SDL for Real-Time: What Is Missing?:

Marius Bozga, Susanne Graf Alain Kerbrat Daniel Vincent
Laurent Mounier Tulian Ober
Verimag, Grenoble Telelogic, Toulouse France Telecom

Abstract. In this paper we give an overview on the main weaknesses of SDL
for the development of real-time systems, both on the programming and on the
specification side. In particular, the SDL semantics proposed in Z.100 asserts that
time is totally external to the system specification, and does not allow any con-
trol over time progress, which is however essential for verification. To solve this
problem, we propose to adopt a semantic framework for SDL based on timed au-
tomata with urgencies which is a simple and intuitive underlying model, allowing
to express most of the real-time primitives. Finally, we illustrate our proposal by
means of a small but realistic example, and we show how it is related to several
other proposals.

keywords: real-time systems, timed semantics, performance evaluation, semantic

profiles, verification

1 Introduction

The ITU-T Specification and Description Language (SDL, [1]) is increasingly used in the
development of real-time and embedded systems. This kind of systems impose particular
demands on the development language and SDL is a suitable choice in many respects:
it is formal, it is supported by powerful development environments integrating advanced
facilities (like simulation, model checking, test generation, auto-coding), and it supports
many phases of software development, ranging from analysis to implementation and on-
target deployment.

In this paper we review the needs of a real-time systems developer that are not
covered, for various reasons, by SDL. The issues that we examine are heterogeneous,
ranging from pure programming issues, like the difficulty to specify real timeout emer-
gency procedures or to program atomic transactions, to high-level modeling issues, like
the difficulty to model time non-deterministic system components or to use the standard
formal semantics for simulation and verification. For most issues we strain to give solu-
tions, although sometimes this only means that we favor one alternative among a set of
incompatible, equally justified choices.

We propose a semantic setting for time in SDL that allows a flexible specification
of timing requirements and timing knowledge about the system. With our proposal one
can capture very general forms of conditions on the duration of actions or the duration

between two events. We propose analysis methods that work on top of this semantic

! This work is funded by the French National Telecommunications Research Network (RNRT),
http://www.telecom.gouv.fr

framework, and by which we can verify general timing properties of a system, such as
the minimal /maximal time between two particular events.

To support our claim, we illustrate on a small (but realistic) example some of the
main weaknesses of SDL regarding the specification of useful real-time features, and we
show how our semantic setting allows to solve these problems. Finally, we briefly compare

our work with other proposals [10, 16].

2 Types of Problems and General Proposals

2.1 Types of Problems

SDL has the double aim of being on one hand a high-level specification formalism,
meaning that it must abstract from certain implementation details, and on the other hand
a programming formalism from which direct code generation is possible. The problems
that we identify in this paper refer to SDL either as a specification language, or as a
programming language. The problems on each side are different because the needs on
each side are different too.

On the specification side, we further have two kinds of problems: ezpressivity problems

and wusability problems.

1. An ezpressivity problem is the impossibility of SDL to capture meaningful informa-
tion about a system (like, for example, the execution time boundaries of a piece of
code).

2. Usability problems relate to the way an SDL model is used in analysis and early
design: the designer must be able to simulate the system or to formally verify cer-
tain properties. A usability problem of the SDL semantics makes it practically or
theoretically impossible to construct the global state graph of a system (graph that

is used by simulation or verification tools).

2.2 Semantic Profiles for SDL

The semantics of SDL, as presented in [1], is rather crafted for code generation than
for simulation and verification. Z.100 maintains that each action takes an indeterminate
time to execute, and that a process stays an indeterminate amount of time in a certain
state before taking the next fireable transition. This notion of time that is external,
unrelated to the SDL system, is realistic for code generation, in the sense that actual
implementations of the system conform to it. However, for simulation and verification,
this time semantics is not satisfactory: timer extents do not have any significance besides
consisting minimal bounds, any timer that gets in a queue may stay there for any amount
of time, whereas the verification of a property often depends on the fact that in the real
system the upper bounds are not indefinite.

Any rigorous attempt to construct the simulation graph of an SDL system (which is
the starting point for simulation and verification) must account for all possible combi-

nations of execution times, timer expirations and timer consumptions. Since no control

over time progress is possible, many undesirable executions might be obtained during this
exhaustive simulation. We have here a usability problem as characterized in section 2.

In practice, existing simulation and verification tools make simplifying assumptions on
execution and idle times. The usual convention is that actions take 0 time to execute, and
that the system executes immediately whatever it can execute. This option is justified by
the fact that it generates the highest degree of determinism, thus reducing the state space
by an important factor (and in fact, rendering the system practically analyzable). This
is not the only point where the SDL semantics raises usability problems for simulation
and verification, as we will see in the next sections.

We face here two alternative definitions of the semantics that are mutually exclusive
and equally justified (one by the needs of code generators, one by the needs of simulators
and verification tools).

This dichotomy cannot be surpassed by a single SDL semantics. The solution we
propose is to adopt multiple semantic profiles. This idea is not new: the UML community
is on the way to defining several profiles for UML [2], each one fitting for a particular
application domain (real time, electronic commerce, etc). In the case of SDL, profiles
would not correspond to different application domains but rather to different usages of an
SDL model: code generation, schedulability analysis, simulation, performance analysis,
model checking, test generation etc.

A semantic profile would define a semantics that is particularly suitable for a certain
type of manipulation of an SDL model. A semantic profile for code generation, for ex-
ample, would support real parallelism between the agents composing a system, while a
semantic profile for simulation and verification would propose quasi-parallel execution of
agents, that is, interleaving of transitions or transition actions.

If we accept the need for different semantic profiles, it follows that the definition of
profiles should be parameterized. Parametric semantic profiles allow to reuse the common
part of two different profiles, and to outline only the differences. For example, a semantic
profile for simulation and verification could have a parameter which determines whether
whole transitions are atomic, or whether only the SDL statements (OUTPUT, TASK, SET,
RESET, etc) should be atomic (the fact that TAU SDL Validator [17] supports such a
parameter suggests that it is useful). There is no need to have two complete profiles for
these two cases, since most of the semantics is the same in the two cases. A parameter
would be a simple and clean solution.

Semantic profiles allow the SDL standard to follow the path that already undertaken
by SDL tools which are highly parameterized. The parameters used by tools such as
Object GEODE [18] and TAU [17] represent in fact small variations in the semantics
used by the tools.

3 What is Missing on the Programming Side?

SDL has several characteristics that are attractive for real-time systems designers: asyn-
chronous communication is a first class language feature, a specification is organized in a
logical hierarchy that can be mapped in many ways to different physical configurations of

software modules (and SDL code generators usually provide this feature), external code

may be called from SDL, making it possible to use system libraries directly from SDL.
There are however several mechanisms, often employed in real-time systems, which

should be natively implemented in the language. We enumerate some of them here.

3.1 Interruptive Timers

SDL offers native mechanisms for writing time dependent code: one can consult the
system clock (through the implicit variable now), set timers, wait for a timer to expire
or receive an asynchronous message on expiration.

SDL timer timeouts are always received in the form of asynchronous messages. For
general-purpose time dependent code this is usually fine, but it is difficult to write real
timeout emergency procedures using timers. To ensure that a piece of code is executed
“immediately” after the expiration of a timeout, the SDL programmer must first make
sure that the corresponding agent (process) is idle when the timeout message is received.
Otherwise, the agent may consume the asynchronous timer message from the message
queue only when it finishes its current job, which may be too late.

therefore, SDL needs a notion of emergency timer, whose expiration is taken im-
mediately into account by the receiving agent. Emergency actions which interrupt the
normal execution of an agent were already introduced in SDL’2000, with the advent of
exceptions. All we need is a link between the exception mechanism and system time.

Our proposal goes towards the introduction of the notion of interruptive timer in the
language. An interruptive timer raises an exception instead of sending an asynchronous
message when it expires. With interruptive timers, one can easily set up real timeout

emergency procedures.

3.2 Atomic Code Sequences and Synchronization

Atomicity and mutual exclusion can be achieved by inserting system calls into the SDL
code. However, these are patterns that are very common in real-time systems, and SDL
should benefit from native constructs for expressing atomicity and mutual exclusion.

Additionally, inserting system calls in SDL has a severe drawback: as we mentioned
in the beginning of Section 3, one advantage of SDL is that it can be mapped to different
physical software configurations. System calls for obtaining mutual exclusion are different
when agents are mapped to threads and when they are mapped to processes. This means
that the SDL code must differ from configuration to configuration, which is a regression.

With native SDL constructs for atomicity and mutual exclusion, a code generator
could generate the right synchronization, rollback or deadlock protection code in every
possible mapping. Moreover, atomicity and mutual exclusion would be taken into account
in simulation (which is not the case when using system calls), and deadlocks or other
kind of errors that they may introduce could be detected earlier.

The same discussion stays valid for general purpose synchronization code. Some forms
of synchronization between SDL agents may be achieved only through external system
calls. There too, native SDL constructs would be be helpful.

4 What Is Missing on the Specification Side?

On the specification side things are more critical. As mentioned in the introduction, the
role of SDL in the system development process is twofold: on one hand it is a specification
language that must be capable to abstract away certain implementation details while still
capturing an accurate image of the system under development, on the other hand it is a
description language that must be able to express an implementation down to the last
details. These two roles of the language are sometimes conflicting, and in many cases the

description side has been given priority, to the detriment of high-level specification.

4.1 Control over Time Progress

The problem used as an example in the beginning of Section 2.2 is an important usability
problem in itself. A simulator that would use the semantics of time as described in Z.100,
would have no control over the way time progresses. As a result, the simulator would not
guarantee elementary properties like:

1. when a timer expires, it is treated in a “reasonable” amount of time (whatever the
notion of reasonable one might use).
2. when two timers are set at the same time, the timer with the lower delay will be

consumed first.

This will lead to the exploration of a number of undesirable execution paths that can
never actually happen in the system implementation.

A semantic profile for simulation must give the simulator some control over time
progress. Existing simulation tools do this, by assuming that actions take 0 time to
execute, and that time never progresses while the system has something to execute.

The usefulness of this extreme control over time progress in simulation is limited.

There are cases when time progress needs to be controlled in more flexible ways:

— to specify that in a certain state, an unlimited amount of time may pass, even though
the system has something to execute;

— to specify that in a state, a bounded amount of time may pass regardless of whether
there is something to execute or not. In this case, there is a number of consequent
problems as to the specification of the amount of time (fixed or with lower and upper

bounds; specified statically or dynamically).

We propose a concrete solution to this problem in Section 5.

4.2 Assumptions on Execution Times

There is also an expressivity problem related to the usability problem of section 4.1: since
the standard semantics of SDL assumes that an indeterminate amount of time may pass
while the system is in a state or while it executes an action, there are no means to specify
the execution times of (sequences of) actions.

Such information may be meaningful in simulation or in verification. The well func-
tioning of the system may depend on the assumptions on execution times.

Currently, in order to introduce assumptions on minimal execution times, the user
is forced to use timers and to introduce explicit waiting. For maximal execution times,
the user must also introduce timers and additional invalid states that will have to be
considered as unreachable when the state graph is built. Thus, in order to express high-
level specifications, one needs to use programming features.

There exists already several approaches to introduce execution time assumptions in
SDL specifications. The Object GEODE Simulator [16] uses a syntactic extension by
which one can associate an execution time (interval) to an action. [10] uses a more
elaborate approach in which execution times are dynamically calculated by means of
queuing machines, so that they are depending on the amount of work and on the charge of
the system. Other related works are the ones dedicated to the introduction of scheduling
policies within SDL, like [5].

We will not introduce here new SDL extensions for expressing execution times. In-
stead, we introduce a semantic framework that allows a simulator to control the progress
of time (Section 5) and we show how existing approaches for expressing execution times
([16,10]) are complementary to our semantic framework, with benefits in terms of analysis
power.

4.3 Atomicity of Transition Elements

The lack of programming constructs for expressing atomicity, mutual exclusion and syn-
chronization was outlined in Section 3.2. The same problem may be characterized as an
expressivity problem of SDL as a high-level specification language.

Besides that, the lack of a notion of atomicity poses usability problems. Z.100 [1]
asserts that the agents composing a system are executed in a real parallel environment.
In order to work, a simulator has to assume a certain degree of atomicity. Existing
SDL simulation and verification tools make simplifying assumptions: that statements
are atomic, or that entire transitions are atomic, or that sequences of statements that
take 0 time to execute are atomic.

The place for such assumptions would ideally be a semantic profile for simulation and
verification.

4.4 Flexible Channel Specifications

SDL defines channels as reliable means for transporting messages: a channel never loses
messages. Additionally, a channel may either be non-delayable (i.e. messages arrive in-
stantaneously at the other end) or with non-specified delays (but keeping the order of
the conveyed messages).

These attributes are insufficient for characterizing real communication channels. For
example, SDL is used to describe flow control protocols such as the alternating bit
protocol from the OSI stack. Such protocols are built upon the assumption that certain
channels are unreliable, and it is their mission to make them reliable through software.

If the assumptions on channels cannot be marked in SDL, the resulting protocol cannot
be used for simulation: the simulator will never cover the parts handling signal loss.

In practice, when one needs to model a channel which loses messages or which delays
messages, one has to explicitly describe the behavior of the channel in SDL(with an SDL
process, for instance). This approach has several drawbacks:

— once the behavior of the channel is specified, all messages will arrive at destination
with a wrong sender PID

— the channel description must be replicated over and over again for every lossy channel
in the system (note that a generic Process Type cannot be used, because the channel
description depends on the types of the conveyed signals, differing from channel to
channel)

— dynamic creation of timers is needed in order to transport an indefinite number of
messages at once on a delayable channel.

A simple solution to this problem is to allow the user to specify in SDL:

1. whether a channel loses messages or not, and the loss probability
2. upper and lower time bounds for the delays applied to the message conveyed by a

channel, as well as the probability laws of the delays

More complicated solutions which take into account the type and size of a message
can be imagined. Again, the ideal place for such extensions would be a semantic profile

for simulation, verification and performance analysis.

5 Timed SDL Semantics Based on Transition Urgencies

In this section we introduce a semantic framework that can be used in connection with
SDL to solve the problems of controlling time progress in simulation, problems described
in Section 4.1. Basically, we introduce a set of constructs for controlling simulation time
progress, for which we have analysis methods allowing to derive interesting timing infor-
mation (such as the minimal/maximal time span between two events) and thus to verify
timing properties of SDL systems.

The framework presented here is not directly a solution to the problems described in
Sections 3 and 4. Instead, it may constitute the underlying semantics for many tempo-
rized extensions of SDL (such as [10, 16]), which solve the above mentioned problems, and
which are closer to the abstraction level of SDL. Therefore, the constructs we introduce
below are not meant to be used as such by SDL modelers.

The constructs identified here are inspired from timed automata with urgencies, a
high-level formalism for modeling temporal properties of reactive systems. For a thorough
understanding of the semantics behind these constructs, the reader is referred to [3,4]
(timed automata), and [6] (timed automata with urgencies).

As stated in Section 4.1, in order a semantics to be usable in simulation and ver-
ification, the simulator needs to have control over system time. In SDL, system time

is represented by the value of the implicit variable now. Our idea is the following: we

consider that time may only progress while the system stays in a “simulaton state”, and
time does not progress while the simulator executes a “simulation transition” (that is,
now is not modified). Note that we talk about “simulation states” and “simulation tran-
sitions”, which may differ from SDL states and transitions: for example, in the case that
a complete SDL transition is not considered as atomic but an individual statement is,
there will be a new “simulation state” and a “simulation transition” for each individual
SDL statement.

Moreover, the progress of time in a simulation state is controlled by the transitions

that can be triggered next. We identify three categories of transition urgencies:

1. eager transitions, which have priority over time progress. If in a simulator state there
is an eager transition enabled, time cannot progress unless the transition (or another

enabled transition) is taken.

2. lazy transitions, which have the same priority as time progress. An enabled lazy
transition does not inhibit the progress of time in the simulation state. Therefore,
time may progress with an indefinite amount, if the other enabled transitions allow
it too.

3. delayable transitions, which have priority over time progress only when time progress
would disable them. Time progress may disable a transition if the transition has an
enabling condition depending on time (i.e. on the value of now). Therefore, a de-
layable transition will usually have an enabling condition depending on now, such as
now < z or now — z < y (where z and y may be integer variables or constants).

Then, time may progress in the simulation state until now = x (or now — z = y).

With this semantics, the simulator can control the progress of the system time by

identifying the urgency of the simulator transitions enabled in a certain state.

The source of this information on urgencies differ from case to case, depending on
the concrete timed extensions introduced at SDL level. We can imagine an extension of
SDL in which the user is allowed to directly associate urgencies to transitions, like in
the example in Section 6. But urgency information can also be derived from other kinds

of timed annotations, as we will see in Section 7.

We have implemented transition urgencies in IF [7, 8], a specification language devel-
oped at VERIMAG for prototyping semantic variations of the constructs of an SDL-like
language. We have also implemented the extensions in the ObjectGEODE Simulator
[15]. In both cases we have good results in terms of both what we can express with them

and what analyses we can perform on annotated models.

However, such extensions are not very close to the level of abstraction of SDL, and
modelers may find it difficult to produce the urgency annotations and the related infor-
mation. As we mentioned already, our extensions are rather thought to be the semantic
basis for more user-level constructs, such as those introduced in [10, 16]. Section 7 is dedi-
cated to showing how such user-level extensions are projected on our semantic framework,
and what are the advantages of using this framework.

6 Example: the Bounded Retransmission Protocol

We illustrate here on a simple example some of the specification problems of SDL that
have been identified in this paper, and we show how they can be solved using the semantic

framework proposed in the previous section.

6.1 Specification of the protocol

The example we propose is the so-called “Bounded Retransmission Protocol” (BRP),
which provides a file transfer service through an unreliable medium between two entities,
a Transmitter and a Receiver. More precisely, each file is split into several packets and
each packet is transmitted in sequence using the well-known alternating bit protocol.
However, in case of packet loss, only a bounded number of retransmission are performed,
and thus the file delivery is not guaranteed. In this situation, both entities should abort
the current file transfer, and proceed with the next file. This protocol has been used as
a running example for several verification tools[14, 9, 12], and we consider here a simple
version mainly focussed on its timing behaviour, which is in general not treated in the

above approaches.

This protocol (figure 1) is composed of a Transmitter and a Receiver process, whose
description in SDL can be found in Figure 1.

The Transmitter first waits for a transfer request issued by the environment (PUT (p),
where p is the number of packets). When a transfer request is issued, it starts transmitting
packets (m,b) one by one, where m indicates whether the packet is a first, middle or
last element of the file, and b is the alternating bit. After each transmission of a packet,
the Transmitter starts a timer t_repeat and waits either for an acknowledgment issued
by the receiver, or for the expiration of t_repeat. If a correct acknowledgment is received,
it resets t_repeat and proceeds to the next packet, unless it was the last one. However, if
t_repeat expires, the same packet is resent up to max_retry attempts (t_repeat being
restarted after each resent). If none of these transmission succeeds (no correct ack is
received), the Transmitter aborts the current file transfer and reports the failure to its
upper layer. After a transfer abortion the Transmitter starts a timer t_abort and waits

for its expiration before processing the next file.

The Receiver continuously waits for packet receptions. When a first packet is
received, it initializes its alternating bit, starts a timer r_abort and sends back an ac-
knowledgment to the Transmitter. Each subsequent packet is acknowledged (according
to the “alternating bit” policy), and the timer r_abort is restarted upon each reception
of a new packet. When a last packet is received, the Receiver considers that the entire
file has been correctly transmitted: it delivers it to its upper layer (GET(p)), stops its
timer, and waits for a new file. However, if the timer r_abort expires, the Receiver
assumes that the next packet has been repeatedly lost that the transfer has been aborted

by the Transmitter. It informs its upper layer (ABORT), and waits for a new file.

system brp

centry cexit

rocess receiver

brpblock

[GET, ABORT]

[ABORT, K] [Pu]

newtype

Data literals first, middle, last;
endnewtype;

synonym maxp = 2;

syntype

NoOfPackets = natural constants 1:maxp
endsyntype;

synonym max_retry = 4;

synonym dt_repeat = 2.0;

synonym dt_abort = 15.0;

synonym dr_abort = 13.0;

/* max_retry*(dt_repeat + d_trans) < dr_abort < dt_abort */
signal PUT(NoOfPackets);

signal GET(NoOfPackets);

signal ABORT, DK;

D

centry cexit

block brpblock
entry

4
transmitter

signal SDT(Data,boolean);
signal ACK(boolean);

[ABORT, DK]

[PUT]

exit [GET, ABORT]

[SDT
receiver

[ACK] medium

]

RESET (r_abort)

dcl b, ¢ Boolean;

dcl p Natural,
m Data;

timer r_abort :=
dr_abort;

SET (t_repeat)

(trlue)

<ob>

fal
(alse

(Waithck)

| b:=not b |

(

)
)

G

(trlue)

dcl b,c Boolean;

dcl p Natural;
dcl I,j Natural;
dcl m Data;

timer t_repeat := dt_repeat;
timer t_abort := dt_abort;

Fig. 1. The Bounded Retransmission Protocol in SDL

6.2 Modeling of the timed behaviour

One of the main correctness criterion of this protocol is that both the Transmitter and
the Receiver should decide coherently on the abortion of a file transfers. However, this
can be achieved only when precise constraints are fulfilled between timers values and

action durations. In particular:

— if the timer t_repeat expires (repeatedly) too late, the timer r_abort may expire be-
fore the Transmitter has actually aborted the transmission of the file, the Receiver
will consider that the current transfer has been aborted and consider following pack-
ets of the same file as packets of a new file;

— if the timer r_abort expires too late, that is, when the Transmitter has aborted the
current transfer and received the timeout of t_abort, it will proceed to the next file

after an abortion before this abortion has been detected by the Receiver;

As stated in section 4, if this specification is simulated following the Z.100 time
semantics, nothing can be ensured concerning the relative expiration time of the different
timers in Transmitter and Receiver. Therefore, even if the timers are set to correct
values, incorrect execution scenarios will be observed, leading to the conclusion that the
specification is not correct. However, this conclusion does only hold if no assumption
about the relative speed of the clocks in the two communicating processes can be made.

On the other hand, simulating this specification using the current default time se-
mantics of Object GEODE (i.e., each transition takes 0 time and is considered eager) is
also not satisfying since it excludes realistic scenarios. For instance, using this semantics,
the timer r_abort never expires before the reception of an expected packet (expiration
will take place only after the packet loss). Thus, this too deterministic time behaviour
will only lead to partial validation results.

These two limitations can be avoided using the notion of transition urgency introduced
in section 5. More precisely, lazy and delayable transitions are used to specify some parts
of the system supposed to take a certain amount of time to execute, or those occurrence
is only controlled by the environment (they may occur at a specified or unspecified
frequency). All other transitions (and in particular timeout expirations) are supposed to

be eager. In the BRP specifications the non eager transitions are the following:

— The transfer requests (PUT(p)) issued by the environment, which may occur at an
unspecified rate, and which should therefore be declared as lazy;

— The packet transmission (Sdt(m,b)), which is supposed to take a non deterministic
amount of time within a given interval to model the transmission delay, and which
should be declared as delayable. (Note that the delay required to transmit the ac-
knowledgments are omitted here, but they could have been introduced similarly).

— A bounded difference of clock speeds in the two concurrent processes could be simu-

lated by using timers expiring within some interval, instead of an exact time.

Figure 2 gives a correct specification of the Transmitter process including the urgencies
annotations.

process transmitter

now -x >=d_trans_min and
now -x <= d_trans_max

dcl b,c Boolean;

dcl p Natural;

dcl 1,j Natural;

dcl m Data;

timer t_repeat :=
dt_repeat;

timer t_abort :=
dt_abort;

dcl x time;

SET (t_abort)

Wait_Abort

Fig. 2. The specification of Transmitter using urgencies

7 Related work

We present here two existing proposals for extending SDL with time-related constructs,
and we show how the semantic framework introduced in Section 5 is fully compatible
with both of them.

7.1 Object GEODE Performance Evaluation Extensions

The ObjectGEODE Simulator implements a series of SDL extensions, for modeling
timing properties of systems. The modeler has the possibility to split the system among
multiple processors, to give priorities to processes, and to declare execution durations on
actions.

We can use these extensions to specify the process Transmitter from our example in
Section 6. Namely, we use the Object GEODE extensions to model the non-deterministic
waiting time before the transmission of signal SDT, as shown in Fig. 3: this transition
may replace the transition outgoing from the state Send, in the initial specification of
the BRP protocol (Fig. 1).

In Object GEODE, execution durations on actions are specified statically, by a time
interval and a probability distribution (not considered here). Actions that have no spec-
ified duration are considered to take 0 time. The semantics of time consuming actions is
the following: when an agent reaches a time consuming action, it enters an implicit state
in which it stays for a time period complying to the specified interval. While the agent is
in that state, only agents executed by other physical processors may execute. The other
agents executed by the same physical processor as the blocked agent are blocked too.
When time elapses, the agent exits the implicit state and executes the action in 0 time.

In our example, the simulator executes all the actions described in the process Transmitter

before the informal task ’non-deterministic wait’. Then, the simulator puts the Transmitter

'non-deterministic
wait’

SDT(m,b)
SET (t_repeat)

Fig. 3. The BRP Transmitter delay modeled using the ObjectGEODE performance evaluation

extensions

in an implicit state, where it stays for a period of d_trans_min to d_trans_max time
units. At the end of this period, the Transmitter exits the implicit state, and the simu-
lator executes the output of SDT in 0 time.

This semantics can be captured using urgencies. Associating a delay to an action is
equivalent to splitting the initial transition with an implicit intermediate state and an
implicit delayable transition, as shown in Fig. 2.

The advantage of using our semantic framework for expressing execution times is
that our analysis methods allow to consider both lower and upper limits simultaneously
during simulation. The analysis methods we have developed on our model work with time
intervals, and we can compute the minimal/maximal time span between two arbitrary

occurrences in the system.

7.2 QSDL

Queuing SDL (QSDL, [10]) is an extension of SDL with constructs for modeling tim-
ing properties of systems, developed at the University of Essen, Germany. QSDL was
developed for doing performance modeling and analysis on SDL systems.

The tool supporting QSDL, QUEST [11], implements a discrete-time semantics that
resembles the semantics implemented in Object GEODE and TAU. Time passes in sim-
ulation states, normal transition actions take 0 time to execute. Additionally, QSDL
introduces a new SDL statement, which takes time and which may be put on tran-
sitions: REQUEST. Like in Object GEODE, described in the previous section, this time
consuming action introduces in fact an implicit simulation state, in which the calling
agent stays for as long as the REQUEST takes.

The difference between QSDL and the Object GEODE performance evaluation exten-
sions comes from the fact that the execution time of a REQUEST is not specified statically.
QSDL uses the concept of queuing machine to compute the dynamic execution time of
a REQUEST. Queuing machines represent computing resources shared between several
agents of an SDL system, for which the agents compete.

For projecting the QSDL extensions on our semantic framework which uses transition
urgencies to control time progress, we would need to model QSDL queuing machines by
SDL automata annotated with urgencies. The task is not trivial, because the behavior

of a queuing machine depends on a series of parameters:

1. the speed. The absolute amount of work, which is a parameter of the REQUEST, is
first divided by the speed of the machine, to obtain an amount of work relative to
the machine

2. the number of processors. A machine may have from one to an infinity of processors.
Perfect parallelism is assumed (i.e. if a machine has n requests to process simulta-
neously, m processors, and a speed s, the rate at which each request is processed is
r="sifn>mand r = s if n <m).

3. the scheduling policy. In case of multiple, competing requests, the scheduling policy
determines which requests are serviced and which are put on hold. QSDL defines the
following scheduling policies: FIFO with three variants (non-preemptive, priority non-
preemptive, and priority preemptive), Processor Time Sharing, Infinite Processors,

Random non-preemptive, and LIFO priority preemptive. For details, see [11]

Contrary to our approach which relies on static hypothesis, QSDL introduces a dy-
namic calculus of action durations depending on the system architecture and the schedul-
ing policies used. However, both extensions are fully compatible and can be advanta-

geously combined to improve the development process.

8 Conclusion

In this paper we have identified some of the major weaknesses of SDL for the development
of real-time systems, in particular on the specification side. To fill these gaps, our proposal
relies first on introducing a new timed semantics for SDL, based on timed automata with
urgencies. The benefits of using such a semantics are numerous: it is simple and intuitive,
it relies on a well-defined and well-studied theoretical model, it allows to express most
of the real-time primitives, and several verification tools have been already developed
upon this model with very good results in practice [13, 19, 15]. It now remains to propose
adequate user-level extensions of SDL based on this underlying semantics, which could
come from industrial users facing the problems that we have described.

Finally, since several semantics may be necessary to cover different needs (simulation,
validation, code generation, performance evaluation, etc.), we suggest to adopt multi-
ple semantic profiles for SDL, each one being dedicated to some particular steps of the
development process. Introducing such profiles in the SDL standard has the advantage
that all existing profiles would be concentrated together, and that compliance relation-
ships between profiles could be defined formally. A theoretical basis for defining profiles
and inter-profile compliance relationships does not exist and is hard to develop, but the
current practice of SDL tools, which employ the notion of profile implicitly and without
discipline, demands it.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.

. Languages for telecommunications applications - specification and description language

(SDL). ITU-T Recommendation Z.100, 1996.

. Requirements for UML profiles. OMG document ad/99-12-32, December 1999. OMG ADTF

Green Paper.

R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time. Information
and Computation, (104):2-34, 1993.

R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
(126):183-235, 1994.

J.M. Alvarez, M. Diaz, L.M. Llopis, E. Pimentel, and J.M. Troya. Integrating schedulability
analysis and sdl in an object-oriented methodology for embedded real-time systems. In
R. Dssouli, G.v. Bochmann, and Y. Lahav, editors, Proceedings of SDL Forum’99, Montreal,
Canada, 1999. Elsevier.

S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems. In International
Symposium: Compositionality - The Significant Difference (Holstein, Germany), volume
1536 of LNCS. Springer, September 1997.

M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and J. Sifakis. IF:
An intermediate representation for SDL and its applications. In R. Dssouli, G.v. Bochmann,
and Y. Lahav, editors, Proceedings of SDL Forum’99, Montreal, Canada, 1999. Elsevier.
M. Bozga, S. Graf, L. Mounier, and J. Sifakis. The intermediate representation IF. Technical
report, Verimag, 1998.

P.R. D’Argenio, J-P. Katoen, T. Ruys, and J. Tretmans. The bounded retransmission
protocol must be on time! Technical report, Univ. of Twente, 1997. Report CTIT 97-03.
M. Diefenbruch, E. Heck, J. Hintelmann, and B. Miiller-Clostermann. Performance eval-
uation of SDL systems adjunct by queueing models. In R. Braek and A. Sarma, editors,
Proceedings of SDL Forum’95. Elsevier Science B.V., 1995.

M. Diefenbruch, J. Hintelmann, and B. Miiller-Clostermann. Quest User Manual. University
of Essen, Dept. of Mathematics and Computer Science, Essen, Germany, March 1998.

J-F. Groote and J. van de Pool. A bounded retransmission protocol for large data packets. In
M. Wirsing and M. Nivat, editors, Algebraic Methodology and Software Technology, volume
1101 of LNCS, pages 536-550. Springer-Verlag, 1996.

K.G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & Developments. In O. Grumberg,
editor, Proceedings of CAV’97, volume 1254 of LNCS. Springer, June 1997.

R. Mateescu. Formal description and analysis of a bounded retransmission protocol. In
Z. Brezo¢nik and T. Kapus, editors, Proceedings of the COST 247 International Workshop
on Applied Formal Methods in System Design (Maribor, Slovenia), pages 98-113. University
of Maribor, Slovenia, June 1996. Also available as INRIA Research Report RR-2965.

I. Ober, B. Coulette, and A. Kerbrat. Timed SDL simulation and verification: Extending
SDL with timed automata concepts. Technical report, Telelogic Technologies Toulouse,
2000.

J.-L. Roux. SDL performance analysis with ObjectGEODE. In A. Mitschele-Thiel,
B. Miiller-Clostermann, and R. Reed, editors, Workshop on Performance and Time in SDL
and MSC, Erlangen, Germany, February 1998.

Telelogic A.B., Malmé, Sweden. Telelogic TAU SDL Suite Reference Manuals, 1999.
VERILOG, Toulouse, France. Object GEODE 4.1 Reference Manuals, 1999.

S. Yovine. KRONOS: A Verification Tool for Real-Time Systems. Software Tools for
Technology Transfer, 1(142):123-133, December 1997.

