is simulated by Sdet

2 .

Proof. We decompose this proof into two implications.
=⇒ : Suppose every trace of S1 is a trace of S2. We define R ⊆ 2Q1 × 2Q2

as follows: {q01}R{q02}, and if Q1RQ2 and Q1
a−→ Q′1, then Q′1RQ′2, where

Q′2 = {q′2 | ∃q2 ∈ Q2 s.t . q2
a−→ q′2}. Relation R is a simulation of Sdet

2 by Sdet
1 .

⇐= : is a direct consequence of Lemma 3 and Lemma 1.

C.2 Characterization of L1-satisfaction

Lemma 5. Jgl{K,A}K is simulated by Jgl{G,A}K if and only if there exists a
relation R ⊆ (QK ×QA)×QG such that:

1. (q0K , q
0
A)R q0G

2. if (qK , qA)R qG and (qK , qA)
α−→ (q′K , q

′
A) for α ∈ I(gl), then there exists q′G

such that qG
αK−→ q′G and (q′K , q

′
A)R q′G where αK = α ∩ PK .

Proof. We consider first the right-to-left implication. DefineR′ such that (qK , qA)R′ (qG, q′A)
if and only if qA = q′A and (qK , qA)R qG.

– By definition of R′ and using (1): (q0K , q
0
A)R′ (q0G, q0A)

– Suppose that (qK , qA)R′ (qG, qA) and (qK , qA)
α−→ (q′K , q

′
A) for α ∈ I(gl).

By definition of R′ we have (qK , qA)R qG. Then from (2) we know that there

exists q′G such that qG
αK−→ q′G and (q′K , q

′
A)R q′G where αK = α ∩ PK .

Thus we obtain (q′K , q
′
A)R (q′G, q

′
A).

Besides (qK , qA)
α−→ (q′K , q

′
A) implies that qA

αA−→ q′A where αA = α ∩ PA.

Hence (qG, qA)
α−→ (q′G, q

′
A) because α = αK ∪ αA.

Thus R′ is a simulation.

Let us consider now the left-to-right implication. Suppose that there exists a sim-
ulationR′. We defineR such that (qK , qA)R qG if and only if (qK , qA)R′ (qG, q′A)
for some q′A.

1. By definition of R and simulation: (q0K , q
0
A)R q0G

2. Suppose that (qK , qA)R qG and (qK , qA)
α−→ (q′K , q

′
A) for α ∈ I(gl).

By definition of R we have (qK , qA)R′ (qG, q′′A) for some q′′A. It follows, because

R′ is a simulation, that (qG, q
′′
A)

α−→ (q′G, q
′′′
A) and (q′K , q

′
A)R′ (q′G, q′′′A). We

conclude from (qG, q
′′
A)

α−→ (q′G, q
′′′
A) that qG

αK−→ q′G for αK = α ∩ PK and
from (q′K , q

′
A)R′ (q′G, q′′′A) that (q′K , q

′
A)R q′G.

Hence the result.

Lemma 6 (Characterization of L1). K |=L1 (A, gl , G) if and only if there
exists a relation R ⊆ (QK × 2QA)×QG such that:

– (q0K , {q0A})R q0G
– if (qK ,QA)R qG and qK

αK−→K q′K with αK ⊆ α for some α ∈ I(gl), then
there exists q′G such that:

1. qG
αK−→G q′G

2. if there exists qA ∈ QA, q′A ∈ QA and αA s.t. qA
αA−→A q′A and αK ∪ αA ∈

I(gl), then (q′K ,Q′A)R q′G where Q′A is {q′A | ∃qA ∈ QA s.t. qA
αA−→A q

′
A}.

Note that it would be possible in the definition of L1-satisfaction to strengthen
the condition on αK by considering only interactions αK such that αK = α∩2PK

for some α ∈ I(gl).

Proof. This lemma is a direct consequence of Lemma 5 and of the definitions of
L1-satisfaction and determinization. Remember that:

K |=L1 (A, gl , G) ,

{
Jgl{K,Adet}K is simulated by Jgl{G,Adet}K
(qK ,QA)R′ (qG,Q′A) ∧ qK

αK−→K =⇒ qG
αK−→G

where Adet is the determinization of A, R is the relation on states proving that
gl{K,Adet} 4L1 gl{G,Adet} and αK ∈ 2PK is such that ∃α ∈ I(gl) : αK ⊆ α.

Let us show the left-to-right implication. Suppose that K |=L1 (A, gl , G). Ac-
cording to the definition of L1-satisfaction, to Lemma 5 and to the definition of
determinization, there exists a relation R ⊆ (QK × 2QA)×QG such that:

a) (q0K , {q0A})R q0G
b) if (qK ,QA)R qG and (qK ,QA)

α−→ (q′K ,Q′A) for α ∈ I(gl), then there exists

q′G such that qG
αK−→ q′G and (q′K ,Q′A)R q′G where αK = α ∩ PK

c) (qK ,QA)R qG ∧ qK
αK−→K =⇒ qG

αK−→G with αK ⊆ α for some α ∈ I(gl)

d) QA
αA−→Adet

Q′A iff Q′A 6= ∅ and Q′A = {q′A | ∃qA ∈ QA s.t . qA
αA−→ q′A}.

Thus the condition on the initial state is trivially satisfied. Let us show conditions
1 and 2. Suppose that (qK ,QA)R qG and qK

αK−→K q′K with αK ⊆ α for some
α ∈ I(gl). Item (c) above implies condition 1. To show condition 2, let us

suppose that there exists qA ∈ QA, q′A ∈ QA and αA such that qA
αA−→A q

′
A and

αK ∪ αA ∈ I(gl). Item (d) implies that QA
αA−→Adet

Q′A. Then item (b) implies
that (q′K ,Q′A)R q′G.

Let us show now the right-to-left implication. Let R be as above and let us
show that K |=L1 (A, gl , G). As R′ satisfies the conditions of Lemma 5 (where A
is replaced by Adet), it holds that Jgl{K,Adet}K is simulated by Jgl{G,Adet}K,
where the simulation is defined by R′ as (qK ,QA)R′ (qG,Q′A) iff QA = Q′A
and (qK ,QA)R qG. The second condition on R′ required by the definition of
L1-satisfaction is ensured by item 1 in the definition of R.

C.3 Characterization of L0-satisfaction

Lemma 7. K vL0A,gl G iff there exists a relation R ⊆ (2QK ×QA)× 2QG with:

– ({q0K}, q0A)R{q0G}
– if (QK , qA)RQG and (qK , qA)

α−→ (q′K , q
′
A) with qK ∈ QK and α ∈ I(gl),

there exists qG ∈ QG and q′G ∈ QG such that qG
αK−→ q′G and (Q′K , q′A)RQ′G

where αK = α ∩ PK , Q′K = {q′K | ∃qK ∈ QK s.t. qK
αK−→K q′K} and Q′G is

defined as {q′G | ∃qG ∈ QG s.t. qG
αK−→G q′G}.

Proof. By definition K vL0A,gl G iff Tr(gl{K,A}) ⊆ Tr(gl{G,A}). According

to Lemma 4, this is equivalent with gl{K,A}det is simulated by gl{G,A}det .
Besides, using Lemma 5 and the definition of determinization, we know that
there exists R as above if and only if gl{Kdet , A} is simulated by gl{Gdet , A}.
Thus we have to show that determinizing A is not necessary when A appears on
both sides of the simulation relation.

Let us focus first on the left-to-right implication. We suppose that gl{K,A}det
is simulated by gl{G,A}det and denote R′ the corresponding simulation re-
lation. We define R by: (QK , qA)RQG if and only if (QK ,QA)R′ (QG,Q′A)
for some QA,Q′A such that qA ∈ QA. The condition on the initial states is
obviously satisfied so let us focus on the second condition required from R:
suppose that (QK , qA)RQG and (qK , qA)

α−→ (q′K , q
′
A) with qK ∈ QK and

α ∈ I(gl). By definition of R this implies that (QK ,QA)R′ (QG,Q′′A) with

qA ∈ QA. Besides (qK , qA)
α−→ (q′K , q

′
A) implies that (QK ,QA)

α−→det (Q′K ,Q′A)

where Q′K = {q′K | ∃qK ∈ QK s.t. qK
αK−→K q′K} for αK = α ∩ PK . Thus,

because R′ is a simulation there exists Q′G,Q′′′A such that QG
αK−→ Q′G and

(Q′K ,Q′A)R′ (Q′G,Q′′′A). This implies condition 2 for R.

Now we consider the right-to-left implication. We suppose that we have R as
above and show that this implies that gl{K,A}det is simulated by gl{G,A}det .
Define R′ as (QK ,QA)R′ (QG,Q′A) if and only if QA = Q′A and (QK , qA)R′QG
for some qA ∈ QA. We show that R′ is a simulation using an argument similar
to that of the left-to-right implication.

C.4 L1-satisfaction implies L0-satisfaction

Proof. We suppose that K vL1A,gl G, and then we prove that K vL0A,gl G using
the characterizations provided in Lemma 6 and 7.

As K vL1A,gl G, there exists a relation R ⊆ (QK × 2QA) × QG as in Lemma 6.

We define R′ ⊆ (2QK × QA) × 2QG as follows: (QK , qA)R′QG iff there exists
QA ⊆ QA, qK ∈ QK and qG ∈ QG such that qA ∈ QA and (qK ,QA)R qG.
Obviously ({q0K}, q0A)R′ {q0G}.

Now suppose (QK , qA)R′QG and (qK , qA)
α−→ (q′K , q

′
A) with qK ∈ QK and

α ∈ I(gl). Denote αK = α ∩ PK and αA = α ∩ PA so that α = αK ∪ αA. We

must show that there exists qG ∈ QG and q′G ∈ QG such that qG
αK−→ q′G and

(Q′K , q′A)RQ′G where Q′K = {q′K | ∃qK ∈ QK s.t. qK
αK−→K q′K} and Q′G is

defined as {q′G | ∃qG ∈ QG s.t. qG
αK−→G q′G}.

By definition we know that (qK ,QA)R qG for some QA ⊇ qA, qK ∈ QK and

qG ∈ QG. Besides (qK , qA)
α−→ (q′K , q

′
A) implies that qK

αK−→K q′K . Thus from L1-

satisfaction we obtain that there exists q′G such that qG
αK−→G q′G. Furthermore,

(qK , qA)
α−→ (q′K , q

′
A) also implies that qA

αA−→A q′A. Hence again from L1-

satisfaction: (q′K ,Q′A)R q′G where Q′A is {q′A | ∃qA ∈ QA s.t. qA
αA−→A q

′
A}.

By definition of R′, we may now conclude that (Q′K , q′A)R′Q′G.

C.5 Soundness of circular reasoning for vL1

Proof. Let K be a component on P, C = (A, gl , G) a contract for P and E a
component such that PE = PA. Suppose that K vL1A,gl G and E vL1G,gl A. We

have to prove that K vL1E,gl G.

AsK vL1A,gl G and E vL1G,gl A, there exist two relationsR1 andR2 on respectively

(QK × 2QA) × QG and (QE × 2QG) × QA as in Lemma 6. We define R ⊆
(QK × 2QE) × QG as follows: for any qK ∈ QK , QE ⊆ QE and qG ∈ QG,
(qK ,QE)R qG iff there exists QA ⊆ QA, QG ⊆ QG, qE ∈ QE and qA ∈ QA such
that qG ∈ QG, (qK ,QA)R1 qG and (qE ,QG)R2 qA. We now have to prove that
R ensures the conditions of Lemma 6. Obviously, (q0K , {q0E})R q0G.

Suppose that (qK ,QE)R qG. Then by definition (qK ,QA)R1 qG and (qE ,QG)R2 qA
for some QA, QG with qG ∈ QG, qE ∈ QE and qA ∈ QA. Now suppose
qK

αK−→K q′K . We have to prove that there exists q′G such that:

1. qG
αK−→G q′G

2. if ∃αE , qE ∈ QE and q′E ∈ QE s.t. qE
αE−→E q′E and αK ∪ αE ∈ I(gl), then

(q′K ,Q′E)R q′G where Q′E is {q′E | ∃qE ∈ QE s.t. qE
αE−→E q′E}.

As (qK ,QA)R1 qG and qK
αK−→K q′K , we know that there exists q′G such that:

– qG
αK−→G q′G

– if ∃αA, qA ∈ QA and q′A ∈ QA s.t. qA
αA−→A q′A and αK ∪ αA ∈ I(gl), then

(q′K ,Q′A)R q′G with Q′A defined as {q′A | ∃qA ∈ QA s.t. qA
αA−→A q

′
A}.

We now show that this q′G satisfies the two conditions required above from R.
Condition 1 is exactly the same as for R1, so let focus on the second condition.

Suppose that there exists αE , qE ∈ QE and q′E ∈ QE such that qE
αE−→E q′E and

αK ∪ αE ∈ I(gl). Let Q′E = {q′E | ∃qE ∈ QE s.t. qE
αE−→E q′E} as defined above.

We have to show that (q′K ,Q′E)R q′G. As (qE ,QG)R2 qA and qE
αE−→E q′E , we

know that there exists q′A such that:

– qA
αE−→A q

′
A

– if ∃αG, qG ∈ QG and q′G ∈ QG s.t. qG
αG−→G q′G and αG ∪ αE ∈ I(gl), then

(q′E ,Q′G)R q′A with Q′G defined as {q′G | ∃qG ∈ QG s.t. qG
αG−→G q′G}.

Thus, applying the second property offered by R1 to this αE and q′A, we obtain

that (q′K ,Q′A)R1 q
′
G where Q′A is defined as {q′A | ∃qA ∈ QA s.t. qA

αE−→A q′A}.
Besides, as there exist indeed qG ∈ QG and q′G ∈ QG such that qG

αK−→G q′G, then
applying the second property offered by R2, we obtain (q′E ,Q′G)R2 q

′
A for Q′G

defined as {q′G | ∃qG ∈ QG s.t. qG
αK−→G q′G}. Finally, according to the definition

of R, we can conclude that (q′K ,Q′E)R q′G.

C.6 Relaxed circular reasoning for vL1 and vL0

Proof. Let K be a component on an interface P, C = (A, gl , G) a contract for
P and E a component such that PE = PA. We suppose that K vL1A,gl G and

E vL0G,gl A, and then we prove that K vL1E,gl G.

As K vL1A,gl G, there exists a relation R1 on (QK × 2QA)×QG as in Lemma 6.

As E vL0G,gl A, there exists a relation R2 on (2QE ×QG)× 2QA as in Lemma 7.

We define R ⊆ (QK × 2QE) × QG as follows: for any qK ∈ QK , QE ⊆ QE
and qG ∈ QG, we define (qK ,QE)R qG iff there exists QA ⊆ QA such that
(qK ,QA)R1 qG and (QE , qG)R2QA. We have to prove that R ensures the con-
ditions of Lemma 6. Obviously, (q0K , {q0E})R q0G.

Let qK ∈ QK ,QE ⊆ QE , qG ∈ QG be such that (qK ,QE)R qG. Let QA be such

that (qK ,QA)R1 qG and (QE , qG)R2QA. Now suppose qK
αK−→K q′K . We have

to prove that there exists p′G such that:

1. qG
αK−→G q′G

2. if ∃αE , qE ∈ QE and q′E ∈ QE s.t. qE
αE−→E q′E and αK ∪ αE ∈ I(gl), then

(q′K ,Q′E)R q′G where Q′E is {q′E | ∃qE ∈ QE s.t. qE
αE−→E q′E}.

As (qK ,QA)R1 qG and qK
αK−→K q′K , we know that there exists q′G such that:

– qG
αK−→G q′G

– if ∃αA, qA ∈ QA and q′A ∈ QA s.t. qA
αA−→A q′A and αK ∪ αA ∈ I(gl), then

(q′K ,Q′A)R q′G with Q′A defined as {q′A | ∃qA ∈ QA s.t. qA
αA−→A q

′
A}.

We show that this q′G satisfies the two conditions required from R. Condition 1.
is exactly the same as for R1. Let us show that the second condition holds.

Suppose that there exist αE , qE ∈ QE and q′E ∈ QE such that qE
αE−→E q′E and

αK ∪ αE ∈ I(gl). Let Q′E = {q′E | ∃qE ∈ QE s.t. qE
αE−→E q′E} as above. We

have to show that (q′K ,Q′E)R q′G. As qE
αE−→E q′E and qG

αK−→G q′G, we know

that (qE , qG)
α−→ (q′E , q

′
G). Thus, from (QE , qG)R2QA and because qE ∈ QE ,

we can conclude that there exist qA ∈ QA and q′A ∈ QA such that qA
αE−→ q′A and

(Q′E , q′G)R2Q′A for Q′E as above and Q′A = {q′A | ∃qA ∈ QA s.t. qA
αE−→A q

′
A}.

Now, applying the second property offered by R1 to this αE , qA and q′A, we
obtain that (q′K ,Q′A)R1 q

′
G with QA as defined above. Finally, according to the

definition of R , we can conclude that (q′K ,Q′E)R q′G.

C.7 Relaxed circular reasoning for vL0 and vL1

Proof. Let K be a component on an interface P, C = (A, gl , G) a contract for
P and E a component such that PE = PA. We suppose that K vL0A,gl G and

E vL1G,gl A, and then we prove that K vL0E,gl G.

As K vL0A,gl G, there exists a relation R1 on (2QK ×QA)× 2QG as in Lemma 7.

As E vL1G,gl A, there exists a relation R2 on (QE × 2QG)×QA as in Lemma 6.

We define R ⊆ (2QK × QE) × 2QG as follows: for any QK ⊆ QK , qE ∈ QE
and QG ⊆ QG, we define (QK , qE)RQG iff there exists qA ∈ QA such that
(QK , qA)R1QG and (qE ,QG)R2 qA. We have to prove that R ensures the con-
ditions of Lemma 7. Obviously, ({q0K}, q0E)R{q0G}.

Let QK ⊆ QK , qE ∈ QE and QG ⊆ QG be such that (QK , qE)RQG. Let qA be

such that (QK , qA)R1QG and (qE ,QG)R2 qA. Suppose (qK , qE)
α−→ (q′K , q

′
E)

for qK ∈ QK and α = αK ∪ αE ∈ I(gl). Define Q′K and Q′G as follows: Q′K =

{q′K | ∃qK ∈ QK s.t. qK
αK−→K q′K} and Q′G as {q′G | ∃qG ∈ QG s.t. qG

αK−→G q′G}.
We have to prove that there exists qG ∈ QG and q′G ∈ QG such that qG

αK−→ q′G
and (Q′K , q′E)RQ′G.

As (qK , qE)
α−→ (q′K , q

′
E), we know that qE

αE−→E q′E . Then, because (qE ,QG)R2 qA
and qE

αE−→E q′E , there exists q′A such that:

– qA
αE−→A q

′
A

– if ∃αG, qG ∈ QG and q′G ∈ QG s.t. qG
αG−→G q′G and αG ∪ αE ∈ I(gl), then

(q′E ,Q′G)R q′A with Q′G defined as above.

This implies in particular that (qK , qA)
α−→ (q′K , q

′
A). Thus, from (qK ,QA)R1 qG

and because qA ∈ QA, we can conclude that there exists qG ∈ QG and q′G ∈ QG
such that qG

αK−→ q′G and (Q′K , q′A)R1Q′G for Q′K and Q′G defined as above. This
gives us the qG and q′G we were looking for. There only remains to prove that
(Q′K , q′E)RQ′G. Now, applying the second property offered by R2 to this αK ,
qG and q′G, we obtain that (q′E ,Q′G)R2 q

′
A. Hence, according to the definition of

R , the conclusion that (q′K ,Q′E)R q′G.

D Dealing with hierarchical components in L1

D.1 A compositional semantics for L1 without encapsulation

So far, we have supposed that all components were atomic in order to simplify
the presentation of the proofs. However, Section 3 defines the semantics of a
component gl{K,A} as the semantics of its flattened form. Therefore we provide
now a theorem that allows reusing all proofs of the previous section in the context
of hierarchical components. It uses the fact that glues are defined on sets of ports
rather than sets of interfaces, which allows us to replace in a composition a set
of components K1 with a single component.

Theorem 6. Jgl{gl ′{K1},K2}K = J(gl ◦ gl ′){Jgl ′{K1}K,K2}K.

Proof. By definition we have Jgl{gl ′{K1},K2}K = J(gl ◦ gl ′){K1 ∪ K2}K. Denote
glf = gl ◦ gl ′ the glue used for flattening the system. For readability and w.l.o.g.
we suppose that K1 = {K1, . . . ,Km} and K2 = {Km+1, . . . ,Kn} for 0 < m < n.

We consider two states q1 = (q11 , . . . , q
1
n) and q2 = (q21 , . . . , q

2
n) of Jglf{K1∪K2}K.

Again by definition, q1
α−→ q2 for α ∈ I(glf) if and only if ∀i : q1i

αi−→i q
2
i , where

αi = α ∩ Pi.

Consider now two states q1 = (Q1
h, q

1
m+1, . . . , q

1
n) and q2 = (Q2

h, q
2
m+1, . . . , q

2
n) of

Jglf{Jgl ′{K1}K,K2}K where Q1
h and Q2

h are states of the hierarchical component

Jgl ′{K1}K, i.e. Q1
h is of the form (q11 , . . . , q

1
m) and Q2

h = (q21 , . . . , q
2
m). Here we

have q1
α−→ q2 for α ∈ I(glf) if and only if Q1

h
αh−→h Q2

h and ∀i > m : q1i
αi−→i q

2
i ,

with αi = α∩Pi, αh = α∩ I(gl ′) and −→h the transition relation of Jgl ′{K1}K.
Now we also have that Q1

h
αh−→h Q2

h if and only if ∀i ≤ m : q1i
αi−→i q

2
i , where

αi = αh ∩Pi. Thus αi = α ∩ I(gl ′)∩Pi. As α ∈ I(gl ◦ gl ′) it holds according to
the definition of ◦ that α ∩ Pi ⊆ I(gl ′). Hence the result. 2

Based on this theorem we obtain that if K is a flat component K = gl ′{K1}
then K |=L1 (A, gl , G) if and only if JK1K |=L1 (A, gl ◦ gl ′, JGK). By using this
inductively, we can extend all results from the previous section to (possibly
hierarchical) composite components.

D.2 A compositional semantics for L1 with encapsulation

As already mentioned, the closed semantics that was proposed for L1 is not very
satisfying because it does not take encapsulation into account. Indeed,K may not
refine G in the context of A and gl even though K and G show the same behavior
at their interface, because K and G may not have the same internal actions. To
tackle this issue, we propose here another (looser) definition of closed semantics
that does not rely on flattening of components. It is based on a compositional
semantics which provides for each (possibly hierarchical) component an atomic
component that behaves in the same way when part of a larger system. In other
words, we define a semantics that is consistent with satisfaction, meaning that a
component and its compositional semantics satisfy exactly the same contracts.
This allows us here too to reuse the proofs of the previous section, as composite
components can be replaced by their compositional semantics. Note that the
compositional semantics is black box, i.e., it refers to exported ports.

In contrast, the semantics that was presented in Section 3 as well as the
new one defined in this section are used for expressing the behavior of a closed
system, that is, a system that has no interaction with an environment. These two
closed semantics are white-box in the sense that they reflect the inner interactions
taking place and not only the corresponding exported ports at the interface of the
system. The difference between the closed and the compositional semantics that
we define below are illustrated in Figure 5, where a simple composite component
is given with its two corresponding semantics, compositional (top-right) and
closed (down-right).

Note also that the equivalence induced by the compositional semantics relates
open systems, thus being a refinement in any context, while the equivalence
required by our definition of component framework relates closed systems.

d

pγ′

pγpa

a b e f

pf

c

b e

d

c

a f

K

|K|

JKK

pγ

pγ′

c.d

pa.pf

pf

a

pa

b.e

f

Figure5. A composite component (left) and its semantics (right)

Consider now a composite component K defined by a set of components
{Ki}ni=1 and a glue gl with support set Sgl =

⋃n
i=1 Pi. For defining our com-

positional semantics, we need to define what a multi-shot interaction is, and in

fact we need two such notions, one for representing black-box interactions and
one for white-box interactions.

Definition 17. Given a glue gl , a black-box multi-shot interaction is of the
form {pγ1 , . . . , pγk}, where all connectors γi have pairwise disjoint support sets.
Each such interaction m = {pγ1 , . . . , pγk} is associated with a set of white-box
multi-shot interactions denoted wb(m) and defined as:

wb(m) = {α1 ∪ . . . ∪ αk | ∀i ∈ [1, k], αi ∈ I(γi)}

The set of black-box, respectively white-box, multi-shot interactions of gl is de-
notedMbb(gl), respectivelyMwb(gl). Multi-shot interactions allow concurrency,
as interactions from non-conflicting connectors may be fired simultaneously (un-
less stated otherwise by the components’ behaviors).

Definition 18 (Compositional semantics). The compositional semantics of
K is denoted |K| and is defined as (Q, q0,Mbb(gl),), where Q =

∏n
i=1Qi,

q0 = (q01 , . . . , q
0
n) and given two states q1 = (q11 , . . . , q

1
n) and q2 = (q21 , . . . , q

2
n) in

Q and a multi-shot interaction m ∈Mbb(gl), q1
m
 q2 iff there exists α ∈ wb(m)

such that ∀i, q1i
αi i q

2
i , where αi = α ∩ Pi.

Here too we use the convention that ∀q, q ∅−→ q so that components not in-
volved in the interaction do not move. The closed semantics only differs from
the compositional semantics in that it is white-box, so labels are interactions in
I(gl) rather than ports in Pgl . Furthermore, it differs from the one defined in
Section 3 in that it is based on the compositional semantics provided here rather
than on a flattening of the system.

Definition 19 (Closed semantics). The closed semantics of K is denoted JKK
and is defined as (Q, q0, I(gl),−→), where Q =

∏n
i=1Qi, q

0 = (q01 , . . . , q
0
n) and

−→ is defined as follows. Given two states q1 = (q11 , . . . , q
1
n) and q2 = (q21 , . . . , q

2
n)

in Q and an interaction α ∈ I(gl), q1
α−→ q2 if and only if ∀i, q1i

αi i q
2
i , where

αi = α ∩ Pi.

Let us now state a theorem that relates the semantics of a composite com-
ponent and its flattened form. We need this theorem for redefining the L1 com-
ponent framework.

Theorem 7. Jgl{gl ′{K1},K2}K and J(gl ◦ gl ′){K1 ∪ K2}K are equivalent in the
following sense: there exists a renaming of labels in (gl ◦ gl ′){K1 ∪K2} as below
such that they are bisimilar.

For simplifying notation, we suppose that K1 = {K1,K2} and K2 = {K3} and we
denote Bh the behavior of the hierarchical component, i.e., Jgl{gl ′{K1,K2},K3}K
and Bf the behavior of its flattened form J(gl ◦gl ′){K1,K2,K3}K. The transition
relation of |gl ′{K1,K2}| is denoted 1,2.

Formally, the renaming of Bf is an LTS Bf ′ = (Qf , q
0
f , I(gl),−→f ′), that is,

only the set of labels and the transition relation are modified: the renaming con-
sists in replacing every interaction in I(gl ′) by its corresponding exported port.

However, due to the fact that an interaction may be part of several connectors,
possibly through hierarchical connectors, some problems may arise in this re-
naming. Figure 6 illustrates this: depending on the context, αf = {a, c} of the
flattened component may be renamed into either αh = {pa, pc} or α′h = {pr}.
The new transition relation is defined as follows: (q1, q2, q3)

αh−→f ′ (q1, q2, q3) iff:

1. (q1, q2, q3)
αf−→f (q1, q2, q3); decompose αf into αf = α1∪α2∪α3 with αi ∈ Pi

2. αh can be decomposed into m ∪ α3 s.t. m ∈Mbb(gl ′) and α1 ∪ α2 ∈ wb(m)

gl ′ gl ◦ gl ′glp1 p2

pa
p1 p2

a
a b c d

b c d

pr pc

Figure6. Interaction {a, c} may be part of several hierarchical connectors

Proof. We define R ⊆ ((Q1 ×Q2)×Q3)× (Q1 ×Q2 ×Q3) as:

((q1, q2), q3)R (q′1, q
′
2, q
′
3) , q1 = q′1 ∧ q2 = q′2 ∧ q3 = q′3

Let us show that R is a bisimulation. The initial states are trivially related.

Suppose that ((q1, q2), q3)
αh−→h ((q′1, q

′
2), q′3). Let us show that (q1, q2, q3)

αh−→f ′

(q′1, q
′
2, q
′
3). According to the definition of closed semantics, αh can be decom-

posed as αh = m∪α3 wherem ∈Mbb(gl ′), α3 ∈ P3, and furthermore (q1, q2)
m
 1,2

(q′1, q
′
2) and q3

α3 3 q′3. This in turn implies, according to the definition of
compositional semantics, that there exists α1 ∈ P1 and α2 ∈ P2 such that
α1 ∪ α2 ∈ wb(m), q1

α1 1 q
′
1 and q2

α2 2 q
′
2.

As qi
αi i q

′
i for i ∈ [1, 3], we have (q1, q2, q3)

αf−→f (q′1, q
′
2, q
′
3) for αf = α1 ∪ α2 ∪

α3. Thus, according to the definition of renaming and of αf , this implies that

(q1, q2, q3)
αh−→f ′ (q′1, q

′
2, q
′
3).

Symmetrically, suppose that (q1, q2, q3)
αh−→f ′ (q′1, q

′
2, q
′
3). By definition of renam-

ing, this implies that αh can be decomposed into m ∪ α3 with m ∈ Mbb(gl ′)
and α3 ∈ P3 and furthermore that there exists α1 ∈ P1 and α2 ∈ P2 such that

α1 ∪ α2 ∈ wb(m) and (q1, q2, q3)
αf−→f (q′1, q

′
2, q
′
3) for αf = α1 ∪ α2 ∪ α3, which

implies that qi
αi i q

′
i for i ∈ [1, 3]. We obtain from this that (q1, q2)

m
 1,2 (q′1, q

′
2)

and then ((q1, q2), q3)
αh−→h ((q′1, q

′
2), q′3). 2

Finally, let us show that a component and its compositional semantics satisfy
exactly the same contracts.

Theorem 8. K |=L1 (A, gl , G) if and only if |K| |=L1 (A, gl , G).

Proof. L1-satisfaction is based on Jgl{K,A}K which is defined based on |K| and
|A|. Thus it does not matter whether K or |K| is considered. 2

E Preservation of satisfaction by composition

Preservation of satisfaction by composition still has to be proven for L0 and L1.
We have to prove that for any E, gl such that Sgl = PE ∪ P for some P such
that P∩PE = ∅ and glE , E1, E2 such that E = glE{E1, E2}, the following holds
for any I, S on P:

I vE,gl S =⇒ gl1{I, E1} vE2,gl2 gl1{S,E1}
where gl1 and gl2 are such that gl ◦ glE = gl2 ◦ gl1.

E.1 Preservation of satisfaction by composition for L0

In the case of L0, this property is trivial as:

I vL0E,gl S , Tr(gl{I, E}) ⊆ Tr(gl{S,E})

gl1{I, E1} vL0E2,gl2
gl1{S,E1} , Tr(gl2{gl1{I, E1}, E2}) ⊆ Tr(gl2{gl1{S,E1}, E2})

= Tr((gl ◦ glE){I, E1, E2}) ⊆ Tr((gl ◦ glE){S,E1, E2})
= Tr(gl{I, E}) ⊆ Tr(gl{S,E})

So there is even an equivalence between the two parts of the implication.

E.2 Preservation of satisfaction by composition for L1

Proof. Let us suppose that I vL1E,gl S with all terms defined as above. Let gl1
and gl2 be such that gl ◦ glE = gl2 ◦ gl1. What we have to show now is that
gl1{I, E1} vL1E2,gl2

gl1{S,E1}.

There exists a relation R ⊆ (QI×2QE)×QS as in Lemma 6. In the following we
denote I1 = gl1{I, E1} and S1 = gl1{S,E1}. We define R′ ⊆ (QI1× 2Q2)×QS1
by: (qI1,Q2)R′ qS1 iff (qI ,QE)R qS where qI1 = (qI , q1), qS1 = (qS , q1) and QE
contains qE = (q1, q2) such that q2 ∈ Q2.

We have to show that R′ also satisfies the conditions of Lemma 6, i.e.:

– (q0I1, {q02})R′ q0S1
– if (qI1,Q2)R′ qS1 and qI1

αI1−→I1 q
′
I1, then there exists q′S1 such that:

1. qS1
αI1−→S1 q

′
S1

2. if there exists q2 ∈ Q2, q′2 ∈ Q2 and α2 s.t. q2
α2−→2 q

′
2, then (q′I1,Q′2)R′ q′S1

where Q′2 is {q′2 | ∃q2 ∈ Q2 s.t. q2
α2−→2 q

′
2}.

The condition on the initial states is once more quite obvious. Item 1 of the
second condition is also easily discharged: qI1

αI1−→I1 q
′
I1 implies that qI

αI−→I q
′
I

and q1
α1−→1 q

′
1 where αI1 = αI ∪ α1. This, according to the definition of R,

implies that qS
αI−→S q

′
S . Hence the result.

Finally let us suppose that there exists q2 ∈ Q2, q′2 ∈ Q2 and α2 s.t. q2
α2−→2 q

′
2.

Then (q1, q2)
αE−→E (q′1, q

′
2) where αE = α1 ∪ α2. Based on this, R ensures that

(q′I ,Q′E)R q′S where Q′E is {q′E | ∃qE ∈ QE s.t. qE
αE−→E q′E}. This implies

condition 2 by direct application of the definition of R′. 2

	Contract-Based Reasoning for Component Systems with Complex Interactions

